首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: All-trans retinoic acid (RA) is the only extrinsic biochemical candidate known to date that could act as a growth controller,the aim of this study was to investigate the expression cellular retinoic acid binding proteins I (CRABP-I) and retinoic acid receptor-β (RAR-β) in retina of the guinea pig eyes with experimental myopia. METHODS: Ninety guinea pigs aged 14 days were equally and randomly divided into three groups: form deprivation (FD), -5D lens, and control. The diffusers for FD were white translucent hemispheres, and -5D lenses were used to introduce hyperopic defocus. Refraction was measured with streak retinoscopy after cycloplegia, and axial length was calculated with Cinescan A/B ultrasonography. Retina harvested at different time points were used to measure RA level with HPLC and expressions of cellular retinoic acid binding proteins I (CRABP-I) and RA receptor-β (RAR-β) were assayed with Western blot and Real-time PCR. SPSS13.0 software was used for statistical analysis. RESULTS: Up-regulations of CRABP-I and RAR-β in ocular tissues correlated with changes in the refractive status and growth rate of the guinea pig eye (P<0.05). 14 days of monocular form-deprivation led to -5.14D myopia and a 0.281mm axial elongation; 14 days of monocular defocus produced -3.64D myopia and a 0.163 mm axial elongation. The level of retinal RA started to elevate in 7 days (P<0.05) after visual manipulation in both FD and -5D lens groups and became more prominent by 14 days (P <0.01) . The expressions of CRABP-I and RAR-β increased by 14 days after visual manipulation (P<0.05), the mRNA level of RAR-β, however, increased by 7 days after visual manipulation (P<0.05), which suggested that changes of expressions of CRABP-I and RAR-β might lag behind the change of RA. CONCLUSION: The levels of CRABP-I and RAR-β were elevated in retina of the guinea pig eye with experimental myopia. During the progression of experimental myopia, the retinal RA level increased rapidly, and there might be a positive feedback between the increase of RA and up-regulation of RAR-β.  相似文献   

2.
3.
AIM:To evaluate the effect of posterior sclera collagen cross-linking induced by riboflavin-ultraviolet A(UVA)on form-deprived myopia in guinea pigs.METHODES:Twenty-five pigmented guinea pigs of 3-week-old were randomly assigned into 4 groups that included normal control(NOR,n=7),form-deprived(FDM,n=7),normal with riboflavin-UVA cross-linking(NOR+CL,n=5)and form-deprived with cross-linking(FDM+CL,n=6).The NOR+CL group and the FDM+CL group received the riboflavin-UVA induced cross-linking at day 0.FDM was induced by monocularly deprived with facemask in the right eyes.The refraction,axial length and corneal curvature were measured by retinoscopy,A-scan and keratometer respectively in scheduled time points(day 0 and 1,2,3,4 wk after form-deprivation).At the end of 4 weeks’experiment,stress-strain tests of sclera were measured and morphological changes of sclera and retina were examined.RESULTS:After 4 wk,the interocular difference of refractive error were-0.11±0.67,-2.93±0.56,1.10±0.58,and-1.63±0.41 D in the NOR,FDM,NOR+CL,and FDM+CL groups respectively.Mixed-effect linear model revealed significant effect of FDM(P<0.01)and CL(P<0.001).Also,after 4 wk,the interocular difference of axial length were 0.01±0.04,0.29±0.07,-0.13±0.06,and 0.11±0.05 mm in the NOR,FDM,NOR+CL,and FDM+CL group.Mixedeffect linear model revealed significant effect of FDM(P<0.001)and CL(P<0.01).As for corneal curvature,significant interocular difference have not found between any of the two groups.At the end of this experiment,the ultimate stress and elastic modulus were found significantly increased in both CL groups.But no difference was found in the groups without cross-linked.There was no abnormality observed in the retina and RPE cells of the treated eyes.CONCLUSION:The posterior sclera collagen crosslinking induced by riboflavin-UVA can slow down the progress of myopia and increase the sclera biomechanical strength in the guinea pig model of form-deprived myopia.  相似文献   

4.
AIM: To expose rat retinal Müller cells to 530 nm monochromatic light and investigate the influence of varying light illumination times on basic fibroblast growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) expression.METHODS: Three groups of rat retinal Müller cells cultured in vitro under a 530 nm monochromatic light were divided into 6, 12 and 24h experimental groups , while cells incubated under dark conditions served as the control group. The bFGF and TGF-β1 mRNA expression, protein levels and fluorescence intensity of the Müller cells were analyzed.RESULTS:ThebFGF mRNA expression and protein levels were significantly upregulated in Müller cells in all three experimental groups compared with the control group (P<0.05), while that of TGF-β1 was downregulated (P<0.05). Also, bFGF expression was positively correlated, but TGF-β1 expression was negatively correlated with illumination time. The largest changes for both cytokines were seen in the 24h group. The changes in bFGF and TGF-β1 fluorescence intensity were highest in the 24h group, and significant differences were observed among the experimental groups (P<0.05).CONCLUSION:The expressions ofbFGF and TGF-β1 changed in a time-dependent manner in Müller cells exposed to 530 nm monochromatic light with 250 lx illumination intensity. Müller cells might play a role in the development of myopia by increasing bFGF expression or decreasing TGF-β1 expression. Changes in cytokine expression in retinal Müller cells may affect monochromatic light-induced myopia.  相似文献   

5.
AIM:To investigate the effects of transforming growth factorβ2 (TGF-β2) and connective tissue growth factor (CTGF) on transdifferentiation of human lens epithelial cells (HLECs) cultured in vitro and synthesis of extracellular matrix (ECM).METHODS:HLECs were treated with TGF-β2 (0, 0.5, 1.0, 5, 10μg/L) and CTGF (0, 15, 30, 60, 100μg/L) for different times (0, 24, 48, 72h) in vitro and the expression of α-smooth muscle actin (α-SMA), the main component of the extracellular matrix type I collagen (Col-1) and fibronectin (Fn) were measured by using real-time polymerase chain reaction (PCR) and western-blot.RESULTS: TGF-β2 and CTGF significantly increased expression of α-SMA mRNA and protein (P<0.05, P<0.001), Fn mRNA and protein (P<0.001), Col-1 mRNA and protein (P<0.001). TGF-β2 could induce HLECs expression of CTGF mRNA and protein in dose-dependent manner (P<0.05, P<0.001). TGF-β2 and CTGF could induce HLECs to express α-SMA, Fn and Col-1 in time-dependent manner. Each time of TGF-β2 and CTGF induced HELCs expression of α-SMA, Fn, Col-1 mRNA and protein was significant increase compared with control (P<0.05, P<0.001).CONCLUSION: TGF-β2 and CTGF could induce HLECs epithelial mesenchymal transition and ECM synthesis.  相似文献   

6.
Yue Xing  Xue-Ke Li  Si-Duo Lu  Jin Ma 《国际眼科》2020,13(8):1202-1209
AIM: To investigate the effects of collagen and opticin on the bioactivity of human retinal vascular endothelial cells (hRVECs), and explore its regulations by integrins and RhoA/ROCK1 signal pathway. METHODS: hRVECs were cultured in collagen and treated by opticin, and cell-based bioactivity assays of cell proliferation, migration, and adhesion were performed. The expression of integrin α2, integrin β1, RhoA and ROCK1 were examined with real-time PCR and Western blotting. RESULTS: Collagen could promote cell viability of proliferation and migration (all P<0.05), and enhance the mRNA expression of integrin α2, integrin β1, RhoA and ROCK1 (all P<0.05). Opticin could inhibit proliferation and migration ability of hRVECs cultured in collagen, and reduce the mRNA expression of integrin α2, integrin β1, RhoA and ROCK1 (all P<0.05). CONCLUSION: Collagen and opticin can affect bioactivity of hRVECs, which may be regulated by α2-, β1-integrins and RhoA/ROCK1 signal pathway.  相似文献   

7.
AIM: To investigate the effects of collagen and opticin on the bioactivity of human retinal vascular endothelial cells (hRVECs), and explore its regulations by integrins and RhoA/ROCK1 signal pathway. Methods: hRVECs were cultured in collagen and treated by opticin, and cell-based bioactivity assays of cell proliferation, migration, and adhesion were performed. The expression of integrin α2, integrin β1, RhoA and ROCK1 were examined with real-time PCR and Western blotting. Results: Collagen could promote cell viability of proliferation and migration (all P<0.05), and enhance the mRNA expression of integrin α2, integrin β1, RhoA and ROCK1 (all P<0.05). Opticin could inhibit proliferation and migration ability of hRVECs cultured in collagen, and reduce the mRNA expression of integrin α2, integrin β1, RhoA and ROCK1 (all P<0.05). Conclusion: Collagen and opticin canould affect bioactivity of hRVECs, which may be regulated by α2-, β1-integrins and RhoA/ROCK1 signal pathway.  相似文献   

8.
AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-β1 (TGF-β1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 in vitro were induced by TGF-β1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the α-smooth muscular actin (α-SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the α-SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-β1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-β1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both α-SMA and CTGF, while to some extent inhibited that of collagen I. TGF-β1 significantly promoted the proteins expressions of α-SMA, CTGF and collagen I. After OTFS treated by both TGF-β1 and Y-27632, of α-SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the α-SMA, CTGF and collagen I mRNA in 30, 150, 750μmol/L Y-27632 group were statistically significant, compared with those in control group, respectively (α-SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I, P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and α-SMA whatever OTFS induced by TGF-β1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction. KEYWORDS: Y-27632; ocular Tenon's capsule fibroblasts; transforming growth factor beta type 1; α-smooth muscular actin; connective tissue growth factor; collagen I  相似文献   

9.
AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2) on untransfected human corneal endothelial cells (HCECs) in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L) altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01) and the length of F-actin, reduced the mean optical density (P<0.01) of the collagen type IV in extracellular matrix (ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.  相似文献   

10.
Objective: To evaluated the effect of oral administration of riboflavin combined with pulsed and continuous light accelerated scleral cross-linking on the histological and biomechanical properties of sclera in a guinea pig model to control the progression of myopia. Methods: Thirty 4-week-old guinea pigs were divided into 5 groups, or the control group, non cross-linking group, conventional cross-linking group, pulse light cross-linking group and continuous light cross-linking group with 6 guinea pigs in each group.Three cross-linking groups were administered 0.1% riboflavin solution with vitamin C by gavage from 3 days before modeling to modeling process.The conventional cross-linking group underwent cross-linking with 1 hour of (ultraviolet A (UVA) exposure at 0.67 mW/cm2, the pulse light cross-linking group received a pulsed-light accelerated crosslinking for 8 minuctes (1 second on/1 second off) of UVA exposure at 10 mW/cm2, and the continuous light accelerated cross-linking group was crosslinked with continuous-light accelerated crosslinking at 10 mW/cm2 for 4 minuctes.The same procedure was conducted on the non cross-linking group without UVA irradiation and 0.1% riboflavin solution before modeling and modeling process.No any intervene was carried out in the control group.Retinoscopy and the axial length measurement were performed before and after experiment.The animals were euthanized 2 weeks after experiment and then biomechanical and histopathological examinations of scleras were conducted.The use and care of the animals complied with Regulations for the Administration of Affair Concerning Experimental Animals by State Science and Technology Commission. Results: Myopia models were established with an increased axial length and myopic diopter 2 weeks after myopic modeling process.Axial length in the non cross-linking group was longer than that of the control group at 2 weeks, with a siginificant difference between them (P<0.01). The myopic Diopter in the non cross-linking group was significantly increased in comprasion with the control group at 2 weeks (P<0.01). Compared with myopic eyes in the non cross-linking groups, axial length, diopter and strain assessment values were decreased significantly in three scleral cross-linking groups (all at P<0.01). The sclera ultimate load and stress assessment in the conventinal cross-lingking group, pulse light cross-linking group, continuous light cross-linking group were significantly higher than those in the non-cross-linking group Max stress: [2.20±0.03], [2.67±0.05], [2.41±0.04]Mpa vs.[1.30±0.02]Mpa; Max load: [1.92±0.03], [2.33±0.28], [1.91±0.03]P vs.[1.54±0.06]P) (all at P<0.01). Collagenous tissue of the scleras in the pulse light cross-linking group and continious ligh cross-linking group was similar in appearance to the control group.In addition, MMP2 expression of pulse light cross-linking group and continuous light cross-linking group was significantly increased, and TIMP-2 expression showed a reduce. Conclusions: Pulsed and continuous light accelerated scleral cross-linking using oral administration of riboflavin and riboflavin UVA irradiation can effectively prevent the myopia development by increasing scleral biomechanical strength in guinea pig. Copyright © 2018 by the Chinese Medical Association.  相似文献   

11.
AIM:To investigate the effect of intravitreal injection of DL-alpha-aminoadipic acid (DL-α-AAA) on ocular refractive state and retinal dopamine, transforming growth factor-β2 (TGFβ2), vasoactive intestinal polypeptide (VIP) in guinea pig form-deprived myopia.METHODS:Four-week-old pigmented guinea pigs were randomly assigned to 4 groups:normal control, deprivation, deprivation plus DL-α-AAA, deprivation plus saline. Form deprivation was induced with the self-made translucent eye shields, and lasted for 14 days. 8μg DL-α-AAA was injected into the vitreous chamber of deprived eyes. The corneal radius of curvature, refraction and axial length were measured. Retinal dopamine content was evaluated by the high-performance liquid chromatography with electrochemical detection, and TGFβ2 and VIP protein were detected by Western blotting.RESULTS:Fourteen days of eye occlusion caused the axial length to elongate and become myopic in the form-deprived eyes, with the decrease of retinal dopamine and the increase of TGFβ2 and vasoactive intestinal polypeptide (VIP) protein. Intravitreal injection of DL-α-AAA could inhibit the myopic shift from (-3.65±1.06)D to (-1.48±0.63)D, P<0.01 due to goggles occluding and cause the decrease of retinal TGFβ2 protein in the deprived eyes. However, intravitreal injection of DL-α-AAA had no significant effect on retinal dopamine and VIP protein in deprived eyes. Retinal TGFβ2 protein correlated highly with the ocular refraction (y=-3.34+0.31/x, F=74.75, P<0.001) and axial length (y=8.39-0.02/x, F=48.32, P<0.001) in different treatment groups.CONCLUSION:Intravitreal injection of DL-α-AAA is effectively able to suppress the development of form deprivation myopia, which may be associated with retinal TGFβ2 protein in guinea pigs.  相似文献   

12.
AIM: To investigate the roles of integrins in choroidal neovascularization (CNV) and their associations with the stromal cell-derived factor-1 (SDF-1)/CXCR4 axis. METHODS: CNV lesions were induced in mice using laser photocoagulation. After CNV induction, all animals were randomly assigned to: control, SDF-1, SDF-1+age-related macular degeneration (AMD) 3100 (CXCR4 inhibitor), and SDF-1+ATN161 (integrin α5β1 inhibitor) groups; their effects on CNV progression were observed using hematoxylin eosin (HE) staining, fundus fluorescein angiography (FFA) grading and optical coherence tomography (OCT), and their effects on CXCR4/integrin α5 expression were evaluated using Western blot and double immunofluorescence staining. Hypoxia-exposed endothelial cells (ECs) were used to simulate CNV in vitro, they were treated with SDF-1, combined with CXCR4 siRNA/AMD3100 or ATN161, and expression of integrin α5, cell migration and tube formation were analyzed. RESULTS: Integrin subunit α5 increased at 3rd and 7th day and decreased at 14th day in CNV mice, with no significant change of β1-integrin. CXCR4 expression in CNV mice had persistent increase within 14d after induction. SDF-1 treatment significantly promoted the CNV progression during 3-14d. The mean CNV length in AMD3100 and ATN161 group at day 7 was 270.13 and 264.23 μm in HE images, significantly lower than the mean length in SDF-1 (345.70 μm) group. AMD3100 and ATN161 also significantly reduced thickness and leakage of CNV induced by SDF-1. Mean integrin α5 positive area in SDF-1 group reached 2.31×104 μm2, significantly higher than control (1.25×104 μm2), which decreased to 1.78×104 μm2 after AMD3100 treatment. About 61.36% of ECs in CNV lesions expressed α5 in SDF-1 group, which significantly decreased to 43.12% after AMD3100 treatment. In vitro, integrin α5 peaked by 6 folds after 6h of hypoxia exposure and CXCR4 gradually increased by up to 2.3 folds after 24h of hypoxia. Approximately 25.12% of ECs expressed integrin α5 after SDF-1 stimulation, which decreased to 7.2%-9.5% after si-CXCR4 or AMD3100 treatment. ATN161 exerted an inhibitory effect comparable to that of si-CXCR4 on EC migration and tube formation in the presence of SDF-1. CONCLUSION: SDF-1/CXCR4 signaling induces integrin α5β1 expression in ECs to promote CNV.  相似文献   

13.
AIM: To investigate the clinical features and genetic defects in four generations of a Chinese family affected with atypical granular corneal dystrophy type I (GCD type I).METHODS: Family history and clinical data were recorded. Genomic DNA samples were obtained from peripheral blood leukocytes of all participated. Exons of the transforming growth factor-β-induced(TGFBI) gene were directly sequenced after being amplified by polymerase chain reaction (PCR), and multi-point linkage analysis using microsatellite makers flanking the gene was applied to identify the disease-causing mutation.RESULTS: Clinical features were quite variable in patients, some patients only had opacities in the epithelium, and others revealed multiple bilateral circular, discrete, crumb-like opacities mainly in the epithelium, with several in different depths of corneal stroma, and the performance was different bilaterally, even in the same patient. Directly nucleotide sequencing revealed a heterozygous p.R555W mutation in the coding sequence of the TGFBI gene in all affected individuals of the family, but was not found in all unaffected. The maximum logarithm of odds (LOD) score obtained by multi-point analysis was detected at marker locus D5S393 (LOD=2.740; α=1.000).CONCLUSION: Our case presented with clinical futures and the pathogenic mutations in TGFBI gene, the phenotype of the pedigree was quite different from typical GCD type I, so we suggested that this phenotype was a variant of GCD type I. These findings expand the knowledge about GCD type I, and demonstrate that molecular genetic analysis is important to make an accurate diagnosis of patients with variable corneal dystrophies in clinic.  相似文献   

14.
AIM: To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA (ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4 (BMP4) in lens during the development of the vertebrate eye. METHODS: Cre-positive mice were mated with Cre-negative mice to generate 50% Cre-positive (conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring (wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 μm. Removal of paraffin wax and dehydrating for sections, and then the procedure of in situ hybridization was processed, BMP4 MK1784-m (BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant. RESULTS: Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of Bmp4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P<0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5. CONCLUSION: ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.  相似文献   

15.
AIM: To investigate the interfering effect of Y-27632, a ROCK-I selective inhibitor, on the signal transduction pathway of transforming growth factor-β1 (TGF-β1) in ocular Tenon capsule fibroblasts (OTFS) in vitro. METHODS: After OTFS from passages 4 to 6 in vitro were induced by TGF-β1 and then treated by Y-27632, the changes of the OTFS cell cycles were analyzed via flow cytometry, and the proteins expression of the α-smooth muscular actin (α-SMA), connective tissue growth factor (CTGF), collagen I were calculated by Western blot. After OTFS treated by the different concentrations of Y-27632, the expression levels of the α-SMA, CTGF and collagen I mRNA were assayed by RT-PCR. RESULTS: Y-27632 had no markedly effect on the OTFS cell cycles. After treated by TGF-β1, OTFS in G1 period significantly increased. The cell cycles distribution by both TGF-β1 and Y-27632 had no remarkable difference from that in control group. Y-27632 significantly inhibited the proteins expressions of both α-SMA and CTGF, while to some extent inhibited that of collagen I. TGF-β1 significantly promoted the proteins expressions of α-SMA, CTGF and collagen I. After OTFS treated by both TGF-β1 and Y-27632, of α-SMA, the protein expression was similar with that in control group (P=0.066>0.05), but the protein expression of CTGF or collagen I, respectively, was significantly different from that in control group (P=0.000<0.01). The differences of expressions of the α-SMA, CTGF and collagen I mRNA in 30, 150, 750μmol/L Y-27632 group were statistically significant, compared with those in control group, respectively (α-SMA, P=0.002, 0.000, 0.000; CTGF, P=0.014, 0.002, 0.001; collagen I, P=0.003, 0.002, 0.000). CONCLUSION: Blocking the Rho/ROCK signaling pathway by using of Y-27632 could inhibit the cellular proliferation and the expression of both CTGF and α-SMA whatever OTFS induced by TGF-β1 or not. Y-27632 suppressed the expression of collagen I mRNA without induction.  相似文献   

16.
17.
AIM:To investigate the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on titanium (Ti) surface.METHODS:The chimeric peptide RKLPDAPRGDN (minTBP-1-PRGDN) was synthesized by connecting RKLPDA (minTBP-1) to the N-terminal of PRGDN , the influence of minTBP-1-PRGDN on the attachment, proliferation and collagen I synthesis of human keratocyte on Ti surface were tested using PRGDN and minTBP-1as controls. The keratocytes attached to the surface of Ti were either stained with FITC-labeled phalloidin and viewed with fluorescence microscope or quantified with alamar Blue method. The proliferation of keratocytes on Ti were quantified with 3-(4,5-dim- ethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide up-taking methods. The secretion of type I collagen were determined using an ELISA kit.RESULTS:The results showed that minTBP-1-PRGDN at a concentration of 100ng/mL was the most potent peptide to enhance the attachment of human keratocytes to the surface of Ti (1.40±0.03 folds, P=0.003), to promote the proliferation (1.26±0.05 folds, P=0.014) and the synthesis of type I collagen (1.530±0.128, P=0.008). MinTBP-1 at the same concentration could only promote the attachment (1.13±0.04 folds, P=0.020) and proliferation(1.15±0.06 folds, P=0.021), while PRGDN had no significant influence (P>0.05).CONCLUSION:Our data shows that the novel chimeric peptide minTBP-1-PRGDN could promote the attachment, proliferation and type I collagen synthesis of human keratocytes on the surface of Ti.  相似文献   

18.
AIM: To investigate the roles of integrins in choroidal neovascularization (CNV) and their associations with the SDF-1/CXCR4 axis. METHODS: CNV lesions were induced in mice using laser photocoagulation, and hypoxia-exposed endothelial cells (ECs) were used to simulate CNV in vitro. RESULTS: SDF-1 expression was increased in retinal pigment epithelium cells over the course of hypoxia. Levels of CXCR4 and integrin subunits α5, β3 and β5, but not αv or β1, were increased in both CNV and hypoxia-exposed ECs in a time-dependent manner. SDF-1 treatments significantly increased the CNV length, as shown by HE staining, and the CNV thickness, as measured by optical coherence tomography. Fundus fluorescein angiography (FFA) grading showed significant leakage in SDF-1-stimulated CNV lesions. However, SDF-1-enhanced CNV lesions and leakage were substantially alleviated upon CXCR4 inhibition with AMD3100 or integrin α5β1 inhibition with ATN161. In CNV mice, the area and ratio of double immunofluorescencestaining for the EC markers CD31/lectin and CXCR4 and integrin α5 were significantly increased in response to SDF-1 stimulation but decreased after CXCR4 inhibition. ATN161 exerted an inhibitory effect comparable to that of si-CXCR4 on EC migration and tube formation in the presence of SDF-1. CONCLUSION: SDF-1/CXCR4 signaling induces integrin α5β1 expression in ECs to promote CNV.  相似文献   

19.
AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ2 and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography-electrochemical detection in suspensions. RESULTS: After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ2 expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P<0.05). After PKC activated by PMA, TGFβ2 and TH content were up-regulated with the increase of dopamine content (P<0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ2 and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P<0.05). CONCLUSION: TGFβ2 and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig.  相似文献   

20.
AIM:To obtain widening of a potentially occludable angle, in according to Kanski’s indications, through preventive Nd:Yag laser iridotomy. The observational study was performed by using gonioscopy for the selection and follow-up of 1165 treated eyes and exploiting Shaffer-Etienne gonioscopic classification as a quality/quantity test of the angle recession.METHODS:Between September 2000 and July 2012, 586 patients were selected at the Outpatients’ Ophthalmological Clinic of the Policlinico Umberto I of Rome in order to undergo Nd:Yag laser iridotomy. A Goldmann type contact lens, Q-switched mode, 2-3 defocus, and 7-9 mJ intensity with 2-3 impulse discharges were used for surgery.RESULTS:From as early as the first week, a whole 360° angle widening were evident in the patients, thus showing the success of Nd:Yag laser iridotomy in solving relative pupil block. The angle remained narrow by 270° in 14 eyes only, despite repetitions of further treatment with laser iridotomy in a different part of the iris, twice in 10 eyes and three times in 4 eyes.CONCLUSION:Nd:Yag laser iridotomy revealed itself as being a safe and effective treatment in widening those critical Shaffer-Etienne grade 1 and 2 potentially occludable angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号