共查询到20条相似文献,搜索用时 0 毫秒
1.
《Vaccine》2022,40(16):2370-2378
Porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) are two of the most common pathogens involved in the porcine respiratory disease complex (PRDC) resulting in significant economic losses worldwide. Vaccination is the most effective approach to disease prevention. Since PRRSV and Mhp co-infections are very common, an efficient dual vaccine against these pathogens is required for the global swine industry. Compared with traditional vaccines, multi-epitope vaccines have several advantages, they are comparatively easy to produce and construct, are chemically stable, and do not have an infectious potential. In this study, to develop a safe and effective vaccine, B cell and T cell epitopes of PRRSV-GP5, PRRSV-M, Mhp-P46, and Mhp-P65 protein had been screened to construct a recombinant epitope protein rEP-PM that has good hydrophilicity, strong antigenicity, and high surface accessibility, and each epitope is independent and complete. After immunization in mice, rEP-PM could induce the production of high levels of antibodies, and it had good immunoreactivity with anti-rEP-PM, anti-PRRSV, and anti-Mhp antibodies. The anti-rEP-PM antibody specifically recognizes proteins from PRRSV and Mhp. Moreover, rEP-PM induced a Th1-dominant cellular immune response in mice. Our results showed that the rEP-PM protein could be a potential candidate for the development of a safe and effective multi-epitope peptide combined vaccine to control PRRSV and Mhp infections. 相似文献
2.
The objectives of this study were to evaluate the effects of a therapeutic vaccine intervention with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on the dynamics of a heterologous viral infection in a population of pigs, and to determine the clinical and virological response of previously exposed and vaccinated pigs against a second virulent heterologous challenge. A population of 320 pigs were infected with a field isolate, PRRSV MN-30100, alone or followed by Ingelvac PRRS MLV vaccine administered one to three times at 30 days intervals beginning 1 week after infection. Vaccine intervention reduced the duration of viral shedding, but did not reduce the viral load in tissues or the proportion of persistently infected pigs. A different and highly virulent field isolate, MN-184, was then given as a heterologous viral challenge at 97 days after first exposure. Previously infected and vaccinated pigs showed a significant reduction in clinical signs and enhanced weight gain after the highly virulent challenge with PRRSV MN-184, but infection with and shedding of the challenge isolate were not prevented. 相似文献
3.
Porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae are frequently isolated pathogens from pigs with respiratory disease. A previous study conducted in our laboratory found that infection with M. hyopneumoniae increased the duration and severity of respiratory disease induced by PRRSV. The purpose of this experiment was to determine whether vaccination against M. hyopneumoniae and/or PRRSV decreased the enhancement of PRRSV-induced pneumonia. Both M. hyopneumoniae bacterin and PRRSV vaccine decreased the severity of clinical respiratory disease. Infection or vaccination with PRRSV appeared to decrease the efficacy of the M. hyopneumoniae bacterin. Vaccination with M. hyopneumoniae bacterin decreased the potentiation of PRRSV-induced pneumonia observed in the dual infected pigs. However, PRRSV vaccination in combination with M. hyopneumoniae bacterin eliminated this benefit and the amount of pneumonia induced by PRRSV increased. PRRSV vaccine alone did not decrease the potentiation of PRRSV pneumonia by M. hyopneumoniae. 相似文献
4.
The efficacies of two commercial Mycoplasma hyopneumoniae bacterins and porcine circovirus 2 (PCV2) vaccines were compared in conventional pigs immunized at different ages based on humoral response, pathological observation, and growth performance from birth to finishing (175 days of age) using a M. hyopneumoniae and PCV2 co-infection challenge model. One-week-old pigs (n = 110) were randomly assigned to five groups: three vaccinated and challenged (VC), and one each of non-vaccinated and challenged (NVC) and negative control. A significant difference was found in the number of genomic copies of M. hyopneumoniae in nasal swabs and PCV2 in serum samples, the average daily weight gain (gram/pig/day) between 63 and 133 dpi, gross and histopathological lung lesion scores, histopathological lymph node lesion scores, and the immunohistochemical analysis of PCV2 among the three VC groups. The single dose schedule for M. hyopneumoniae bacterins and PCV2 vaccines have the advantages of (i) improving daily weight gain (122.4%) and slaughter weight (120.5%), and (ii) reducing the incidence of clinical signs and lung and lymph node lesions. 相似文献
5.
There are ongoing efforts to eliminate porcine reproductive and respiratory syndrome virus (PRRSv) from regions in the United States swine industry. However, an important challenge for the accomplishment of those efforts is the re-infection of pig units due to the area spread of PRRSv. The objective of this study was to evaluate the effect of PRRS modified-live virus vaccine (MLV) on viral shedding and on dynamics of PRRSv infection in pig populations raised under commercial conditions. The study composed of two rooms of 1000 pigs each. Ten percent of pigs of each room were inoculated with a field isolate of PRRSv. Rooms had separate air spaces and strict scientifically validated biosecurity protocols were adopted to avoid movement of pathogens between rooms. At 8 and 36 dpi (days post inoculation), all pigs of the challenge-vaccine group were inoculated with a MLV vaccine. Pigs of the challenge-control group were placebo-inoculated. Blood and oral fluid samples were collected from each room at 0, 8, 36, 70, 96 and 118 dpi for PRRSv RNA detection using PCR. PRRSv-antibodies were also screened from blood serum samples with a commercially available ELISA test. Additionally, tonsil scraping samples were collected from both groups at 70, 96 and 118 dpi. Moreover, air samples were collected 6 times per week from 0 to 118 dpi and were tested for PRRSv RNA using qPCR assay. There was no difference in the PRRSv infection dynamics measured as duration and magnitude of viremia and seroconversion. Also, there was no difference in the frequency of tonsil scraping samples PRRSv-positive by PCR. However, the challenge-vaccine group had significantly less PRRSv shed compared to the challenge-control group. The challenge-vaccine group had significant less PRRSv-positive oral fluids at 36 dpi. Moreover, the challenge-vaccine group had significant reduction in the cumulative PRRSv shed in the air. 相似文献
6.
《Vaccine》2019,37(31):4318-4324
Modified live virus (MLV) vaccines are commonly used to reduce the impact of porcine reproductive and respiratory syndrome (PRRS) but limited efficacy is achieved in field conditions. Here, we evaluated the impact of maternally-derived neutralizing antibodies (MDNAs) on vaccine efficacy after PRRS virus (PRRSV) challenge. Piglets with low (A−) or high (A+) MDNA levels derived from a commercial pig herd were moved to experimental facilities to be vaccinated (V+) or not (V−) with a PRRSV-1 MLV vaccine at 3 weeks of age (woa). Because of unexpectedly low vaccine detection in A−V+ piglets post-vaccination (pv), all V+ piglets received a second vaccination at 4 woa. Five weeks (W5) pv, piglets were inoculated with a PRRSV-1 field strain to evaluate vaccine protection, and were mingled 24 h later with non-inoculated piglets of similar immune status to assess viral transmission. Vaccine strain was detected at W2 pv in 69% and 6% of A−V+ and A+V+ piglets, and at W5 pv in 50% and 25% of A−V+ and A+V+ piglets, respectively. At W5 pv, 94% of A−V+ and 44% of A+V+ piglets seroconverted, with a significant IFNg response induction in the A−V+ group only. After challenge, compared to the V− inoculated group, viremia was 100-fold lower at 10 days post-infection in A−V+ whereas viremia was not significantly reduced in A+V+ piglets. A lower transmission rate was estimated for the A−V+ group: 0.15 [0.07–0.29] versus 0.44 [0.18–1.76] and 0.32 [0.14–0.68] for the A+V+ and V− groups, respectively. Investigations about the low vaccine strain detection after the first vaccination suggested a relationship between IFNa levels and vaccine strain detection in A−V+ piglets. We showed that MDNAs impair vaccine efficacy against PRRSV both in inoculated and contact piglets, probably by reducing vaccine replication. IFNa may also interfere with PRRSV vaccination. These new data could help improving vaccination protocols. 相似文献
7.
《Vaccine》2018,36(1):66-73
Modified-live virus (MLV) vaccines are widely used to protect pigs against porcine reproductive and respiratory syndrome virus (PRRSV). However, current MLV vaccines do not confer adequate levels of heterologous protection, presumably due to the substantial genetic diversity of PRRSV isolates circulating in the field. To overcome this genetic variation challenge, we recently generated a synthetic PRRSV strain containing a consensus genomic sequence of PRRSV-2. We demonstrated that our synthetic PRRSV strain confers unprecedented levels of heterologous protection. However, the synthetic PRRSV strain at passage 1 (hereafter designated CON-P1) is highly virulent and therefore, is not suitable to be used as a vaccine in pigs. In the present study, we attenuated CON-P1 by continuously passaging the virus in MARC-145 cells, a non-natural host cell line. Using a young pig model, we demonstrated that the synthetic virus at passages 90 and 122 (designated as CON-P90 and CON-P122, respectively) were fully attenuated, as evidenced by the significantly reduced viral loads in serum and tissues and the absence of lung lesion in the infected pigs. Most importantly, CON-P90 confers similar levels of heterologous protection as its parental strain CON-P1. Taken together, the results indicate that CON-P90 is an excellent candidate for the formulation of next generation of PRRSV MLV vaccines with improved levels of heterologous protection. 相似文献
8.
Impact of genetic diversity of European-type porcine reproductive and respiratory syndrome virus strains on vaccine efficacy 总被引:8,自引:0,他引:8
The aim of this study was to find out how efficiently pigs that are vaccinated with an attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine based on a virus from the Lelystad cluster are protected against a European wild-type strain from the same or another genetic cluster. Two experiments were performed. In each experiment, 5-week-old PRRSV-seronegative pigs were vaccinated intramuscularly with 10(4.5) TCID50 of a commercial vaccine based on a European virus strain from the Lelystad cluster. Non-vaccinated pigs were included as controls. At 5, 9, 15, 20, 28, 35 and 42 days post vaccination (PV), broncho-alveolar lavage (BAL) fluids and blood were collected to determine vaccine virus quantities. Forty-nine days PV, pigs were challenged intranasally with 10(6.0) TCID50 of a European wild-type strain, belonging either to the Lelystad cluster (98% nucleotide identity in ORF5 with vaccine strain) (experiment A) or to an Italian cluster (84% nucleotide identity in ORF5 with vaccine strain) (experiment B). At 5, 9, 15, 20 and 27 days post challenge (PC), BAL fluids and blood were collected to determine virus quantities. Vaccine virus was first detected in BAL fluids and blood at 5 days PV and reached highest quantities between 9 and 15 days PV. One pig was positive in its BAL fluid until 42 days PV. After challenge, virus was isolated from BAL fluids and blood of all non-vaccinated control pigs. All vaccinated pigs challenged with the Lelystad strain remained negative for virus, while virus was present in BAL fluids and blood of all vaccinated pigs after challenge with the Italian strain. Mean virus titres of the vaccinated pigs challenged with the Italian strain were significantly lower than those of the non-vaccinated control pigs (P <0.05) at 9, 15 and 20 days PC. Thus, the genetic diversity within European-type PRRSV may affect the efficacy of the current European-type vaccines. 相似文献
9.
《Vaccine》2016,34(33):3746-3750
To improve the preservation period without cold-chain of the live attenuated vaccine of porcine reproductive and respiratory syndrome (PRRS), a set of thermostable formulations composed of trehalose, tryptone and other protectants were dried by vacuum foam drying (VFD) along with PRRSV solutions. In the 37 °C and 45 °C resistance ageing test, the dried foam vaccine showed significant thermostability, and the virus titer lost 0.8 Log10 at 37 °C for 4 months, 1.0 Log10 at 45 °C for 25 days. Furthermore, the foam vaccine could be stored at 25 °C for at least one year. Besides, the vaccine preserved in 37 °C, 25 °C and 4 °C for 3 months were inoculated on 20-days old piglet, and the serum titer was monitoring by ELISA kit. Inoculated two weeks later, the ELISA titer were all qualified and had the similar level compared to the commercial vaccines of the lyophilization dosage. 相似文献
10.
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV + H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV + H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV + H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses. 相似文献
11.
Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs 总被引:8,自引:0,他引:8
Verheije MH Kroese MV van der Linden IF de Boer-Luijtze EA van Rijn PA Pol JM Meulenberg JJ Steverink PJ 《Vaccine》2003,21(19-20):2556-2563
Three porcine reproductive and respiratory syndrome virus (PRRSV) recombinants, generated by mutagenesis of an infectious cDNA clone of the Lelystad virus (LV) isolate, were tested for their safety and protective efficacy as potential PRRSV vaccines in pigs. Recombinant vABV688 contains two amino acid substitutions in the minor structural protein GP(2) resulting in improved growth on cell line CL2621; in recombinant vABV707 the region encoding the ectodomain of the major unglycosylated membrane protein M has been replaced by that of the murine lactate dehydrogenase-elevating arterivirus; recombinant vABV746 lacks the six C-terminal amino acids of the nucleocapsid protein N. First, we determined the safety of these recombinant viruses by monitoring the stability of the introduced mutations in 8-week-old pigs. We showed that the introduced genomic mutations were maintained throughout the viraemic period. Second, the protective efficacy of immunization with the recombinant viruses against challenge with a homologous and a heterologous PRRSV strain was determined in two pigs and compared with the efficacy of vABV437, a virus derived from the parental LV cDNA. The viraemia in pigs immunized with the recombinant viruses was reduced compared to pigs immunized with vABV437. In addition, the length of viraemia was reduced in the sentinel pigs that were introduced into the groups immunized with vABV746, vABV688, and vABV707, however, all of the sentinel pigs became infected. Pigs immunized with vABV707 and vABV437 were protected against challenge with homologous virus LV-Ter Huurne and transmission of the latter virus. None of the immunized pigs were protected against heterologous challenge with the virulent US isolate SDSU#73, but the vABV707- and vABV746-immunized pigs were protected against transmission of this virus from challenged pigs. In conclusion, the obtained viral recombinants are interesting candidates to be further explored for their use as vaccines against PRRSV. 相似文献
12.
Joshua S. Ellingson Yue Wang Sarah Layton Janice Ciacci-Zanella Michael B. Roof Kay S. Faaberg 《Vaccine》2010
The vaccine efficacy of six PRRSV Type 2 infectious clones, including five chimeras and a strain-specific deletion mutant, were examined using a respiratory challenge model in growing swine. The chimeras were constructed from different combinations of a licensed modified live vaccine (Ingelvac® PRRS MLV) and a virulent field isolate (wt MN184) which differ by 14.3% on a nucleotide basis, while the deletion mutant tested had a broad deletion in the nsp2 region of strain MN184. The appearance of antibodies and virus characterization revealed regions of the genome that could influence PRRSV replication in vivo. Swine growth, clinical signs and lung lesions were also monitored. Average daily weight gain was negatively and directly impacted by some vaccines, and after challenge, vaccination with different constructs led to variable weight gain. We determined that 3 of the tested chimeras, including two previously published chimeras [1] and one in which strain MN184 ORF5-6 was placed on the background of Ingelvac® PRRS MLV were able to prevent lung consolidation to a similar extent as traditionally prepared cell-passaged attenuated vaccines. The study suggested that only specific chimeras can attenuate clinical signs in swine and that attenuation cannot be directly linked to primary virus replication. Additionally, the strain MN184 deletion mutant was not found to have been sufficiently attenuated nor efficacious against heterologous challenge with strain JA-142. 相似文献
13.
A large number of studies demonstrated the immunostimulatory effects of CpG oligonucleotides (ODN), particularly in mice. In present study, the objective was to investigate the immunoadjuvant effects of CpG ODN to porcine reproductive and respiratory syndrome (PRRS) killed virus vaccine (PRRSV) and its protective effects against PRRS virus in piglets. The PRRSV-specific antibodies titres and serum IgG1/IgG2 titres, the proliferation of lymphocytes, PRRSV-specific IFN-gamma, the expression of major histocompatibility complex class II (MHCII) of peripheral blood mononuclear cells (PBMCs) and post-challenge clinical protection were examined to identify the immune responses of the piglets. The results were found that the above-mentioned immune responses of the piglets inoculated with CpG ODN plus PRRSV were significantly stronger than those indued by PRRSV or PBS control groups. All these data suggested that CpG ODN could be employed as effective immunoadjuvant to raise the humoral and cellular responses of the piglets to PRRSV. 相似文献
14.
15.
Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine 总被引:1,自引:0,他引:1
Suradhat S Kesdangsakonwut S Sada W Buranapraditkun S Wongsawang S Thanawongnuwech R 《Vaccine》2006,24(14):2634-2642
Recent findings suggest that porcine reproductive and respiratory syndrome virus (PRRSV) possesses immunomodulatory properties. To investigate the effect of PRRSV infection on classical swine fever (CSF) vaccine efficacy, 17-day-old pigs were divided into five groups. The experimental group was infected with a Thai PRRSV (US genotype) a week before CSF vaccination and challenged with a virulent CSF virus (CSFV) 3 weeks following vaccination. The control groups received no PRRSV infection, no CSF vaccination, no CSF challenge, or in combination were included. The results demonstrated that PRRSV infection significantly inhibited host immune response that resulted in vaccination failure in the subsequent CSFV exposure. Following CSF challenge, the PRRSV-infected, vaccinated pigs exhibited clinical, virological and pathological features resembled to those of the non-vaccinated groups. The findings indicated that CSF immunization during an acute phase of PRRSV infection could result in vaccination failure. 相似文献
16.
Dwivedi V Manickam C Patterson R Dodson K Murtaugh M Torrelles JB Schlesinger LS Renukaradhya GJ 《Vaccine》2011,29(23):4058-4066
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV. 相似文献
17.
Immunogenicity study of plant-made oral subunit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV) 总被引:2,自引:0,他引:2
Currently, killed-virus and modified-live PRRSV vaccines are used to control porcine reproductive and respiratory syndrome disease (PRRS). However, very limited efficacy of killed-virus vaccines and serious safety concerns for modified-live virus vaccines demand the development of novel PRRSV vaccines. In this report, we investigated the possibility of using transgenic plants as a cost-effective and scalable system for production and delivery of a viral protein as an oral subunit vaccine against PRRSV. Corn calli were genetically engineered to produce PRRSV viral envelope-associated M protein. Both serum and intestine mucosal antigen-specific antibodies were induced by oral administration of the transgenic plant tissues to mice. In addition, serum and mucosal antibodies showed virus neutralization activity. The neutralization antibody titers after the final boost reached 6.7 in serum and 3.7 in fecal extracts, respectively. A PRRSV-specific IFN-γ response was also detected in splenocytes of vaccinated animals. These results demonstrate that transgenic corn plants are an efficient subunit vaccine production and oral delivery system for generation of both systemic and mucosal immune responses against PRRSV. 相似文献
18.
Bastos RG Dellagostin OA Barletta RG Doster AR Nelson E Zuckermann F Osorio FA 《Vaccine》2004,22(3-4):467-474
Pigs were immunised with recombinant BCG (rBCG) expressing a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) (rBCGGP5) and M protein (rBCGM) of porcine reproductive and respiratory syndrome virus (PRRSV). At 30 days post-inoculation (dpi), pigs inoculated with rBCGGP5 and rBCGM developed a specific humoral immune response against the viral proteins, as detected by commercial ELISA and Western blot tests, and at 60 dpi, three out of five animals developed neutralizing antibodies with titers ranging from 1:4 to 1:8. At 67 dpi, an IFN-gamma response against BCG antigens, but not against the viral proteins, was detected by ELISPOT in inoculated pigs. Following challenge with a pathogenic strain of PRRSV, pigs inoculated with rBCG showed lower (P<0.05) temperature, viremia and virus load in bronchial lymph nodes than control animals, suggesting the establishment of partial protection against PRRSV infection. 相似文献
19.
《Vaccine》2015,33(32):3881-3886
Cereal commodities are frequently contaminated with mycotoxins produced by the secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed to naturally contaminated feed. Recently, DON naturally contaminated feed has been shown to decrease porcine reproductive and respiratory syndrome virus (PRRSV) specific antibody responses following experimental infection. The objective of this study was to determine the impact of DON naturally contaminated feed on the immune response generated following vaccination with PRRSV live attenuated vaccine. Eighteen pigs were randomly divided into three experimental groups of 6 animals based on DON content of the diets (0, 2.5 and 3.5 mg DON/kg). They were fed these rations one week prior to the vaccination and for all the duration of the immune response evaluation. All pigs were vaccinated intra-muscularly with one dose of Ingelvac® PRRSV modified live vaccine (MLV). Blood samples were collected at day −1, 6, 13, 20, 27 and 35 post vaccination (pv) and tested for PRRSV RNA by RT-qPCR and for virus specific antibodies by ELISA. Results showed that ingestion of DON-contaminated diets significantly decreased PRRSV viremia. All pigs fed control diet were viremic while only 1 (17%) and 3 (50%) out of 6 pigs were viremic in the groups receiving 3.5 and 2.5 mg of DON/kg, respectively. Subsequently, all pigs fed control diet developed PRRSV specific antibodies while only viremic pigs that were fed contaminated diets have developed PRRSV specific antibodies. These results suggest that feeding pigs with DON-contaminated diet could inhibit vaccination efficiency of PRRSV MLV by severely impairing viral replication. 相似文献
20.
《Vaccine》2017,35(1):125-131
Achieving consistent protection by vaccinating pigs against porcine reproductive and respiratory syndrome virus (PRRSV) remains difficult. Recently, an interferon-inducing PRRSV vaccine candidate strain A2MC2 was demonstrated to be attenuated and induced neutralizing antibodies. The objective of this study was to determine the efficacy of passage 90 of A2MC2 (A2P90) to protect pigs against challenge with moderately virulent PRRSV strain VR-2385 (92.3% nucleic acid identity with A2MC2) and highly virulent atypical PRRSV MN184 (84.5% nucleic acid identity with A2MC2). Forty 3-week old pigs were randomly assigned to five groups including a NEG-CONTROL group (non-vaccinated, non-challenged), VAC-VR2385 (vaccinated, challenged with strain VR-2385), VR2385 (challenged with strain VR-2385), VAC-MN184 (vaccinated, challenged with strain MN184) and a MN184 group (challenged with MN184 virus). Vaccination was done at 3 weeks of age followed by challenge at 8 weeks of age. No viremia was detectable in any of the vaccinated pigs; however, by the time of challenge, 15/16 vaccinated pigs had seroconverted based on ELISA and had neutralizing antibodies against a homologous strain with titers ranging from 8 to 128. Infection with VR-2385 resulted in mild-to-moderate clinical disease and lesions. For VR-2385 infected pigs, vaccination significantly lowered PRRSV viremia and nasal shedding by 9 days post challenge (dpc), significantly reduced macroscopic lung lesions, and significantly increased the average daily weight gain compared to the non-vaccinated pigs. Infection with MN184 resulted in moderate-to-severe clinical disease and lesions regardless of vaccination status; however, vaccinated pigs had significantly less nasal shedding by dpc 5 compared to non-vaccinated pigs. Under the study conditions, the A2P90 vaccine strain was attenuated without detectable shedding, improved weight gain, and offered protection to the pigs challenged with VR-2385 by reduction of virus load and macroscopic lung lesions. Further work is needed to investigate different vaccination and challenge protocols, including routes, doses, timing and strains. 相似文献