首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Classification of gene expression data plays a significant role in prediction and diagnosis of diseases. Gene expression data has a special characteristic that there is a mismatch in gene dimension as opposed to sample dimension. All genes do not contribute for efficient classification of samples. A robust feature selection algorithm is required to identify the important genes which help in classifying the samples efficiently. In order to select informative genes (features) based on relevance and redundancy characteristics, many feature selection algorithms have been introduced in the past. Most of the earlier algorithms require computationally expensive search strategy to find an optimal feature subset. Existing feature selection methods are also sensitive to the evaluation measures. The paper introduces a novel and efficient feature selection approach based on statistically defined effective range of features for every class termed as ERGS (Effective Range based Gene Selection). The basic principle behind ERGS is that higher weight is given to the feature that discriminates the classes clearly. Experimental results on well-known gene expression datasets illustrate the effectiveness of the proposed approach. Two popular classifiers viz. Nave Bayes Classifier (NBC) and Support Vector Machine (SVM) have been used for classification. The proposed feature selection algorithm can be helpful in ranking the genes and also is capable of identifying the most relevant genes responsible for diseases like leukemia, colon tumor, lung cancer, diffuse large B-cell lymphoma (DLBCL), prostate cancer.  相似文献   

2.
MOTIVATIONS: One of the main problems in cancer diagnosis by using DNA microarray data is selecting genes relevant for the pathology by analyzing their expression profiles in tissues in two different phenotypical conditions. The question we pose is the following: how do we measure the relevance of a single gene in a given pathology? METHODS: A gene is relevant for a particular disease if we are able to correctly predict the occurrence of the pathology in new patients on the basis of its expression level only. In other words, a gene is informative for the disease if its expression levels are useful for training a classifier able to generalize, that is, able to correctly predict the status of new patients. In this paper we present a selection bias free, statistically well founded method for finding relevant genes on the basis of their classification ability. RESULTS: We applied the method on a colon cancer data set and produced a list of relevant genes, ranked on the basis of their prediction accuracy. We found, out of more than 6500 available genes, 54 overexpressed in normal tissues and 77 overexpressed in tumor tissues having prediction accuracy greater than 70% with p-value 相似文献   

3.
Gene selection is an important task in bioinformatics studies, because the accuracy of cancer classification generally depends upon the genes that have biological relevance to the classifying problems. In this work, randomization test (RT) is used as a gene selection method for dealing with gene expression data. In the method, a statistic derived from the statistics of the regression coefficients in a series of partial least squares discriminant analysis (PLSDA) models is used to evaluate the significance of the genes. Informative genes are selected for classifying the four gene expression datasets of prostate cancer, lung cancer, leukemia and non-small cell lung cancer (NSCLC) and the rationality of the results is validated by multiple linear regression (MLR) modeling and principal component analysis (PCA). With the selected genes, satisfactory results can be obtained.  相似文献   

4.
相关向量机在肿瘤表达谱分类问题中的应用   总被引:1,自引:0,他引:1  
基因芯片技术能够检测大量基因的表达水平,在肿瘤研究中得到日益广泛的应用。基于基因芯片表达谱的肿瘤分类诊断是肿瘤表达谱研究的一个热点,肿瘤表达谱分类是一个典型的高维度小样本分类问题,描述一个两步策略的分类方法。在测试的基因表达谱中存在大量的非差异表达冗余基因,通过一个有效的基因预选择策略得到一个较小的候选基因子集,然后建立基于相关向量机的分类预测模型。在4个真实的肿瘤表达谱数据上,与几种不同的方法进行比较,结果显示该方法可以得到更好的分类精度,同时表现出很好的稳定性。  相似文献   

5.
6.
We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene selection methods, binary classification tree based on SVM with F test, binary classification tree based on SVM with recursive feature elimination based on SVM, and FSVM with recursive feature elimination based on SVM are tested in our experiments. To accelerate computation, preselecting the strongest genes is also used. The proposed techniques are applied to analyze breast cancer data, small round blue-cell tumors, and acute leukemia data. Compared to existing multiclass cancer classifiers and binary classification tree based on SVM with F test or binary classification tree based on SVM with recursive feature elimination based on SVM mentioned in this paper, FSVM based on recursive feature elimination based on SVM can find most important genes that affect certain types of cancer with high recognition accuracy.  相似文献   

7.
Analyzing tumor gene expression profiles   总被引:3,自引:0,他引:3  
A brief introduction to high throughput technologies for measuring and analyzing gene expression is given. Various supervised and unsupervised data mining methods for analyzing the produced high-dimensional data are discussed. The main emphasis is on supervised machine learning methods for classification and prediction of tumor gene expression profiles. Furthermore, methods to rank the genes according to their importance for the classification are explored. The approaches are illustrated by exploratory studies using two examples of retrospective clinical data from routine tests; diagnostic prediction of small round blue cell tumors (SRBCT) of childhood and determining the estrogen receptor (ER) status of sporadic breast cancer. The classification performance is gauged using blind tests. These studies demonstrate the feasibility of machine learning-based molecular cancer classification.  相似文献   

8.
乳腺癌基因数据的分类研究在临床医学上具有重要意义。针对基因数据的结构复杂、高维小样本等特点,提出一种最大相关最小条件冗余和深度级联森林结合的基因数据分类方法。选取博德基因研究所乳腺癌基因表达数据集,共98个数据作为样本,每个样本包含1 213个特征基因。首先对数据进行标准化处理,然后利用最大相关最小条件冗余选取特征子集,最后使用深度级联森林对特征子集进行分类。将随机森林、支持向量机和BP神经网络作为对比方法。结果表明,所提出的最大相关最小条件冗余和深度级联森林结合方法的最佳分类准确率达到93.78%,明显优于其他方法。该方法能有效提高乳腺癌基因数据的分类准确率,对基于基因数据的乳腺癌分类具有重要的理论意义与实用价值。  相似文献   

9.
In microarray-based cancer classification and prediction, gene selection is an important research problem owing to the large number of genes and the small number of experimental conditions. In this paper, we propose a Bayesian approach to gene selection and classification using the logistic regression model. The basic idea of our approach is in conjunction with a logistic regression model to relate the gene expression with the class labels. We use Gibbs sampling and Markov chain Monte Carlo (MCMC) methods to discover important genes. To implement Gibbs Sampler and MCMC search, we derive a posterior distribution of selected genes given the observed data. After the important genes are identified, the same logistic regression model is then used for cancer classification and prediction. Issues for efficient implementation for the proposed method are discussed. The proposed method is evaluated against several large microarray data sets, including hereditary breast cancer, small round blue-cell tumors, and acute leukemia. The results show that the method can effectively identify important genes consistent with the known biological findings while the accuracy of the classification is also high. Finally, the robustness and sensitivity properties of the proposed method are also investigated.  相似文献   

10.
With the development of bioinformatics, tumor classification from gene expression data becomes an important useful technology for cancer diagnosis. Since a gene expression data often contains thousands of genes and a small number of samples, gene selection from gene expression data becomes a key step for tumor classification. Attribute reduction of rough sets has been successfully applied to gene selection field, as it has the characters of data driving and requiring no additional information. However, traditional rough set method deals with discrete data only. As for the gene expression data containing real-value or noisy data, they are usually employed by a discrete preprocessing, which may result in poor classification accuracy. In this paper, we propose a novel gene selection method based on the neighborhood rough set model, which has the ability of dealing with real-value data whilst maintaining the original gene classification information. Moreover, this paper addresses an entropy measure under the frame of neighborhood rough sets for tackling the uncertainty and noisy of gene expression data. The utilization of this measure can bring about a discovery of compact gene subsets. Finally, a gene selection algorithm is designed based on neighborhood granules and the entropy measure. Some experiments on two gene expression data show that the proposed gene selection is an effective method for improving the accuracy of tumor classification.  相似文献   

11.
Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).  相似文献   

12.
High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been done on assessing univariate associations between gene expression profiles with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to the consideration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed method to simulated data as well as data from a recently published prostate cancer study.  相似文献   

13.
目的基因芯片技术对医学临床诊断、治疗、药物开发和筛选等技术的发展具有革命性的影响。针对高维医学数据降维困难及基因表达谱样本数据少、维度高、噪声大的特点,维数约减十分必要。基于主成分分析(principalcomponentanalysis,PCA)和线性判别分析(1ineardiscriminantanalysis,LDA)方法,有效解决了基因表达谱数据分类问题,并提高了识别率。方法分别引人PCA和LDA方法对基因表达谱数据进行降维,然后用K近邻(K—nearestneighbor,KNN)作为分类器对数据进行分类,并分别在乳腺癌和卵巢癌质谱数据上。结果在两类癌症质谱数据上应用PCA和LDA方法能够有效提取分类特征信息,并在保持较高分类正确率的前提下大幅度降低医学数据的维数。结论利用维数约减的方法对癌症基因表达谱数据进行分类,可辅助临床医生发现新的疾病特征,提高疾病诊断的正确率。  相似文献   

14.
With advances in microarray technology, many biomarkers selection approaches have been proposed for cancer diagnosis. Marker sets are selected by scoring genes for how well they can discriminate between different classes of diseases [1-4] or are ranked by significance analysis without reference to classification tasks. However there is a pressing need for methods integrating biological priori knowledge in the gene selection process. In this study, we proposed to identify genes primarily in terms of diagnostic outcome relevance. As gene expression is a combination effect, with the help of SVD, the microarray data is decomposed, the eigenvectors correspond to the biological effect of clinical outcomes are identified. Genes which play important roles in determining this biological effect are detected. Therefore, genes are essentially identified in terms of the strength of association with clinical outcomes and the relationship of genes and clinical outcomes is analyzed. Monte Carlo simulations are then used to fine tune the selected gene set in terms of classification accuracy. The approach was tested on four public data sets. Comparative studies show that the selected genes achieved higher classification accuracies. Graphical analysis visualizes that they have close relationship with the cancer class. Statistical simulation shows that the gene set found by the proposed method is also less variable and comparatively invariant to external influences. The biological relevance of the selected genes is further discussed and validated with the literature study and analysis of biological databases.  相似文献   

15.
Gene expression profiles, which represent the state of a cell at a molecular level, have great potential as a medical diagnosis tool. In cancer classification, available training data sets are generally of a fairly small sample size compared to the number of genes involved. Along with training data limitations, this constitutes a challenge to certain classification methods. Feature (gene) selection can be used to successfully extract those genes that directly influence classification accuracy and to eliminate genes which have no influence on it. This significantly improves calculation performance and classification accuracy. In this paper, correlation-based feature selection (CFS) and the Taguchi-genetic algorithm (TGA) method were combined into a hybrid method, and the K-nearest neighbor (KNN) with the leave-one-out cross-validation (LOOCV) method served as a classifier for eleven classification profiles to calculate the classification accuracy. Experimental results show that the proposed method reduced redundant features effectively and achieved superior classification accuracy. The classification accuracy obtained by the proposed method was higher in ten out of the eleven gene expression data set test problems when compared to other classification methods from the literature.  相似文献   

16.
OBJECTIVE: Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. MATERIAL AND METHODS: A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. RESULTS AND CONCLUSION: Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.  相似文献   

17.
Microarray analysis is widely accepted for human cancer diagnosis and classification. However the high dimensionality of microarray data poses a great challenge to classification. Gene selection plays a key role in identifying salient genes from thousands of genes in microarray data that can directly contribute to the symptom of disease. Although various excellent selection methods are currently available, one common problem of these methods is that genes which have strong discriminatory power as a group but are weak as individuals will be discarded. In this paper, a new gene selection method is proposed for cancer diagnosis and classification by retaining useful intrinsic groups of interdependent genes. The primary characteristic of this method is that the relevance between each gene and target will be dynamically updated when a new gene is selected. The effectiveness of our method is validated by experiments on six publicly available microarray data sets. Experimental results show that the classification performance and enrichment score achieved by our proposed method is better than those of other selection methods.  相似文献   

18.
Gene selection is an important issue in analyzing multiclass microarray data. Among many proposed selection methods, the traditional ANOVA F test statistic has been employed to identify informative genes for both class prediction (classification) and discovery problems. However, the F test statistic assumes an equal variance. This assumption may not be realistic for gene expression data. This paper explores other alternative test statistics which can handle heterogeneity of the variances. We study five such test statistics, which include Brown-Forsythe test statistic and Welch test statistic. Their performance is evaluated and compared with that of F statistic over different classification methods applied to publicly available microarray datasets.  相似文献   

19.
Cancer gene search with data-mining and genetic algorithms   总被引:1,自引:0,他引:1  
Cancer leads to approximately 25% of all mortalities, making it the second leading cause of death in the United States. Early and accurate detection of cancer is critical to the well being of patients. Analysis of gene expression data leads to cancer identification and classification, which will facilitate proper treatment selection and drug development. Gene expression data sets for ovarian, prostate, and lung cancer were analyzed in this research. An integrated gene-search algorithm for genetic expression data analysis was proposed. This integrated algorithm involves a genetic algorithm and correlation-based heuristics for data preprocessing (on partitioned data sets) and data mining (decision tree and support vector machines algorithms) for making predictions. Knowledge derived by the proposed algorithm has high classification accuracy with the ability to identify the most significant genes. Bagging and stacking algorithms were applied to further enhance the classification accuracy. The results were compared with that reported in the literature. Mapping of genotype information to the phenotype parameters will ultimately reduce the cost and complexity of cancer detection and classification.  相似文献   

20.
The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, we have built a system called GEMS (gene expression model selector) for the automated development and evaluation of high-quality cancer diagnostic models and biomarker discovery from microarray gene expression data. In order to determine and equip the system with the best performing diagnostic methodologies in this domain, we first conducted a comprehensive evaluation of classification algorithms using 11 cancer microarray datasets. In this paper we present a preliminary evaluation of the system with five new datasets. The performance of the models produced automatically by GEMS is comparable or better than the results obtained by human analysts. Additionally, we performed a cross-dataset evaluation of the system. This involved using a dataset to build a diagnostic model and to estimate its future performance, then applying this model and evaluating its performance on a different dataset. We found that models produced by GEMS indeed perform well in independent samples and, furthermore, the cross-validation performance estimates output by the system approximate well the error obtained by the independent validation. GEMS is freely available for download for non-commercial use from http://www.gems-system.org.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号