首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES/HYPOTHESIS: Mutations in the connexin 26 (Cx26) or gap junction beta 2 gene are the leading cause of hereditary nonsyndromic sensorineural hearing loss in Caucasians. The Cx26 coding region of 68 children with nonsyndromic sensorineural hearing loss was sequenced to determine the frequency and type of Cx26 mutations in this population. Screening was also performed for a common connexin 30 (Cx30) or gap junction beta 6 mutation (del [GJB6-D13S1830]). Children also underwent audiological testing to determine whether any correlation exists between Cx26 mutations and severity of hearing loss. STUDY DESIGN: In all, 68 children with nonsyndromic sensorineural hearing loss were screened for Cx26 and Cx30 mutations by polymerase chain reaction and direct sequencing. METHODS: Genomic DNA was amplified by polymerase chain reaction using primers that flank the entire Cx26 coding region. Screening for the 342-kb Cx30 deletion was performed using primers that amplified the breakpoint junction of the deletion. The amplicons were then sequenced in both directions and analyzed for mutations. Audiometric testing, including pure-tone audiometry and auditory evoked brainstem response, was also performed to determine the degree of hearing loss. RESULTS: Twenty-seven of 68 children tested had mutations in Cx26 with 35delG being the most prevalent. Ten additional Cx26 mutations were detected including a novel compound heterozygote. Two children were heterozygous for the Cx30 del (GJB6-D13S1830) mutation. CONCLUSION: Cx26 and Cx30 mutations were present in 41.2% of children tested in the study population. Audiometric data supported previous studies demonstrating a greater degree of hearing loss in subjects who are homozygous for the 35delG mutation.  相似文献   

2.
OBJECTIVE: Mutations in the connexin 26 gene (GJB2), which encodes a gap-junction protein expressed in the inner ear, have been shown to be responsible for a major part of autosomal recessive non-syndromic hearing loss in Caucasians. The aim of our study was to determine the prevalence and spectrum of GJB2 mutations, including the (GJB6-D13S1830) deletion, in Moroccan patients and estimate the carrier frequency of the 35delG mutation in the general population. METHODS: Genomic DNA was isolated from 81 unrelated Moroccan familial cases with moderate to profound autosomal recessive non-syndromic hearing loss and 113 Moroccan control individuals. Molecular studies were performed using PCR-Mediated Site Directed Mutagenesis assay, PCR and direct sequencing to screen for GJB2, 35delG and del(GJB6-D13S1830) mutations. RESULTS: GJB2 mutations were found in 43.20% of the deaf patients. Among these patients 35.80% were 35delG/35delG homozygous, 2.47% were 35delG/wt heterozygous, 3.70% were V37I/wt heterozygous, and 1 patient was E47X/35delG compound heterozygous. None of the patients with one or no GJB2 mutation displayed the common (GJB6-D13S1830) deletion. We found also that the carrier frequency of GJB2-35delG in the normal Moroccan population is 2.65%. CONCLUSIONS: These findings indicate that the GJB2-35delG mutation is the major cause of autosomal recessive non-syndromic hearing loss in Moroccan population. Two other mutations were also detected (V37I and E47X), in agreement with similar studies in other populations showing heterogeneity in the frequencies and types of mutation in connexin 26 gene.  相似文献   

3.
中国西北地区线粒体DNA12SrRNAA1555G和GJB2基因突变   总被引:7,自引:2,他引:5  
目的研究mtDNA 12SrRNA A1555G突变和GJB2突变在西北地区非综合征型感音神经性聋患者中的流行情况,探讨GJB2基因与mtDNA A1555G点突变的关系。方法收集本地区221例非综合征感音神经性聋患者的基因组DNA,多聚酶链反应扩增线粒体DNA和GJB2基因目的片断,Alw26Ⅰ限制性内切酶检测A1555G点突变,对酶切阳性病例和全部的GJB2基因的PCR产物进行DNA测序。结果21例患者检出mtDNA 12SrRNA A1555G突变;发现GJB2基因11种序列改变,有44例患者检出GJB2致病突变,235delC占携带致病突变患者的54.54%:在21例A1555G突变患者中,11例为GJB2基因多态改变,9例未检出GJB2基因序列改变,1例为109G→A(V371)突变。结论mDNA 12SrRNA A1555G在这一地区人群中有较高的发生频率.235delC是本地区GJB2基因突变的主要形式,GJB2基因突变不是mtDNA A1555G突变致聋的主要修饰因素。  相似文献   

4.
Non-syndromic hearing loss is one of the most common hereditary determined diseases in human, and the disease is a genetically heterogeneous disorder. Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of non-syndromic recessive hearing impairment in many countries and are largely dependent on ethnic groups. Due to the high frequency of the c.35delG GJB2 mutation in the Greek population, we have previously suggested that Greek patients with sensorineural, non-syndromic deafness should be tested for the c.35delG mutation and the coding region of the GJB2 gene should be sequenced in c.35delG heterozygotes. Here we present on the clinical and molecular genetic evaluation of a family suffering from prelingual, sensorineural, non-syndromic deafness. A novel c.247_249delTTC (p.F83del) GJB2 mutation was detected in compound heterozygosity with the c.35delG GJB2 mutation in the proband and was later confirmed in the father, while the mother was homozygous for the c.35delG GJB2 mutation. We conclude that compound heterozygosity of the novel c.247_249delTTC (p.F83del) and the c.35delG mutations in the GJB2 gene was the cause of deafness in the proband and his father.  相似文献   

5.
Objective of the study is to assess the prevalence of Connexin 26 (GJB2) mutation in patients with congenital nonsyndromic sensorineural hearing loss in Bulgarian population. Study design is done prospectively. Patient inclusion criteria for this study were diagnosis of congenital nonsyndromic hearing loss, and absence of potential sibling relationships between patients included in the study (anamnestic pedigree for at least three generations). Patients were excluded from the study group if one of the following conditions were present: secondary hearing loss (cytomegalovirus, rubella, meningo-encephalitis, mastoiditis, other infections, posterior fossa tumors, etc.), exposure to drugs or other prenatal or perinatal etiology of deafness, and congenital syndromic hearing loss. Genomic DNA samples from whole blood were tested with sequence analysis for mutations in the coding region of the GJB2. Results state that 51 patients were analyzed for GJB2 mutations. Twenty of the patients (39%) with mutant alleles were homozygous for the c.35delG mutation (c.35delG/c.35delG) and four patients (8%) presented as heterozygotes (c.35delG/WT). In one patient, who carried a heterozygous mutation c.35delG, a second mutation was found—312del114. Additionally, in two other patients were discovered the mutations Trp24X (W24X) and, respectively, Arg127His(R127H), both in heterozygous states. From the whole study group there was only one patient with compound heterozygous genotype—p.Leu90Pro(L90P)/p.Ile121Asn. The latter one has never been reported in the literature so far. In conclusion, this study determines the importance of connexin 26 mutations in Bulgarian children with severe to profound congenital nonsyndromic sensorineural hearing loss, the prevalence of the different mutation variants and their relationship with the ethnical background of the patients. In addition, we report for the first time a novel mutation in the GJB2 gene.  相似文献   

6.
目的探讨连接蛋白26(connexin 26,Cx26)基因是否是江苏淮阴A1555G突变相关母系遗传聋家系的核修饰基因。方法采用聚合酶链反应一限制片断长度多态性分析(PCR—restriction fragment length polymorphism,PCR-RFLP)和测序技术,对江苏淮阴A1555G突变相关母系遗传非综合征型聋核心家系中的26例母系成员和62例对照(包括2例父系亲属、10例配偶对照和50例当地无关对照)的Cx26基因编码区序列进行了研究,并根据孟德尔遗传规律构建了家系成员Cx26基因的单体型图。结果在26例母系成员中共发现4处杂合性碱基变化,分别为79G→A、109G→A、341G→A和235delC。其中,前3种为已知多态性差异,而235delC为已知的可引起常染色体隐性聋的致病突变。但235delC突变仅存在于1例具有中度聋表型的母系成员和其2例听力正常的子女中,并不与耳聋表型共分离。而根据遗传规律,推测该突变来源于1例配偶对照,为外来突变;同时,根据4个位点变化构建的Cx26基因单体型图也未揭示Cx26基因与A1555G突变致聋有任何相关性;另外,在62例对照中也发现1例235delC杂合性缺失突变。结论235delC杂合性突变并不加重A1555G突变的致聋效应;Cx26基因也不是江苏淮阴母系遗传聋家系A1555G突变的核修饰基因。  相似文献   

7.
目的:对非综合征性先天性重度及以上感音神经性听力损失儿童及其父母进行耳聋相关基因检测,探讨耳聋基因芯片筛查在临床中应用的有效性和可行性。方法选择来自医院听力检测中心的47个听障儿童家庭,包括52例非综合征性先天性感音神经性听力损失患儿及其父母,应用遗传学耳聋基因芯片对47个家庭进行GJB2、GJB3、SLC26A4、线粒体12S rRNA4个常见耳聋基因9个检测位点的基因检测。结果146例受检者中,17个家庭的43例筛查结果阳性,其中16例听力损失患儿筛查阳性,筛查阳性率为30.8%。GJB2基因235delC位点纯合突变8例,GJB2基因235delC位点杂合突变20例,GJB2基因235delC位点和SLC26A4基因IVS7-2A〉G位点杂合突变1例,SLC26A4基因IVS7-2A〉G位点纯合突变2例,SLC26A4基因IVS7-2A〉G位点杂合突变10例,SLC26A4基因2168A〉G位点杂合突变2例。结论应用耳聋基因芯片检测技术能快速、高效地检测非综合征性耳聋患者的遗传性致病基因,适用于大规模群体耳聋基因的筛查,有助于临床医生从病因学角度辅助耳聋诊断,引入正确的康复干预措施,并为具有聋病易感基因的听力损失儿童家庭提供针对性的遗传咨询指导。  相似文献   

8.
OBJECTIVE: Mutations in the GJB2 gene encoding connexin 26 (Cx26) protein are a major cause for nonsyndromic autosomal recessive and sporadic deafness. However, its contribution to hearing impairment in Switzerland remains undefined. To determine the frequency and type of GJB2 mutations in the Swiss hearing-impaired population diagnosed under the age of 2 yr and at 2 yr and older and to assess the effectiveness of denaturing high-performance liquid chromatography (DHPLC) in screening for mutation in GJB2. METHODS: Thirty-four patients with hearing impairment underwent mutation screening of the single coding exon of GJB2 with DHPLC followed by bidirectional sequencing to identify sequence alterations. RESULTS: GJB2 mutations were more common in children diagnosed with hearing impairment under the age of 2 yr compared to the group 2 yr and older. In patients under age 2 yr, 9 of 20 (45%) harbored 13 GJB2 mutations including a common 313del14nt mutation; four of these patients were homozygous or compound heterozygous for GJB2 mutations. In contrast, 2 of 14 patients in the 2 yr and older group (14%) had a single mutation in GJB2. The 35delG mutation was exclusively found in 5 patients under the age of 2 yr. DHPLC for mutation screening was 100% sensitive and 83% specific for detecting sequence alterations in GJB2. CONCLUSIONS: In Switzerland, GJB2 mutations are a major cause of nonsyndromic hearing impairment in children under the age of 2. Similar to other populations, GJB2 mutations are uncommon in the affected Swiss patients identified after 2 yr. Although 35delG mutation is common in the hearing-impaired children under the age of 2, it was absent in patients diagnosed with hearing impairment after the age of 2. DHPLC is a highly sensitive tool for detection of GJB2 mutations.  相似文献   

9.
OBJECTIVE: The aims of the present study were to evaluate the role of the gap junction protein beta-2 gene (GJB2), encoding connexin 26 (Cx26), in children with moderate to profound prelingual nonsyndromic sensorineural hearing impairment (HI) and to investigate the carrier frequencies of the GJB2 gene mutations in a control population in Northern Finland. METHODS: Mutation analysis was performed by direct sequencing and carrier detection by conformation sensitive gel electrophoresis further confirmed by direct sequencing. RESULTS: Cx26 mutations were found in 15 of 71 (21.1%) (67 families) children with HI. Homozygosity for the mutation 35delG was shown to be the cause of HI in 13 of 15 (86.7%) children. Homozygosity for the M34T genotype was found in one child, and compound heterozygosity for the M34T/V37I genotype was found in another. Five families of those with suspected familial HI (29.4%) and six families out of those with sporadic HI (12.0%) had a homozygous or compound heterozygous mutation. The carrier frequency for the mutation 35delG was 1 of 78 (4 of 313) and that for the M34T was 1 of 26 (12 of 313). CONCLUSION: 35delG/35delG genotype was found to be a significant cause of moderate to profound prelingual nonsyndromic sensorineural HI in Northern Finland. M34T/M34T genotype was seen in only one child, but the carrier frequency of the M34T allele was about three times higher than that of the 35delG mutation.  相似文献   

10.
目的:分析贵州省356例非综合征型聋患者常见耳聋基因突变特点,初步了解其耳聋基因热点突变谱系及频率。方法采集贵州省356例平均年龄为11.90±12.23岁的非综合征型感音神经性聋患者的外周血,提取基因组DNA,应用遗传性耳聋基因芯片检测试剂盒对GJB2、SLC26A4、GJB3及线粒体DNA12SrRNA基因的9个突变热点(GJB2基因35delG、176del16、235delC、299delAT 突变,SLC26A4基因 IVS7-2A>G、2168A>G 突变,GJB3基因538C>T突变,12SrRNA基因1555A>G和1494C>T 突变)进行检测。结果356例非综合征型聋患者中,88例(24.72%)携带不同基因突变;1例携带 GJB2、SLC26A4双基因突变;GJB2基因突变40例(11.24%)(含前述1例双基因突变者),其中纯合突变19例(5.34%),复合杂合突变5例(1.40%),单杂合突变15例(4.21%);SLC26A4基因突变29例(8.15%)(含前述1例双基因突变者),其中纯合突变9例(2.53%),单杂合突变19例(5.34%);线粒体DNA12SrRNA 基因突变19例(5.34%),其中1555A>G 均质突变10例(2.81%),1555A>G异质突变7例(1.97%),1494C>T 均质突变2例(0.56%);1例患者携带GJB3基因538C>T 杂合突变。结论贵州省NSHL患者以GJB2基因和SLC26A4基因为最主要的致病基因,其中235delC突变为最常见突变位点,其次为IVS7-2 A>G突变。  相似文献   

11.
Deafness is a heterogeneous disorder showing different pattern of inheritance and involving a multitude of different genes. Mutations in the gene, GJB2 Gap junction type 1), encoding the gap junction protein connexin-26 on chromosome 13q11 may be responsible for up 50% of autosomal recessive nonsyndromic hearing loss cases (ARNSHL), and for 15–30% of sporadic cases. However, a large proportion (10–42%) of patients with GJB2 has only one GJB2 mutant allele. Recent reports have suggested that a 342-kb deletion truncating the GJB6 gene (encoding connexin-30), was associated with ARNSHL through either homozygous deletion of Cx30, or digenic inheritance of a Cx30 deletion and a Cx26 mutation in trans. Because mutations in Connexin-26 (Cx26) play an important role in ARNSHL and that distribution pattern of GJB2 variants differs considerably among ethnic groups, our objective was to find out the significance of Cx26 mutations in Moroccan families who had hereditary and sporadic deafness. One hundred and sixteen families with congenital deafness (including 38 multiplex families, and 78 families with sporadic cases) were included. Results show that the prevalence of the 35delG mutation is 31.58% in the family cases and 20.51% in the sporadic cases. Further screening for other GJB2 variants demonstrated the absence of other mutations; none of these families had mutations in exon 1 of GJB2 or the 342-kb deletion of GJB6. Thus, screening of the 35delG in the GJB2 gene should facilitate routinely used diagnostic for genetic counselling in Morocco.  相似文献   

12.

Objective

Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran.

Methods

Fifty families presenting autosomal recessive nonsyndromic hearing loss from Ardabil province of Iran were studied for mutations in GJB2 gene. All DNA samples were screened for c.35delG mutation by ARMS PCR. Samples from patients who were normal for c.35delG were analyzed for the other variations in GJB2 by direct sequencing. In the absence of mutation detection, GJB6 was screened for the del(GJB6-D13S1830) and del(GJB6-D13S1854).

Result

Thirteen families demonstrated alteration in the Cx26 (26%). The 35delG mutation was the most common one, accounting for 69.2% (9 out of 13 families). All the detected families were homozygous for this mutation. Two families were homozygous for delE120 and 299-300delAT mutations. We also identified a novel mutation: c.463-464 delTA in 2 families resulting in a frame shift mutation.

Conclusion

Our results suggest that c.35delG mutation in the GJB2 gene is the most important cause of GJB2 related deafness in Iranian Azeri population.  相似文献   

13.
OBJECTIVE: To determine the prevalence of GJB2 gene mutations in patients undergoing cochlear implantation (CI) and their impact on rehabilitative outcome following implantation. DESIGN: Prospective determination of GJB2 mutation by sequence analysis by denaturing high-performance liquid chromatography and its correlation with outcome following CI. SETTINGS: Two tertiary academic medical centers. PATIENTS: Subjects who have met the audiologic criteria and have undergone CI. RESULTS: Of 77 cochlear implant recipients screened, 13 (18%) harbored a detectable sequence alteration in the GJB2 gene. Only 3 of these 13 patients had hearing loss clearly attributable to a biallelic GJB2 mutation. There were 2 patients with homozygous mutations, including a 35delG and a 167delT mutation, and a third with a compound heterozygous mutation. Of the remaining 10 patients, 8 had 1 deafness allele, while 2 had a normal polymorphism that was not believed to be implicated in the hearing loss. Six patients had the common 35delG mutation: 5 patients had heterozygous mutations, which are probably not related to the underlying hearing loss (a second deafness allele cannot be ruled out in these cases because of the screening methodology used), while 1 patient had a homozygous mutation, which was clearly implicated in the patient's deafness. Rehabilitative outcome among those with detectable sequence alterations, as well as the 3 patients with biallelic mutations, varied but were similar on average when compared with outcomes seen in our entire CI population. CONCLUSIONS: A large percentage of implant candidates harbor mutations or sequence alterations in the GJB2 gene, although only a small number of these changes are biallelic and a clear cause of the hearing loss. These results demonstrate that patients with GJB2-related deafness clearly benefit from CI.  相似文献   

14.
目的建立常见耳聋基因如线粒体DNA(mtDNA)1555位点、GJB2基因、SLC26A4(Pendren’s syndrome gene,PDS gene)基因突变的临床检测方法。方法来自门诊的散发耳聋患者367例,有母系家族遗传史耳聋患者60例(27个家系),来自聋哑学校的先天性聋患者20例,来自门诊经高分辩CT证实双侧前庭水管扩大患者3例,无感音神经性聋病史的对照个体50例。应用线粒体基因A1555G突变检测试剂盒检测线粒体基因1555位点的突变情况;针对20例语前聋患者进行GJB2全序列分析;针对3例大前庭水管综合征的患者,应用变性高效液相色谱技术进行SLC26A4基因的全部外显子筛查,出现异常波形之外显子行序列分析。结果在26个家系的59例患者和5例散发患者中发现mtDNA A1555G突变;20例先天性聋中发现2例GJB2 235delC纯合突变,酶切加测序发现1例235delC+299-300delAT复合突变,均为先天性聋的肯定原因,另外2例具有109G-A杂合突变;3例大前庭水管综合征患者的变性高效液相色谱技术筛查均发现包含第7、8外显子的扩增子具有异常波形,测序证实1例为杂合的SLC26A4 G316X突变;另2例为919-2 A-G纯合突变。结论耳聋基因诊断具有显著的临床意义,可操作性强,在不远的将来耳聋的基因诊断可能会正式列为耳科临床检测项目。  相似文献   

15.

Objective

The purpose of this study was to determine the prevalence of c.35delG and p.M34T mutations in the GJB2 gene among children with early onset hearing loss and within a general population of Estonia.

Methods

Using an arrayed primer extension assay, we screened 233 probands with early childhood onset hearing loss for 107 different mutations in the GJB2 gene. We then looked for the two most common mutations, c.35delG and p.M34T, in a population of 998 consecutively born Estonian neonates to determine the frequency of these mutations in the general population.

Results

In 115 (49%) of the patients with early onset hearing loss, we found a mutation in at least one allele of the GJB2 gene. Seventy-three (31%) were homozygous for the c.35delG mutation, seven (3%) were homozygous for the p.M34T mutation, and five (2%) had c35delG/p.M34T compound heterozygosity. Other six identified mutations in GJB2 gene occurred rarely. Among the 998 anonymous newborn samples, we detected 45 who were heterozygous for c.35delG, 2 individuals homozygous for c.35delG, and 58 who were heterozygous for p.M34T. Additionally, we detected two c.35delG/p.M34T compound heterozygotes.

Conclusion

The most common GJB2 gene mutations in Estonian children with early onset hearing loss were c.35delG and p.M34T, with c.35delG accounting for 75% of GJB2 alleles. The carrier frequency for c.35delG and p.M34T in a general population of Estonia was 1 in 22 and 1 in 17, respectively, and was higher than in most other countries.  相似文献   

16.
BACKGROUND: Approximately 1 out of 1000 children is affected by severe or profound hearing impairment at birth. In the last years it has been shown that more than 50 % of inherited prelingual, sensorineural hearing impairment may be attributed to genetic defects. Most commonly, the GJB2 gene (chromosome 13q11) that encodes connexin 26 (Cx26) is affected. Cx26 is crucial for the formation of gap junctions which play an important role in the intercellular exchange of electrolytes. A variety of autosomal recessive GJB2 mutations associated with inherited hearing impairment has meanwhile been identified. The most common GJB2 mutation in Caucasian populations, 35delG accounts for the majority of cases and has a carrier frequency of more than 2.5 %. Other distinct mutations account for hearing impairment in other parts of the world. MATERIAL AND METHODS: We examined in 59 Caucasian and Ghanaian individuals whether DNA recovered from buccal smears was appropriate for genetic testing by polymerase-chain reaction (PCR) based DNA-sequencing. RESULTS: Buccal smears could be taken conveniently in all cases, even from small babies. In 53 out of 59 samples the material recovered from buccal smears could be subjected to PCR of the second exon of the GJB2 gene and subsequent DNA-sequencing. GJB2 mutations were identified in 34 patients. 13 Caucasian individuals exhibited the most common mutation 35delG. In addition, four cases of the rare W24X and each one heterozygous case of the V153I- and the L90P mutation were found. In two African individuals the 35insG mutation was detected. All other African patients had mutations exclusively identified in Ghana so far with the exception of R143W. R143W accounts for most cases of profound deafness in Ghana and has been identified in low frequencies in other ethnic groups as well. CONCLUSION: Screening for GJB2 mutations in DNA recovered from buccal smears of individuals with inherited hearing impairment offers an easy, non-invasive method for early diagnosis and a basis of genetic counselling.  相似文献   

17.
Sudden hearing loss in a family with GJB2 related progressive deafness   总被引:2,自引:0,他引:2  
Mutations of GJB2, the gene encoding connexin 26, have been associated with prelingual, sensorineural hearing loss of mild to profound severity. One specific mutation, the 35delG, has accounted for the majority of mutations detected in the GJB2 gene in Caucasian populations. Recent studies have described progression of hearing loss in a proportion of cases with GJB2 deafness. We report an unusual family with four 35delG homozygous members, in which the parents were deaf-mute whilst both children had a postlingual progressive hearing loss. Furthermore, the son suffered from sudden hearing loss.  相似文献   

18.
Molecular screening for GJB2 (connexin 26) mutations represents the standard diagnostic approach for the genotype definition of non-syndromic deafness. Nevertheless, a single GJB2 pathogenic mutation is detectable in a relevant number of cases, therefore failing to explain the phenotype. We aimed at assessing the occurrence of the recently described del(GIB6-D13S1830) mutation, occurring in the connexin 30 gene, in a group of Italian hearing-impaired patients carrying a single GJB2 mutated allele. A total of 59 non-syndromic hearing loss (NSHL) patients were screened for GJB2 mutations. Among these, nine NSHL patients were found to be heterozygous for a single GJB2 mutation. These patients, heterozygotes for different GJB2 mutated alleles (35delG, L90P, M34T, V153I), together with 11 additional 35delG/neg cases previously described, were studied for the presence of the del(GIB6-D13S1830) mutation. Two double heterozygotes del(GIB6-D13S1830)/35delG were identified. In both cases the degree of hearing loss was profound. Furthermore, GJB2 molecular screening led to the identification of a novel change (T55G) occurring in compound heterozygosity with the V37I mutation. In conclusion, our data suggest a significant frequency of del(GIB6-D13S1830) mutation in Italian hearing-impaired subjects (10% of unexplained GJB2 heterozygotes) similar to that reported in other European countries.  相似文献   

19.
目的 进行贵州省贵阳地区非综合征性耳聋分子病因学调查。方法 对贵阳市盲聋哑学校150名聋哑学生进行耳聋病因问卷调查、纯音听阈测试,对其中139名非综合征性耳聋患者进行线粒体DNA 12SrDNA A1555G点突变和GJB2基因235delC突变限制性内切酶的分析。结果 139名非综合征性耳聋患者中。6例(4132%)存在线粒体DNA 12SrDNA A1555G点突变;17例(12.23%)存在GJB2 235delC纯合突变;9例(6.47%)存在GJB2235delC杂合突变,在分子水平能够明确诊断者占23.02%。结论 贵阳地区耳聋患者存在较高的遗传性耳聋发生率,线粒体DNA A1555G突变发生率和GJB2 235delC突变发生率均高于全国平均水平。耳聋基因诊断技术可以应用在地区性耳聋病因调查中进行快速筛查、诊断,并可达到防止再出生聋儿,指导聋儿康复等积极效果。  相似文献   

20.
目的探讨基因芯片在耳聋基因筛查中的应用价值。方法对扬州市聋哑学校21例8~18岁的耳聋患者中4个耳聋相关基因上的9个热点突变进行检测,包括GJB2(35 delG、176 del16、235 delC及299 delAT)、GJB3(C538 T)、SLC26 A4(IVS7-2 A>G、A2168 G)以及线粒体12 S rRNA(A1555G、C1494T)。结果 SLC26A4突变阳性率为38%(8/21),其中IVS7-2A>G杂合突变7例,IVS 7-2 A>G与A 2 1 6 8 G杂合突变1例;GJB 2突变阳性率为1 9%(4/2 1),其中1 7 6 del 1 6杂合突变1例,299 delAT杂合突变1例,176 del 16与235 del C杂合突变1例,235 del C纯合突变1例。结论基因芯片是一种筛查耳聋基因的高效、经济、简便、灵敏及特异性方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号