首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正In this perspective article, I will discuss our recent publication(Hicks et al., 2020), specifically its major findings and integration with the published literature.Alzheimer 's disease(AD) is a progressive neurodegenerative  相似文献   

2.
beta A4 amyloid deposition in the brain, which is characteristic of Alzheimer's disease (AD), may result from either overexpression of the amyloid protein precursor (APP) or failure of APP to be correctly processed. A blood marker reflecting this abnormal metabolism would be of diagnostic value and would provide a means of monitoring the efficacy of therapeutic interventions. We analyzed immunoblots of plasma APP enriched by heparin-Sepharose chromatography from patients with moderate to severe AD dementia (n = 34) and control subjects (n = 77) and found an approximately 50% increase in the proportion of 130-kd APP species in patients with AD (p less than 0.001), no difference in the 110-kd form, a 15 to 30% decrease in the 65-kd form (p less than 0.001), and a 20 to 35% decrease in the proportion of 42-kd APP (p less than 0.001). These species of APP were soluble, lacked the carboxyl terminus, and the 110- and 42-kd species were shown to be consistent with degradation products derived from the 130-kd species. A comparison of levels of 130-kd plasma APP from moderately to severely demented patients with AD and control subjects distinguished the two groups with a specificity of 87.0% and a sensitivity of 79.4%.  相似文献   

3.
4.
We report a patient with early-onset autosomal dominant dementia. The CSF showed increased levels of tau protein and decreased amyloid beta (ratio 42:40) typical for Alzheimer's disease. Cerebral MRI revealed vascular lesions and white-matter changes around the posterior horns of the ventricles with only moderate atrophy of the brain. Susceptibility-weighted imaging detected multiple small hemorrhagic changes. Gene analysis revealed amyloid precursor protein (APP) locus duplication as the cause of hereditary Alzheimer's dementia. The co-occurrence of CSF changes typical for Alzheimer's disease and MRI findings of cerebral amyloid angiopathy is remarkable, as it is also described for APP locus duplication. In conjunction with a family history suggestive of hereditary dementia, such a constellation should lead to enhanced gene analysis.  相似文献   

5.
In order to clarify the distribution and pathological changes of the amyloid beta protein precursor (betaAPP), 10 Alzheimer's disease (AD) brains and seven normal control brains were examined by immunocytochemistry and in situ hybridization histochemistry. All betaAPP isoforms were distributed evenly in neuronal cell bodies and their axons and dendrites. The betaAPP-positive neuronal processes showed mesh-like networks. In AD brains, betaAPP-positive neurons and mesh-like networks were generally decreased in spite of some intensely labeled neurons. All betaAPP isoforms accumulated in neuronal processes, dystrophic neurites and senile plaques. In situ hybridization histochemistry confirmed that all isoforms of betaAPP were expressed in neurons in control brains. In AD brains, the betaAPP mRNA signal was generally decreased besides some intense signal neurons corresponding to immunostaining findings. Few astrocytes expressed betaAPP. Thus, uniform expression and distribution of betaAPP were disturbed in AD brains showing uneven decreases or increases of neuronal betaAPP expression in individual neurons and betaAPP accumulation in neurons, neuronal processes and abnormal structures including dystrophic neurites, senile plaques and neurofibrillary tangles.  相似文献   

6.
We have previously found that the amyloid precursor protein (APP) of Alzheimer's disease is present on the surface of rat cortical neurons in culture, in a segmental pattern which first becomes evident after 24 hours and is fully developed by five days. As APP has previously been reported to have a short half-life in neuronal cell lines, and has been shown to contain binding sites for various extracellular matrix components within its extracellular domain, we hypothesized that APP would be associated with portions of neurites undergoing rapid structural change, such as growth cones. To test this hypothesis, we observed selected neurons by video time-lapse differential interference microscopy on 24-hour-old primary rat neuronal cultures for up to 45 minutes, followed by fixation and immunocytochemistry to ascertain surface APP distribution on those same neurons. In contrast to our predictions, surface APP was not found on active portions of neurites, even if the activity produced no net translational movement. This result indicates that surface APP is actually associated with stable portions of neurites, a conclusion that tallies with other recent results showing that neuronal surface APP has a longer half-life than general cellular APP, and is associated with markers of adhesion patches, which themselves are relatively stable structures.  相似文献   

7.
Many studies have shown that breakdown of the amyloid protein precursor (APP) to produce the amyloid protein is an important step in the pathogenic mechanism which causes Alzheimer's disease (AD). However, little is known about the normal function of APP. Developmental studies show that APP expression increases during the period of brain development when neurite outgrowth and synaptogenesis is maximal. APP is expressed highly within growing neurites and in growth cones, and purified APP has been shown to stimulate neurite outgrowth from cells in culture. Thus APP may regulate neurite outgrowth or synaptogenesis in vivo. APP is actively secreted from many cells, and the C-terminally secreted APP has been shown to associate with components of the extracellular matrix, such as the heparan sulphate proteoglycans (HSPGs). Two putative heparin-binding domains on APP have been reported. Binding of HSPGs to an N-terminal heparin-binding domain (HBD-1) stimulates the effect of substrate-bound APP on neurite outgrowth. In the mature nervous system, APP may play an important role in the regulation of wound repair. It is highly likely that studies on the normal functions of APP will shed further light on aspects of the pathogenesis of AD.  相似文献   

8.
Alzheimer's disease is characterized by the accumulation of beta amyloid peptides in plaques and vessel walls and by the intraneuronal accumulation of paired helical filaments composed of hyperphosphorylated tau. In this review, we concentrate on the biology of amyloid precursor protein, and on the central role of amyloid in the pathogenesis of Alzheimer's disease. Amyloid precursor protein (APP) is part of a super-family of transmembrane and secreted proteins. It appears to have a number of roles, including regulation of haemostasis and mediation of neuroprotection. APP also has potentially important metal and heparin-binding properties, and the current challenge is to synthesize all these varied activities into a coherent view of its function. Cleavage of amyloid precursor protein by beta-and gamma-secretases results in the generation of the Abeta (betaA4) peptide, whereas alpha-secretase cleaves within the Abeta sequence and prevents formation from APP. Recent findings indicate that the site of gamma-secretase cleavage is critical to the development of amyloid deposits; Abeta1-42 is much more amyloidogenic than Abeta1-40. Abeta1-42 formation is favoured by mutations in the two presenilin genes (PS1 and PS2), and by the commonest amyloid precursor protein mutations. Transgenic mouse models of Alzheimer's disease incorporating various mutations in the presenilin gene now exist, and have shown amyloid accumulation and cognitive impairment. Neurofibrillary tangles have not been reproduced in these models, however. While aggregated Abeta is neurotoxic, perhaps via an oxidative mechanism, the relationship between such toxicity and neurofibrillary tangle formation remains a subject of ongoing research.  相似文献   

9.
The accumulation and deposition of fibrillar Abeta is thought the primary cause of Alzheimer's disease (AD). Abeta is generated by sequential proteolytic processing involving beta- and gamma-secretase on Amyloid beta protein precursor (APP). Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP, called epsilon-site cleavage, as well as in the middle of the membrane domain, called gamma-site cleavage. Recent findings indicate that gamma- and epsilon-site cleavage are regulated independently. In this review, the reduction of epsilon-site cleavage in AD and the importance of epsilon-site cleavage are discussed.  相似文献   

10.
The amyloid precursor protein (APP) in brain is processed either by an amyloidogenic pathway by beta-secretase and gamma-secretase to yield Abeta (beta-amyloid 4 kDa) peptide or by alpha-secretase within the beta-amyloid domain to yield non-amyloidogenic products. We have studied blood platelet levels of a 22-kDa fragment containing the Abeta (beta-amyloid 4 kDa) peptide, beta-secretase (BACE1), alpha-secretase (ADAM10), and APP isoform ratios of the 120-130 kDa to 110 kDa peptides from 31 Alzheimer's disease (AD) patients and 10 age-matched healthy control subjects. We found increased levels of Abeta4, increased activation of beta-secretase (BACE1), decreased activation of alpha-secretase (ADAM10) and decreased APP ratios in AD patients compared to normal control subjects. These observations indicate that the blood platelet APP is processed by the same amyloidogenic and non-amyloidogenic pathways as utilized in brain and that APP processing in AD patients is altered compared to control subjects and may be a useful bio-marker for the diagnosis of AD, the progression of disease and for monitoring drug responses in clinical trials.  相似文献   

11.
Amyloid plaques, a well‐known hallmark of Alzheimer's disease (AD), are formed by aggregated β‐amyloid (Aβ). The cellular prion protein (PrPc) accumulates concomitantly with Aβ in amyloid plaques. One type of amyloid plaque, classified as a neuritic plaque, is composed of an amyloid core and surrounding dystrophic neurites. PrPc immunoreactivity reminiscent of dystrophic neurites is observed in neuritic plaques. Proteinase K treatment prior to immunohistochemistry removes PrPc immunoreactivity from amyloid plaques, whereas Aβ immunoreactivity is enhanced by this treatment. In the present study, we used a chemical pretreatment by a sarkosyl solution (0.1% sarkosyl, 75 mM NaOH, 2% NaCl), instead of proteinase K treatment, to evaluate PrPc accumulation within amyloid plaques. Since PrPc within amyloid plaques is removed by this chemical pretreatment, we can recognize that the PrP species deposits within amyloid plaques were PrPc. We could observe that PrPc accumulation in dystrophic neurites occurred differently compared with Aβ or hyperphosphorylated tau aggregation in the AD brain. These results could support the hypothesis that PrPc accumulation in dystrophic neurites reflects a response to impairments in cellular degradation, endocytosis, or transport mechanisms associated with AD rather than a non‐specific cross‐reactivity between PrPc and aggregated Aβ or tau.  相似文献   

12.
Here, we investigate the involvement of caveolins in the pathophysiology of Alzheimer's disease (AD). We show dramatic upregulation of caveolin-3 immunoreactivity in astroglial cells surrounding senile plaques in brain tissue sections from authentic AD patients and an established transgenic mouse model of AD. In addition, we find that caveolin-3 physically interacts and biochemically colocalizes with amyloid precursor protein (APP) both in vivo and in vitro. Interestingly, recombinant overexpression of caveolin-3 in cultured cells stimulated beta-secretase-mediated processing of APP. Immunoreactivities of APP and presenilins were concomitantly increased in caveolin-3-positive astrocytes. Because the presenilins also form a physical complex with caveolin-3, caveolin-3 may provide a common platform for APP and the presenilins to associate in astrocytes. In AD, augmented expression of caveolin-3 and presenilins in reactive astrocytes may alter APP processing, leading to the overproduction of its toxic amyloid metabolites.  相似文献   

13.
14.
Proteolytic processing of the amyloid precursor protein by beta -and gamma-secretases results in the production of Alzheimer's disease (AD) Abeta amyloid peptides. Modulation of secretase activity is being investigated as a potential therapeutic approach. Recent studies with human brain have revealed that the beta-secretase protein, BACE, is increased in cortex of AD patients. Analysis of betaCTF (or C99), the amyloid precursor protein (APP) product of BACE cleavage that is the direct precursor to Abeta, shows it is also elevated in AD, underlying the importance of beta-secretase cleavage in AD pathogenesis. The C-terminal product of gamma-secretase cleavage of APP, epsilonCTF (or AICD), is enriched in human brain cortical nuclear fractions, a subcellular distribution appropriate for a putative involvement of APP cytosolic domain in signal transduction. Analysis of AD cortex samples, particularly that of a carrier of a familial APP mutation, suggests that processing of APP transmembrane domain generates an alternative CTF product. All these particularities observed in the AD brain demonstrate that APP processing is altered in AD. The transgenic mouse model Tg2576 seems to be a promising laboratory tool to test potential modulators of Abeta formation. Indeed, C-terminal products of alpha-, beta-, and gamma-secretase cleavage are readily detectable in the brain of these transgenic mice. Finally, the finding of the same secretase products in platelets and neurons make platelets a potentially useful and easily accessible clinical tool to monitor effects of novel therapies based on inhibition of beta- or gamma-secretase.  相似文献   

15.
An altered platelet ratio of amyloid precursor protein (APP) isoforms might be a diagnostic, predictive, or therapeutic marker for Alzheimer's disease (AD). Our purpose was to test the hypothesis that this ratio might serve as a therapeutic marker for AD patients treated with the cholinesterase inhibitor, galantamine. Thirty-nine patients (mean age 76.6 +/- 9.4 years) with AD were treated with galantamine for 12 weeks. Patients were evaluated at baseline, 4 and 12 weeks by cognitive testing along with a determination of their platelet APP isoform ratio. Western blotting was performed to calculate the APP isoform ratio. At the end of the treatment, cognitive scores significantly improved, and the ratio of the high-molecular-weight (130 kDa) isoform to the low-molecular-weight (110-106 kDa) isoforms increased. These results suggest that cholinesterase inhibition might be involved in APP processing.  相似文献   

16.
This study analyzed whether platelet amyloid beta-protein precursor (AbetaPP) isoform ratio correlates with cognition or cognitive decline in patients with Alzheimer's disease (AD). Platelet AbetaPP isoform ratio was measured, and cognitive assessment was performed using the Mini-Mental State Examination (MMSE) in 66 AD patients at baseline (T0) and in 29 of these patients in a one-year follow-up (T1). There was a significant correlation between the AbetaPP isoform ratios and MMSE scores in the 66 AD patients at T0. The T1 subjects were divided into two groups: 12 "no decliners" (MMSE score, T1-T0 > or = 0) and 17 "decliners" (MMSE score, T1-T0 < 0). The decliners group showed a significantly greater reduction of AbetaPP isoform ratio from T0 to T1 than the no decliners group. However, the decline of the ratio did not correlate with the decline of MMSE score. These findings indicate that AbetaPP isoform ratio correlates with cognition, and reduction in this ratio may be a marker for cognitive decline in AD patients.  相似文献   

17.
Neve RL  McPhie DL  Chen Y 《Brain research》2000,886(1-2):54-66
In this review, we argue that at least one insult that causes Alzheimer's disease (AD) is disruption of the normal function of the amyloid precursor protein (APP). Familial Alzheimer's disease (FAD) mutations in APP cause a disease phenotype that is identical (with the exception that they cause an earlier onset of the disease) to that of 'sporadic' AD. This suggests that there are molecular pathways common to FAD and sporadic AD. In addition, all individuals with Down syndrome, who carry an extra copy of chromosome 21 and overexpress APP several-fold in the brain, develop the pathology of AD if they live past the age of 40. These data support the primacy of APP in the disease. Although APP is the source of the beta-amyloid (Abeta) that is deposited in amyloid plaques in AD brain, the primacy of APP in AD may not lie in the production of Abeta from this molecule. We suggest instead that APP normally functions in the brain as a cell surface signaling molecule, and that a disruption of this normal function of APP is at least one cause of the neurodegeneration and consequent dementia in AD. We hypothesize in addition that disruption of the normal signaling function of APP causes cell cycle abnormalities in the neuron, and that these abnormalities constitute one mechanism of neuronal death in AD. Data supporting these hypotheses have come from investigations of the molecular consequences of neuronal expression of FAD mutants of APP or overexpression of wild type APP, as well as from identification of binding proteins for the carboxyl-terminus (C-terminus) of APP.  相似文献   

18.
Beta-secretase cleavage represents the first step in the generation of Abeta polypeptides and initiates the amyloid cascade that leads to neurodegeneration in Alzheimer's disease. By comparative Western blot analysis, we show a 2.7-fold increase in protein expression of the beta-secretase enzyme BACE in the brain cortex of Alzheimer's disease patients as compared to age-matched controls. Similarly, we found the levels of the amyloid precursor protein C-terminal fragment produced by beta-secretase to be increased by nearly twofold in Alzheimer's disease cortex.  相似文献   

19.
The expression of 3 beta-amyloid protein precursor (APP) mRNAs (695, 751, and 770) in the cerebral cortex in Alzheimer's disease and other neurodegenerative diseases was analyzed by the S1 nuclease protection assay. We found no significant Alzheimer's disease-specific alteration of APP mRNA expression when compared to the other neurological diseases as controls. Since the expression of this mRNA was not correlated with amyloid deposition, it is possible that gliosis/neuronal loss may secondarily alter APP mRNA expression. However, the current study revealed no significant correlation between them.  相似文献   

20.
The structural changes of Alzheimer's disease (AD) include a widespread alteration of neuronal cell processes in addition to senile plaques and neurofibrillary tangles. Since the antigenic characteristics of these abnormal neurites are similar to those of the abnormal neurites associated with the senile plaques, the question has been raised as to whether the widespread neuritic alteration is secondary to the deposition of amyloid. To answer this question, we examined brains from 2 subjects with a longer-lasting form of subacute sclerosing panencephalitis (SSPE) characterized by the presence of numerous neurofibrillary tangles but no senile plaques, 3 subjects with AD, and 2 age-matched controls. Light and electron immunocytochemical analyses revealed that abnormal neurites are present diffusely in SSPE cerebral cortex in the absence of amyloid deposits. These abnormal neurites were qualitatively identical to the widespread abnormal neurites of AD. The abnormal neurites, in contrast to the neurites of control brains, immunoreacted with antibodies to tau and ubiquitin. These distinctive antigenic features were due to the presence in these abnormal neurites of straight filaments, 14 to 16 nm in diameter, mixed with a few paired helical filaments. The spatial distribution of the widespread neuritic alteration correlated with that of neurofibrillary tangles in both conditions, but not with that of senile plaques in AD. The present findings demonstrate that a diffuse alteration of neurites similar to that present in AD takes place independently of the deposition of amyloid in SSPE, and they are consistent with the hypothesis that in AD, also, this alteration is not secondary to the deposition of amyloid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号