首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We employed whole cell patch-clamp recordings to establish the effect of Zn(2+) on the gating the brain specific, T-type channel isoform Ca(V)3.3 expressed in HEK-293 cells. Zn(2+) (300 microM) modified the gating kinetics of this channel without influencing its steady-state properties. When inward Ca(2+) currents were elicited by step depolarizations at voltages above the threshold for channel opening, current inactivation was significantly slowed down while current activation was moderately affected. In addition, Zn(2+) slowed down channel deactivation but channel recovery from inactivation was only modestly changed. Zn(2+) also decreased whole cell Ca(2+) permeability to 45% of control values. In the presence of Zn(2+), Ca(2+) currents evoked by mock action potentials were more persistent than in its absence. Furthermore, computer simulation of action potential generation in thalamic reticular cells performed to model the gating effect of Zn(2+) on T-type channels (while leaving the kinetic parameters of voltage-gated Na(+) and K(+) unchanged) revealed that Zn(2+) increased the frequency and the duration of burst firing, which is known to depend on T-type channel activity. In line with this finding, we discovered that chelation of endogenous Zn(2+) decreased the frequency of occurrence of ictal-like epileptiform discharges in rat thalamocortical slices perfused with medium containing the convulsant 4-aminopyridine (50 microM). These data demonstrate that Zn(2+) modulates Ca(V)3.3 channel gating thus leading to increased neuronal excitability. We also propose that endogenous Zn(2+) may have a role in controlling thalamocortical oscillations.  相似文献   

2.
The present study was performed to examine how the stimulation of gamma-aminobutyric acid (GABA) receptor affects amyloid beta protein (25-35) (Abeta (25-35)), a synthetic 25-35 amyloid peptide, -induced neurotoxicity using cultured rat cortical neurons. Abeta (25-35) produced a concentration-dependent reduction of cell viability, which was significantly reduced by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca(2+) channel blocker, and N(G)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor. Pretreatment with muscimol, a GABAA receptor agonist, over a concentration range of 0.1-10microM 24h before the treatment with 10microM Abeta (25-35) showed concentration-dependent inhibition on the Abeta (25-35)-induced neuronal apoptotic death. However, baclofen (1 and 10microM), a GABAB receptor agonist, failed to inhibit the Abeta (25-35)-induced neuronal death. In addition, pretreatment with muscimol (1microM) for 24h inhibited the Abeta (25-35) (10microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)]c) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity in cultured neurons. These neuroprotective effects of muscimol (1microM) were completely blocked by the simultaneous treatment with 10microM bicuculline, a GABAA receptor antagonist, indicating that the protective effects of muscimol were due to GABAA receptor stimulation. When, however, treated just 15min before the treatment with Abeta (25-35), muscimol (1microM) did not show any protective effect against Abeta (25-35) (10microM)-induced neurotoxicity in cultured neurons. These results suggest that the chronic activation of GABAA receptor may ameliorate Abeta-induced neurotoxicity by interfering with the increase of [Ca(2+)]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.  相似文献   

3.
Intracellular ATP supply and ion homeostasis determine neuronal survival and degeneration after ischemic stroke. The present study provides a systematic investigation in organotypic hippocampal slice cultures of the influence of experimental ischemia, induced by oxygen-glucose-deprivation (OGD). The pathways controlling intracellular Na(+) and Ca(2+) concentration ([Na(+)](i) and [Ca(2+)](i)) and their inhibition were correlated with delayed cell death or protection. OGD induced a marked decrease in the ATP level and a transient elevation of [Ca(2+)](i) and [Na(+)](i) in cell soma of pyramidal neurons. ATP level, [Na(+)](i) and [Ca(2+)](i) rapidly recovered after reintroduction of oxygen and glucose. Pharmacological analysis showed that the OGD-induced [Ca(2+)](i) elevation in neuronal cell soma resulted from activation of both N-methyl-d-aspartate (NMDA)-glutamate receptors and Na(+)/Ca(2+) exchangers, while the abnormal [Na(+)](i) elevation during OGD was due to Na(+) influx through voltage-dependent Na(+) channels. In hippocampal slices, cellular degeneration occurring 24 h after OGD, selectively affected the pyramidal cell population through apoptotic and non-apoptotic cell death. OGD-induced cell loss was mediated by activation of ionotropic glutamate receptors, voltage-dependent Na(+) channels, and both plasma membrane and mitochondrial Na(+)/Ca(2+) exchangers. Thus, we show that neuroprotection induced by blockade of NMDA receptors and plasma membrane Na(+)/Ca(2+) exchangers is mediated by reduction of Ca(2+) entry into neuronal soma, whereas neuroprotection induced by blockade of AMPA/kainate receptors and mitochondrial Na(+)/Ca(2+) exchangers might result from reduced Na(+) entry at dendrites level.  相似文献   

4.
T-type Ca(2+) channels are low-voltage-activated Ca(2+) channels that control Ca(2+) entry in excitable cells during small depolarization above resting potentials. Using Ca(2+) imaging with a laser scanning confocal microscope we investigated the involvement of T-type Ca(2+) channels in IBMX/forskolin- and sparingly elevated extracellular K(+)-induced Ca(2+) transients in freshly isolated porcine olfactory receptor neurons (ORNs). In the presence of mibefradil (10microM) or Ni(2+) (100microM), the selective T-type Ca(2+) channel inhibitors, IBMX/forskolin-induced Ca(2+) transients in the soma were either strongly (>60%) inhibited or abolished completely. However, the Ca(2+) transients in the knob were only partially (<60%) inhibited. Ca(2+) transients induced by 30mM K(+) were also partially ( approximately 60%) inhibited at both the knob and soma. Furthermore, ORNs responded to as little as a 2.5mM increase in the extracellular K(+) concentration (7.5mM K(+)), and such responses were completely inhibited by mibefradil or Ni(2+). These results reveal functional expression of T-type Ca(2+) channels in porcine ORNs, and suggest a role for these channels in the spread Ca(2+) transients from the knob to the soma during activation of the cAMP cascade following odorant binding to G-protein-coupled receptors on the cilia/knob of ORNs.  相似文献   

5.
Empson RM  Jefferys JG 《Neuroscience》2001,102(2):297-306
In CA3 neurons of disinhibited hippocampal slice cultures the slow afterhyperpolarisation, following spontaneous epileptiform burst events, was confirmed to be Ca(2+) dependent and mediated by K(+) ions. Apamin, a selective blocker of the SK channels responsible for part of the slow afterhyperpolarisation reduced, but did not abolish, the amplitude of the post-burst afterhyperpolarisation. The result was an increased excitability of individual CA3 cells and the whole CA3 network, as measured by burst duration and burst frequency. Increases in excitability could also be achieved by strongly buffering intracellular Ca(2+) or by minimising Ca(2+) influx into the cell, specifically through L-type (but not N-type) voltage operated Ca(2+) channels. Notably the L-type Ca(2+) channel antagonist, nifedipine, was more effective than apamin at reducing the post-burst afterhyperpolarisation. Nifedipine also caused a greater increase in network excitability as determined from measurements of burst duration and frequency from whole cell and extracellular recordings. N-methyl D-aspartate receptor activation contributed to the depolarisations associated with the epileptiform activity but Ca(2+) entry via this route did not contribute to the activation of the post-burst afterhyperpolarisation.We suggest that Ca(2+) entry through L-type channels during an epileptiform event is selectively coupled to both apamin-sensitive and -insensitive Ca(2+) activated K(+) channels. Our findings have implications for how the route of Ca(2+) entry and subsequent Ca(2+) dynamics can influence network excitability during epileptiform discharges.  相似文献   

6.
Mudpuppy parasympathetic cardiac neurons exhibit spontaneous miniature outward currents (SMOCs) that are thought to be due to the activation of clusters of large conductance Ca(2+)-activated K(+) channels (BK channels) by localized release of Ca(2+) from internal stores close to the plasma membrane. Perforated-patch whole cell recordings were used to determine whether Ca(2+)-induced Ca(2+) release (CICR) is involved in SMOC generation. We confirmed that BK channels are involved by showing that SMOCs are inhibited by 100 nM iberiotoxin or 500 microM tetraethylammonium (TEA), but not by 100 nM apamin. SMOC frequency is decreased in solutions that contain 0 Ca(2+)/3.6 mM Mg(2+), and also in the presence of 1 microM nifedipine and 3 microM omega-conotoxin GVIA, suggesting that SMOC activation is dependent on calcium influx. However, Ca(2+) influx alone is not sufficient; SMOC activation is also dependent on Ca(2+) release from the caffeine- and ryanodine-sensitive Ca(2+) store, because exposure to 2 mM caffeine consistently caused an increase in SMOC frequency, and 10-100 microM ryanodine altered the configuration of SMOCs and eventually inhibited SMOC activity. Depletion of intracellular Ca(2+) stores by the Ca-ATPase inhibitor cyclopiazonic acid (10 microM) inhibited SMOC activity, even when Ca(2+) influx was not compromised. We also tested the effects of the membrane-permeable Ca(2+) chelators, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid-AM (BAPTA-AM) and EGTA-AM. EGTA-AM (10 microM) caused no inhibition of SMOC activation, whereas 10 microM BAPTA-AM consistently inhibited SMOCs. After SMOCs were completely inhibited by BAPTA, 3 mM caffeine caused SMOC activity to resume. This effect was reversible on removal of caffeine and suggests that the source of Ca(2+) that triggers the internal Ca(2+) release channel is different from the source of Ca(2+) that activates clusters of BK channels. We propose that influx of Ca(2+) through voltage-dependent Ca(2+) channels is required for SMOC generation, but that the influx of Ca(2+) triggers CICR from intracellular stores, which then activates the BK channels responsible for SMOC generation.  相似文献   

7.
The (Ca(2+)-Mg2+)ATPase activity in microsomes of Schistosoma mansoni is fully inhibited by vanadate (I50 = 2.5 microM). 45Ca2+ is accumulated within microsomal vesicles in an ATP-dependent process that is enhanced 5-fold in the presence of 40 mM phosphate. Accumulated 45Ca2+ is rapidly released by 5 microM of the Ca2+ ionophore A23187 (t1/2 less than or equal to 6 s). (Ca(2+)-Mg2+)ATPase activity and Ca2+ uptake share the same subcellular distribution pattern and similar Ca2+ sensitivities (K0.5 = 0.39 microM and 0.15 microM, respectively). The substrate selectivity is high for both ATPase activity and Ca2+ transport. These results indicate the presence of an active transport of Ca2+ coupled to the (Ca(2+)-Mg2+)ATPase activity previously described in this parasite. A plasma membrane localization and physiological role in calcium homeostasis are suggested.  相似文献   

8.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

9.
The pulsatile release of gonadotropin releasing hormone (GnRH) is driven by the intrinsic activity of GnRH neurons, which is characterized by bursts of action potentials correlated with oscillatory increases in intracellular Ca(2+). The role of K(+) channels in this spontaneous activity was studied by examining the effects of commonly used K(+) channel blockers on K(+) currents, spontaneous action currents, and spontaneous Ca(2+) signaling. Whole-cell recordings of voltage-gated outward K(+) currents in GT1-1 neurons revealed at least two different components of the current. These included a rapidly activating transient component and a more slowly activating, sustained component. The transient component could be eliminated by a depolarizing prepulse or by bath application of 1.5 mM 4-aminopyridine (4-AP). The sustained component was partially blocked by 2 mM tetraethylammonium (TEA). GT1-1 cells also express inwardly rectifying K(+) currents (I(K(IR))) that were activated by hyperpolarization in the presence of elevated extracellular K(+). These currents were blocked by 100 microM Ba(2+) and unaffected by 2 mM TEA or 1.5 mM 4-AP. TEA and Ba(2+) had distinct effects on the pattern of action current bursts and the resulting Ca(2+) oscillations. TEA increased action current burst duration and increased the amplitude of Ca(2+) oscillations. Ba(2+) caused an increase in the frequency of action current bursts and Ca(2+) oscillations. These results indicate that specific subtypes of K(+) channels in GT1-1 cells can have distinct roles in the amplitude modulation or frequency modulation of Ca(2+) signaling. K(+) current modulation of electrical activity and Ca(2+) signaling may be important in the generation of the patterns of cellular activity responsible for the pulsatile release of GnRH.  相似文献   

10.
Uteshev VV  Knot HJ 《Neuroscience》2005,134(1):133-143
Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca(2+) metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca(2+)](i) from 56+/-18 nM to 1.0+/-0.6 microM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of alpha7 nAChRs did not elevate [Ca(2+)](i) directly, i.e. in the absence of high-threshold voltage-gated Ca(2+) channel (HVGCC) activation. Cd(2+) (200 microM) completely blocked all Ca(2+) signals, but inhibited only 37+/-16% of alpha7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca(2+)](i) to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca(2+)](i) at membrane voltages associated with normal TM neuronal activity. These properties of [Ca(2+)](i) define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca(2+) effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.  相似文献   

11.
The effects of 9,11-epithio-11,12-methano-thromboxane A(2) (STA(2)), a stable thromboxane A(2) analogue, and carbachol on colonic Ca(2+)-activated K(+) channels were studied. In indo-1-loaded single cells in isolated rat colonic crypts, both STA(2) (0.1 microM) and carbachol (10 microM) transiently increased intracellular free Ca(2+) concentration ([Ca(2+)](i)) by 136 and 155 nm, respectively. In whole-cell current-clamp experiments of the colonic crypt cells with Cl(-)-free solutions, carbachol (10 microM) hyperpolarized the cell by 19.7 mV, while STA(2) (0.1 microM) did not affect the membrane potential. In the isolated colonic mucosa that was permeabilized mucosally by a monovalent ionophore nystatin in the presence of a serosally directed K(+) gradient, carbachol (10 microM) transiently elicited K(+) current, but STA(2) (0.1 microM) did not. These results indicate that STA(2) elevates [Ca(2+)](i) in rat colonic crypt cells but does not activate basolateral Ca(2+)-activated K(+) channels.  相似文献   

12.
Wang ZF  Shi YL 《Neuroscience》2001,104(1):41-47
The effect of toosendanin, a selective presynaptic blocker and effective antibotulismic agent, on large-conductance Ca(2+)-activated K(+) channels was studied in inside-out patches of pyramidal neurons freshly isolated from the hippocampal CA1 region of the rat. Toosendanin (1 x 10(-6)g/ml approximately 1 x 10(-4)g/ml) was found to inhibit large-conductance Ca(2+)-activated K(+) channels by reducing its open probability significantly in a concentration-dependent manner, although the effective concentration of toosendanin was lower in a symmetrical K(+) (150 mM) solution than under asymmetrical conditions (changing K(+) concentration in pipette solution to 5mM). The action was partially reversible by washing. By decreasing the slow open time constant, toosendanin shortened the open dwell time of large-conductance Ca(2+)-activated K(+) channels in a dose-dependent manner. A dose-dependent reduction of unitary current amplitude of the channel was detected after toosendanin perfusion. On elevating the intracellular free calcium concentration from 1 to 10 microM, a similar effect on large-conductance Ca(2+)-activated K(+) channels by toosendanin was also observed, but its efficacy was diminished.These results show that toosendanin inhibits large-conductance Ca(2+)-activated K(+) channels in hippocampal neurons by reducing the open probability and unitary current amplitude of the channel, and that Ca(2+) interferes with the effect. These data provide an explanation for toosendanin-induced facilitation of neurotransmitter release and the antibotulismic effect of the drug.  相似文献   

13.
Ca(2+) clearance in frog motor nerve terminals was studied by fluorometry of Ca(2+) indicators. Rises in intracellular Ca(2+) ([Ca(2+)](i)) in nerve terminals induced by tetanic nerve stimulation (100 Hz, 100 or 200 stimuli: Ca(2+) transient) reached a peak or plateau within 6-20 stimuli and decayed at least in three phases with the time constants of 82-87 ms (81-85%), a few seconds (11-12%), and several tens of seconds (less than a few percentage). Blocking both Na/Ca exchangers and Ca(2+) pumps at the cell membrane by external Li(+) and high external pH (9.0), respectively, increased the time constants of the initial and second decay components with no change in their magnitudes. By contrast, similar effects by Li(+) alone, but not by high alkaline alone, were seen only on 200 stimuli-induced Ca(2+) transients. Blocking Ca(2+) pumps at Ca(2+) stores by thapsigargin did not affect 100 stimuli-induced Ca(2+) transients but increased the initial decay time constant of 200 stimuli-induced Ca(2+) transients with no change in other parameters. Inhibiting mitochondrial Ca(2+) uptake by carbonyl cyanide m-chlorophenylhydrazone markedly increased the initial and second decay time constants of 100 stimuli-induced Ca(2+) transients and the amplitudes of the second and the slowest components. Plotting the slopes of the decay of 100 stimuli-induced Ca(2+) transients against [Ca(2+)](i) yielded the supralinear [Ca(2+)](i) dependence of Ca(2+) efflux out of the cytosol. Blocking Ca(2+) extrusion or mitochondrial Ca(2+) uptake significantly reduced this [Ca(2+)](i)-dependent Ca(2+) efflux. Thus Ca(2+)-dependent mitochondrial Ca(2+) uptake and plasmalemmal Ca(2+) extrusion clear out a small Ca(2+) load in frog motor nerve terminals, while thapsigargin-sensitive Ca(2+) pump boosts the clearance of a heavy Ca(2+) load. Furthermore, the activity of plasmalemmal Ca(2+) pump and Na/Ca exchanger is complementary to each other with the slight predominance of the latter.  相似文献   

14.
Based on the experimental evidence that Na(+)-Ca(2+) exchange participates in the regulation of intracellular Ca(2+) concentration in pancreatic beta-cells, we construct a mathematical model for the cyclic spike-bursts and oscillations of intracellular Ca(2+) concentration. In our model, an increase in ATP concentration by the stimulation of glucose metabolism leads to the closure of ATP-sensitive K(+) channels (K(ATP) channels) and gradual depolarization to the threshold of voltage-gated Ca(2+) channels. Spikes are generated by the alternate activation of voltage-gated Ca(2+) and K(+) channels, causing Ca(2+) entry. The accumulated Ca(2+) ions are extruded by Na(+)-Ca(2+) exchange and Ca(2+) active transport. An increase in Na(+) influx through Na(+)-Ca(2+) exchangers results in a rise in intracellular Na(+) concentration and the activation of Na(+)-K(+) active transport. The consumption of ATP during the process of Ca(2+) extrusion leads to the opening of K(ATP) channels and repolarization. The present model could reproduce the main experimental features of the spike-burst activity and Ca(2+) oscillations following changes in the extracellular glucose concentration. As the rate of ATP production increases, the spike-burst pattern changes from bursts with long silent phases to continuous spiking. Changes in the pattern of electrical activity produced by the alteration of extracellular Na(+) and K(+) concentrations and the addition of ouabain could be reproduced in the present model.  相似文献   

15.
The effect of intracellular Ca(2+) on the activity of the inwardly rectifying ATP-regulated K(+) channel with an inward conductance of about 90 pS was examined by using the patch-clamp technique in opossum kidney proximal tubule (OKP) cells. The activity of the inwardly rectifying K(+) channel rapidly declined with an application of ionomycin (1 microM) in the presence of 10(-6) M Ca(2+) in cell-attached patches. The application of 10 microM phorbor-12-myristate-acetate (PMA) with 10(-6) M Ca(2+) reduced the K(+) channel activity. Although the channel activity was not influenced by an increase of bath Ca(2+) from 10(-7.5) to 10(-6) M, the activity was inhibited by protein kinase C (PKC, 1 U/ml) with 10(-6) M Ca(2+) in inside-out patches. The inhibitory effect of Ca(2+) with ionomycin on the channel activity was diminished by the pretreatment with a specific PKC inhibitor, GF 109203X (5 microM), in cell-attached patches. By contrast, the application of Ca(2+)/calmodulin kinase II (CaMK II, 300 pM) dramatically increased this channel activity in inside-out patches. In cell-attached patches, the addition of both GF 109203X and cyclospolin A (5 microM), a potent inhibitor of protein phosphatase 2B (calcineurin), instead stimulated the K(+) channel activity with ionomycin and 10(-6) M Ca(2+). The addition of protein phosphatase 2B (calcineurin) (2 U/ml) to the bath with calmodulin (1 microM) and Ni(2+) (10 microM) to stimulate calcineurin inhibited the channel activity in inside-out patches. Furthermore, the inhibitory effect of PKC or calcineurin on this channel activity was abolished by a removal of Ca(2+) from bath solution. These results suggest that Ca(2+)-dependent inhibitory effect on the inwardly rectifying K(+) channel in OKP cells was mainly mediated by Ca(2+)-PKC-mediated phosphorylation, and that the Ca(2+)-calmodulin-dependent phosphorylation process may be counterbalanced by the Ca(2+)-calmodulin-dependent dephosphorylation process.  相似文献   

16.
Spinal cord injury is a devastating condition in which most of the clinical disability results from dysfunction of white matter tracts. Excessive cellular Ca(2+) accumulation is a common phenomenon after anoxia/ischemia or mechanical trauma to white matter, leading to irreversible injury because of overactivation of multiple Ca(2+)-dependent biochemical pathways. In the present study, we examined the role of Na(+)-Ca(2+) exchange, a ubiquitous Ca(2+) transport mechanism, in anoxic and traumatic injury to rat spinal dorsal columns in vitro. Excised tissue was maintained in a recording chamber at 37 degrees C and injured by exposure to an anoxic atmosphere for 60 min or locally compressed with a force of 2 g for 15 s. Mean compound action potential amplitude recovered to approximately 25% of control after anoxia and to approximately 30% after trauma. Inhibitors of Na(+)-Ca(2+) exchange (50 microM bepridil or 10 microM KB-R7943) improved functional recovery to approximately 60% after anoxia and approximately 70% after traumatic compression. These inhibitors also prevented the increase in calpain-mediated spectrin breakdown products induced by anoxia. We conclude that, at physiological temperature, reverse Na(+)-Ca(2+) exchange plays an important role in cellular Ca(2+) overload and irreversible damage after anoxic and traumatic injury to dorsal column white matter tracts.  相似文献   

17.
Although store-operated Ca(2+) influx has been well-studied in nonneuronal cells, an understanding of its nature in neurons remains poor. In the bag cell neurons of Aplysia californica, prior work has suggested that a Ca(2+) entry pathway can be activated by Ca(2+) store depletion. Using fura-based imaging of intracellular Ca(2+) in cultured bag cell neurons, we now characterize this pathway as store-operated Ca(2+) influx. In the absence of extracellular Ca(2+), the endoplasmic reticulum Ca(2+)-ATPase inhibitors, cyclopiazonic acid (CPA) or thapsigargin, depleted intracellular stores and elevated intracellular free Ca(2+). With the subsequent addition of extracellular Ca(2+), a prominent Ca(2+) influx was observed. The ryanodine receptor agonist, chloroethylphenol (CEP), also increased intracellular Ca(2+) but did not initiate store-operated Ca(2+) influx, despite overlap between CEP- and CPA-sensitive stores. Bafilomycin A, a vesicular H(+)-ATPase inhibitor, liberated intracellular Ca(2+) from acidic stores and attenuated subsequent Ca(2+) influx, presumably by replenishing CPA-depleted stores. Store-operated Ca(2+) influx was partially blocked by low concentrations of La(3+) or BTP2, and strongly inhibited by either 1-[b-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) or a high concentration of Ni(2+). Regarding IP(3) receptor blockers, 2-aminoethyldiphenyl borate, but not xestospongin C, prevented store-operated Ca(2+) influx. However, jasplakinolide, an actin stabilizer reported to inhibit this pathway in smooth muscle cell lines, was ineffective. The bag cell neurons initiate reproductive behavior through a prolonged afterdischarge associated with intracellular Ca(2+) release and neuropeptide secretion. Store-operated Ca(2+) influx may serve to replenish stores depleted during the afterdischarge or participate in the release of peptide that triggers behavior.  相似文献   

18.
L-type Ca(2+) channels have two opposing forms of autoregulatory feedback, Ca(2+) -dependent facilitation (CDF) and Ca(2+) -dependent inactivation (CDI), in response to increases in intracellular Ca(2+) concentration. Calmodulin (CaM) has been reported to mediate the two feedbacks. Although both the direct binding of CaM and the phosphorylation mediated by Ca(2+)/CaM -dependent protein kinase II (CaMKII) have been suggested as underlying mechanisms, the detailed features remain to be clarified. In this study, we investigated the effects of CaM and CaMKII inhibitors on CDF and CDI with patch clamp cell-attached recordings in guinea-pig ventricular myocytes. We confirmed that a high-K(+) and high-Ca(2)(+) could induce an increase of the intracellular Ca(2+) concentration and subsequent CDF and CDI. We then found that CDF and CDI were both depressed and were finally abolished by treatment with a CaM inhibitor chlorpromazine (1-100 microM) in a concentration-dependent manner. Another CaM antagonist calmidazolium (1 microM) showed a similar effect. In contrast, CaMKII inhibitors, KN-62 (0.1-3 microM) and autocamtide 2 -related inhibitory peptide (1 microM), delayed the development of CDF and CDI significantly, but they did not depress either CDF or CDI. These results imply that CaM is necessary and possibly sufficient for the two mechanisms. We propose a hypothesis that CaM is a key molecule to bifurcate the Ca(2+) signal to CDF and CDI and that CaMKII plays a modulatory role in them both.  相似文献   

19.
We have studied the properties of a non-selective cation current (NSC(Ca)) in macrovascular endothelial cells derived from human umbilical vein (EA cells) that is activated by an increase of intracellular Ca(2+) concentration, [Ca(2+)](i). Current-voltage relationships are linear and the kinetics of the current is time-independent. Current-[Ca(2+)](i) relationships were fitted to a Ca(2+) binding site model with a concentration for half-maximal activation of 417 +/- 76 nM, a Hill coefficient of 2.3 +/- 0.8 and a maximum current of -23.9 +/- 2.7 pA/pF at -50 mV. The Ca(2+)-activated channel is more permeable to Na(+) than for Cs(+) ( P(Cs)/ P(Na)=0.58, n=7), but virtually impermeable to Ca(2+). Current activation was transient if ATP was omitted from the pipette solution. The maximal currents at 300 and 500 nM [Ca(2+)](i) were smaller than in the absence of ATP, but were not significantly different at 2 microM. The intracellular Ca(2+) concentration for half-maximal activation of the Ca(2+)-activated current was shifted to 811 +/- 12 nM in the absence of ATP. Substitution of ATP by the non-hydrolysable ATP analogue adenylylimidodiphosphate (AMP-PNP) did not affect current activation. Sodium nitroprusside (SNP) decreased NSC(Ca) in a concentration-dependent manner. The nitric oxide (NO) donors S-nitroso- N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine (SIN-1) also inhibited NSC(Ca). In contrast, nitro- L-arginine (NLA), which inhibits all NO-synthases, potentiated NSC(Ca), whereas superoxide dismutase (SOD), which inhibits the breakdown of NO, inhibited NSC(Ca). It is concluded that the Ca(2+)-activated non-selective action channel in EA cells is modulated by the metabolic state of the cell and by NO.  相似文献   

20.
Using the H(+)-sensitive fluorophore 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) and microfluorimetry, we investigated how elevated intracellular free zinc ([Zn(2+)](i)) altered intracellular proton concentration (pH(i)) in dissociated cultures of rat forebrain neurons. Neurons exposed to extracellular zinc (3 microM) in the presence of the Zn(2+)-selective ionophore pyrithione (20 microM) underwent intracellular acidification that was not reversed upon washout of the stimulus. Application of a membrane-permeant Zn(2+) chelator, but not an impermeant chelator, partially restored pH(i). Removal of extracellular Ca(2+) greatly inhibited [Zn(2+)](i)-induced acidification, suggesting that acidification was a secondary consequence of Ca(2+) entry. Additional experiments suggested that Ca(2+) entered through the plasma membrane sodium/calcium exchanger (NCE), because a specific inhibitor of reverse mode NCE operation, KB-R7943 (1 microM), significantly inhibited Zn(2+)-induced acidification.In addition to the phenomenon of [Zn(2+)](i)-induced acidification, we found that elevated [Zn(2+)](i) inhibited neuronal recovery from low pH(i). Neurons exposed to a protonophore underwent robust acidification, and pH(i) recovery ensued upon protonophore washout. In contrast, neurons acidified by the protonophore in the presence of Zn(2+) (3 microM) and pyrithione (20 microM) showed no ability to recover from low pH(i). Application of a membrane-permeant Zn(2+) chelator partially restored pH(i) to pre-stimulus values. Experiments designed to elucidate mechanisms responsible for pH(i) regulation revealed that neurons relied primarily on bicarbonate exchange for proton export, suggesting that elevated [Zn(2+)](i) might impede pH(i) by inhibiting proton efflux via bicarbonate exchange. These results provide novel insights into the physiological effects of raising [Zn(2+)](i), and may help illuminate the mechanisms by which Zn(2+) injures neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号