首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The effect of segment-specific proximal tubular injury on spatio-temporal osteopontin (OPN) distribution was determined in two different nephrotoxic rat models to evaluate its conceivability with a possible role for OPN in acute renal failure (ARF). OPN gene expression was further determined in proximal and distal tubular cells to investigate the origin of increased renal OPN. METHODS: Renal OPN protein and mRNA expression were compared in the rat during mercuric-chloride- vs gentamicin-induced ARF using immunohistochemistry and in situ hybridization. RESULTS: Mercuric chloride primarily induced tubular injury and subsequent cell proliferation in proximal straight tubules (PST), whereas gentamicin predominantly injured proximal convoluted tubules (PCT). In both models, the distribution of OPN protein was associated with increased OPN mRNA levels in proximal as well as distal tubular cells. However, upregulation was delayed in the proximal tubular segment suffering most from injury, i.e. PCT in gentamicin ARF vs PST in mercuric-chloride ARF. OPN immunostaining at the apical cell membrane from distal tubules was in contrast to perinuclear vesicular staining in proximal tubular cells. CONCLUSIONS: OPN gene and protein expression is induced in both proximal and distal tubular cells during rat toxic ARF. The distinct subcellular localization in proximal vs distal tubular cells indicates differences in OPN processing and/or handling. The spatio-temporal distribution is consistent with a possible role in renal injury and regeneration.  相似文献   

2.
Nephrolithiasis requires formation of crystals followed by their retention and accumulation in the kidney. Crystal retention can be caused by the association of crystals with the epithelial cells lining the renal tubules. The present study investigated the interaction between calcium oxalate monohydrate (COM) crystals and primary cultures of human proximal (PTC) and distal tubular/collecting duct cells (DTC). Both PTC and DTC were susceptible to crystal binding during the first days post-seeding (4.9 +/- 0.8 micro g COM/cm2), but DTC lost this affinity when the cultures developed into confluent monolayers with functional tight junctions (0.05 +/- 0.02 micro g COM/cm2). Confocal microscopy demonstrated the expression of the transmembrane receptor protein CD44 and its ligands osteopontin (OPN) and hyaluronic acid (HA) at the apical membrane of proliferating tubular cells; at confluence, CD44 was expressed at the basolateral membrane and OPN and HA were no longer detectable. In addition, a particle exclusion technique revealed that proliferating cells were surrounded by HA-rich pericellular matrices or "cell coats" extending several microns from the cell surface. Disintegration of these coats with hyaluronidase significantly decreased the cell surface affinity for crystals. Furthermore, CD44, OPN, and HA were also expressed in vivo at the luminal side of tubular cells in damaged kidneys. These results suggest (1) that the intact distal tubular epithelium of the human kidney does not bind crystals, and (2) that crystal retention in the human kidney may depend on the expression of CD44-, OPN-, and-HA rich cell coats by damaged distal tubular epithelium.  相似文献   

3.
BACKGROUND: CD44 is a transmembrane glycoprotein comprising an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Previous studies demonstrated that CD44 was generally restricted to lateral-basal plasma membrane (PM) of epithelial cells, whether it localized on apical PM in vivo has not been clarified. METHODS: In this study, we used a gentamicin-induced acute tubular necrosis (ATN) and spontaneous recovery model in rats and two distinct antibodies, an anti-rat distal extracellular domain (OX49) of standard CD44 (CD44-OX49) and an anti-rat CD44 cytoplasmic tail (CD44CPT), to survey the localization of CD44-OX49 and CD44CPT on the PM in renal tubular epithelial cells in different recovery stages after ATN with immunohistochemistry and immunoelectron-microscopic examinations. RESULTS: CD44-OX49 was localized not only on the lateral-basal PM in tubular epithelial cells, but also on the apical surface membrane in PCNA-positive newly regenerative tubular epithelial cells in early recovery stages after ATN. However, CD44CPT was only localized on the lateral-basal PM. The immunoelectron-microscopic results showed that CD44-OX49 localization was changed from the apical to lateral to basal surface membrane in renal tubular epithelial cells during the recovery process after ATN, finally disappearing from basal PM when normal polarized epithelial cells formed. CONCLUSIONS: These results suggest that there were two types of CD44 including CD44 without a cytoplasmic tail localizing on the apical surface membrane related to newly regenerative epithelial cells, and CD44 with a cytoplasmic tail localizing on the lateral-basal PM related to establishment of tubular epithelial cell polarity after ATN in vivo.  相似文献   

4.
Osteopontin expression in acute renal allograft rejection   总被引:5,自引:0,他引:5  
BACKGROUND: Osteopontin (OPN) is a potent chemoattractant for mononuclear cells that is up-regulated in various inflammatory states of the kidney. The role of OPN and its expression in human renal allograft rejection are unknown. METHODS: We examined by immunohistochemistry and in situ hybridization, renal biopsies from patients with acute rejection (N= 22), protocol biopsies without rejection (N= 9), and perioperative donor biopsies (N= 35) for intrarenal expression of OPN, and its correlation with clinical, laboratory, and histopathologic parameters. In the rejection biopsies, interstitial monocyte/macrophage infiltration, tubulointerstitial cell proliferation/regeneration and apoptosis were investigated. RESULTS: In the majority of rejection biopsies, OPN expression by proximal tubular epithelium was widespread, and tended to be enhanced in the tubules surrounded by numerous inflammatory cells. Conversely, in patients that did not experience episodes of rejection and in donor biopsies, OPN expression by proximal tubules was nil or weak. OPN mRNA was colocalized with its translated protein in the renal tubular epithelium. OPN expression positively correlated with the degree of interstitial inflammation (P < 0.05), CD68+ monocyte infiltration (P < 0.01), Ki-67+ regenerating tubular and interstitial cells (P < 0.05 and P < 0.005, respectively), but not with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive apoptotic tubular cells. CONCLUSION: These data suggest that inducible expression of OPN in the tubular epithelium may have a pathogenic role in acute renal allograft rejection by mediating interstitial monocyte infiltration and possibly tubular regeneration.  相似文献   

5.
OBJECTIVE: To elucidate the role of osteopontin (OPN) in monocyte recruitment in crescentic glomerulonephritis, we investigated immunohistochemical localization of OPN in the kidney and its correlation with clinical and histopathologic parameters in biopsy specimens of patients with myeloperoxidase antineutrophil cytoplasmic autoantibody- (MPO-ANCA) associated glomerulonephritis. METHODS: Twelve patients with MPO-ANCA-associated glomerulonephritis were enrolled in this study. Clinical parameters such as creatinine clearance and urinary protein excretion of each patient were obtained at the time of biopsy. Paraffin-embedded sections were used for immunohistochemical staining using the LSAB method. Five cortical interstitial fields randomly selected at original magnification x 200 were assessed using a computer-assisted color image analyzer. Tubular OPN expression was assessed as the percentage of positive area in the tubulointerstitium. Double immunofluorescent staining using antibodies against OPN and alpha(v)beta3 was performed. RESULTS: In all of the cases studied, OPN was occasionally localized within the glomeruli, and expressed slightly in proximal tubular epithelium and significantly in distal tubular epithelium. Tubular OPN expression tended to be promoted in the interstitium infiltrating by numerous monocytes/macrophages. The extent of tubular OPN expression was positively correlated with serum ANCA titers and urinary OPN concentrations. Enhanced alpha(v)beta3 expression appeared in the distal tubular epithelium expressing OPN. CONCLUSION: These results suggest that inducible expression of OPN and alpha(v)beta3 in the tubular epithelium seems to be associated with interstitial moncyte infiltration and subsequent tubulointerstitial changes in human MPO-ANCA-associated glomerulonephritis.  相似文献   

6.
BACKGROUND: Acute tubular necrosis (ATN) in renal allograft biopsies correlates poorly with delayed graft function (DGF). Factors involved in the pathogenesis of DGF were evaluated in biopsies in an attempt to refine the recognition of DGF. METHODS: Anti-cubulin and anti-AE-1/AE-3 antibodies identified proximal and distal tubules, respectively. The terminal deoxynucleotide transferase-mediated dUTP nick-end labeling technique and active caspase-3 staining were used to demonstrate apoptosis. Antibodies against superoxide dismutase (SOD) were used as markers of the protective tubular response. Tubular regeneration was evaluated using anti-ki 67 and antivimentin antibodies. RESULTS: Of a total of 40 biopsies, 9 were associated with DGF. ATN was seen in 16 biopsies; 5 were associated with DGF. The finding of ATN in the biopsy of a graft predicted DGF in only 56% of cases. Absence of distal caspase-3 staining predicted the absence of ATN in 87% of cases. The presence of caspase-3 predicted ATN in 54% of cases. The detection of manganese-SOD in distal tubules predicts the absence of DGF in 76% of the cases. CONCLUSIONS: The use of immunohistochemical staining on posttransplant renal biopsies improved its predictive value with respect to ATN and DGF: The absence of active caspase-3 in distal tubular epithelium predicts the absence of ATN in 87% of cases, whereas its presence predicts ATN in 54% of cases. The presence of manganese-SOD in distal tubules predicts the absence of DGF in 76% of cases.  相似文献   

7.
Retention of crystals in the kidney is an essential early step in renal stone formation. Studies with renal tubular cells in culture indicate that hyaluronan (HA) and osteopontin (OPN) and their mutual cell surface receptor CD44 play an important role in calcium oxalate (CaOx) crystal binding during wound healing. This concept was investigated in vivo by treating rats for 1, 4, and 8 d with ethylene glycol (0.5 and 0.75%) in their drinking water to induce renal tubular cell damage and CaOx crystalluria. Tubular injury was morphologically scored on periodic acid-Schiff-stained renal tissue sections and tissue repair assessed by immunohistochemical staining for proliferating cell nuclear antigen. CaOx crystals were visualized in periodic acid-Schiff-stained sections by polarized light microscopy, and renal calcium deposits were quantified with von Kossa staining. HA was visualized with HA-binding protein and OPN and CD44 immunohistochemically with specific antibodies and quantified with an image analyzer system. Already after 1 d of treatment, both concentrations of ethylene glycol induced hyperoxaluria and CaOx crystalluria. At this point, there was neither tubular injury nor crystal retention in the kidney, and expression of HA, OPN, and CD44 was comparable to untreated controls. After 4 and 8 d of ethylene glycol, however, intratubular crystals were found adhered to injured/regenerating (proliferating cell nuclear antigen positive) tubular epithelial cells, expressing HA, OPN, and CD44 at their luminal membrane. In conclusion, the expression of HA, OPN, and CD44 by injured/regenerating tubular cells seems to play a role in retention of crystals in the rat kidney.  相似文献   

8.
《Renal failure》2013,35(4):507-521
Aminoglycoside antibiotics act as nephrotoxic drugs, inducing a lysosomal phospholipidosis and necrotic lesions essentially in convoluted proximal tubules. Previous studies have demonstrated that tubular injury caused by these compounds elicits a process of renal tissue repair (tubular regeneration) involving an increase of cell turnover in tubular epithelium. The present study was performed in order to: (i) achieve further insight into the temporal relationship between aminoglycoside-induced phospholipidosis, tubular necrosis, and tubular regeneration; and (ii) approach the control of tubular regeneration after nephrotoxin-induced insult. To investigate the latter point, we examined by immunocytochemistry the intrarenal distribution of epidermal growth factor (EGF) during tubular regeneration. Five groups of female Sprague-Dawley rats (n = 5) were treated for 4 days with gentamicin i.p. at a daily dose of 50 mg/kg delivered in 2 injections per day. Sham-treated animals (n = 5) received an equivalent amount of vehicle (0.9% NaCl) according to the same protocol. Groups of treated rats, and controls, were terminated 16 h (day 1),4 days, 7 days, 14 days, and 21 days after the end of gentamicin administration. One hour prior to necropsy, each animal was given an i.p. injection of 40 mg 5-bromo-2′-deoxyuridine (BrdU)for the immunocytochemical demonstration ofS-phase cells, using an anti-BrdU monoclonal antibody. Renal tissue was processed for light microscopy analysis, namely: a computer-aided morphometry of lysosomes in proximal tubular cells, a single-blind evaluation of gentamicin-induced tubular injury, the measurement of cell proliferation by immunocyto-chemical detection of BrdU-labeled nuclei, the demonstration of EGF-like immunoreactive material in renal tissue by using anti-rat EGF antiserum and immunogold-silver staining. As revealed by the morphometry of lysosomes in proximal tubular epithelium, the degree of gentamicin-induced phospholipidosis was maximum at day 1 (relative area occupied by lysosomes was increased 25-fold over mean control value) and declined thereafter. In contrast, tubular necrosis reached a peak 4 days after the end of drug administration. In proximal tubular epithelium, the stimulation of cell turnover associated with tubular regeneration showed a peak at day 7 (15-fold the mean control value). Tubular regeneration was also accompanied by mild interstitial hyperplasia. Three weeks after treatment with gentamicin, morphological evidence of drug-induced injury had disappeared due to the tissue repair process, except for the occasional presence of small hyperplastic foci in renal cortex interstitium. In both treated animals and controls, EGF immuno-reactivity as revealed by immunocytochemical staining was associated with distal tubules (renal cortex and outer medulla). However, during tubular necrosis and regeneration there was a transitory reduction of EGF immunolabeling in distal tubules. Thus, the incidence of EGF-positive tubules, as determined by morphometry, decreased markedly to reach a trough by day 4. Afterwards, the distribution of EGF immunoreactivity resumed a normal appearance in parallel with the repair of tubular lesions. Altogether, these data show that aminoglycoside-induced phospholipidosis, tubular necrosis, and regeneration actually occur in succession, and suggest a possible involvement of EGF as an endogenous mediator during renal tubular regeneration.  相似文献   

9.
目的 探讨骨调素(OPN)反义寡核苷酸对间质性肾炎肾小管上皮细胞OPN表达的影响。方法 以一侧输尿管梗阻(UUO)所致的间质性肾炎为研究模型,肾动脉内注射全硫代修饰的OPN反义寡核苷酸,免疫组织化学双染及原位杂交技术检测OPN的表达及巨噬细胞的浸润。结果 OPN及其mRNA在间质性肾炎的发展过程中表达明显升高,巨噬细胞的局部浸泣均发生在过度表达OPN的肾小管周围;OPN反义寡核苷酸能显著抑制肾小管  相似文献   

10.
BACKGROUND: Proximal tubular cells produce nitric oxide (NO.). We have shown that under hyperglycemic conditions, cultured proximal tubular cells express cytochrome P450 2E1, which is capable of producing superoxide (O2.). NO. and O2. react to form peroxynitrite (ONOO.), a powerful oxidant. ONOO. nitrosylates tyrosine moieties on proteins causing tissue damage. Our hypothesis is that ONOO. plays a role in early diabetic tubular damage and perhaps disease progression. METHODS: Renal biopsies from patients with diabetic nephropathy (DM), acute allograft rejection (AAR), acute allograft tubular necrosis (ATN), and glomerulonephritis (GN) were obtained. Normal kidney specimens were taken from nephrectomy samples (N = 10 for each group). The tissues were examined for the presence of nitrotyrosine using an immunoperoxidase technique with a polyclonal antibody. Samples were then arbitrarily scored, and the results analyzed (analysis of variance and Student's t-test for unpaired data). The number of apoptotic cells in a sample of tubules in each biopsy was also assessed. RESULTS: The DM biopsies showed increased staining for nitrotyrosine in proximal tubules (P = 0.0001) and in the thin limb of the loop of Henle (P = 0.0006) compared with all other groups. There was increased staining in the ascending and distal tubules in GN as compared to DM and ATN (P = 0.01). Nitrotyrosine was also found in all distal tubules and collecting ducts, including normals. There was no difference in the number of apoptotic tubular cells in diabetics compared with controls. CONCLUSION: To our knowledge, these data provide the first evidence for the presence of nitrotyrosine in both normal and diseased kidneys. The significance of the findings in normals is unclear, but could be due to activation of constitutive NOS. However, the study clearly demonstrates increased production of ONOO. in proximal tubules of patients with DM, and suggests that oxidant injury of the proximal tubules plays an important part in the pathogenesis of DM.  相似文献   

11.
Aminoglycoside antibiotics act as nephrotoxic drugs, inducing a lysosomal phospholipidosis and necrotic lesions essentially in convoluted proximal tubules. Previous studies have demonstrated that tubular injury caused by these compounds elicits a process of renal tissue repair (tubular regeneration) involving an increase of cell turnover in tubular epithelium. The present study was performed in order to: (i) achieve further insight into the temporal relationship between aminoglycoside-induced phospholipidosis, tubular necrosis, and tubular regeneration; and (ii) approach the control of tubular regeneration after nephrotoxin-induced insult. To investigate the latter point, we examined by immunocytochemistry the intrarenal distribution of epidermal growth factor (EGF) during tubular regeneration. Five groups of female Sprague-Dawley rats (n = 5) were treated for 4 days with gentamicin i.p. at a daily dose of 50 mg/kg delivered in 2 injections per day. Sham-treated animals (n = 5) received an equivalent amount of vehicle (0.9% NaCl) according to the same protocol. Groups of treated rats, and controls, were terminated 16 h (day 1), 4 days, 7 days, 14 days, and 21 days after the end of gentamicin administration. One hour prior to necropsy, each animal was given an i.p. injection of 40 mg 5-bromo-2'-deoxyuridine (BrdU) for the immunocytochemical demonstration of S-phase cells, using an anti-BrdU monoclonal antibody. Renal tissue was processed for light microscopy analysis, namely: a computer-aided morphometry of lysosomes in proximal tubular cells, a single-blind evaluation of gentamicin-induced tubular injury, the measurement of cell proliferation by immunocytochemical detection of BrdU-labeled nuclei, the demonstration of EGF-like immunoreactive material in renal tissue by using anti-rat EGF antiserum and immunogold-silver staining. As revealed by the morphometry of lysosomes in proximal tubular epithelium, the degree of gentamicin-induced phospholipidosis was maximum at day 1 (relative area occupied by lysosomes was increased 25-fold over mean control value) and declined thereafter. In contrast, tubular necrosis reached a peak 4 days after the end of drug administration. In proximal tubular epithelium, the stimulation of cell turnover associated with tubular regeneration showed a peak at day 7 (15-fold the mean control value). Tubular regeneration was also accompanied by mild interstitial hyperplasia. Three weeks after treatment with gentamicin, morphological evidence of drug-induced injury had disappeared due to the tissue repair process, except for the occasional presence of small hyperplastic foci in renal cortex interstitium. In both treated animals and controls, EGF immunoreactivity as revealed by immunocytochemical staining was associated with distal tubules (renal cortex and outer medulla).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
Chien CT  Shyue SK  Lai MK 《Transplantation》2007,84(9):1183-1190
BACKGROUND: Apoptosis and autophagy may contribute to cell homeostasis in the kidney subjected to ischemia/reperfusion injury via mitochondrial injury. Ischemia/reperfusion induces differential sensitivity between proximal and distal tubules via a dissociated Bcl-xL expression. We hypothesized Bcl-xL augmentation in the proximal and distal tubules may potentially reduce ischemia/reperfusion induced renal dysfunction. METHODS: We augmented Bcl-xL protein expression in the kidney with intrarenal adenoviral bcl-xL gene transfer and evaluated the potential effect of Bcl-xL augmentation on ischemia/reperfusion induced renal oxidative stress, apoptosis, and autophagy in the rat. RESULTS: Intrarenal arterial Adv-bcl-xL administration augmented maximal Bcl-xL protein expression of rat kidney after 7 days of transfection. The primary location of Bcl-xL augmentation was found in proximal and distal tubules, but not in glomeruli. Ischemia/reperfusion increased mitochondrial cytochrome C release, renal O2(-*) level and renal 3-nitrosine and 4-hydroxyneonal accumulation, potentiated tubular apoptosis and autophagy, including increase in microtubule-associated protein 1 light chain 3 (LC-3) and Beclin-1 expression, Bax/Bcl-xL ratio, caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, and subsequent proximal and distal tubular apoptosis/autophagy. However, Adv-bcl-xL administration significantly reduced ischemia/reperfusion enhanced mitochondrial cytochrome C release, O2(-*) production, 3-nitrotyrosine and 4-hydroxynonenal accumulation, Beclin-1 expression, Bax/Bcl-xL ratio, and proximal and distal tubular apoptosis/autophagy, consequently improving renal dysfunction. Further study showed that Bcl-xL augmentation was more efficiently than Bcl-2 augmentation in amelioration of ischemia/reperfusion induced proximal and distal tubular apoptosis and renal dysfunction. CONCLUSIONS: Our results suggest that Adv-bcl-xL gene transfer significantly improves ischemia/reperfusion-induced renal dysfunction via the downregulation of renal tubular apoptosis and autophagy.  相似文献   

14.
Effects of cyclosporine in osteopontin null mice   总被引:5,自引:0,他引:5  
BACKGROUND: Osteopontin (OPN) is a macrophage adhesive and cell survival factor that is up-regulated in tubules in tubulointerstitial disease. We have previously reported that rats with cyclosporine (CsA) nephropathy have increased tubular osteopontin that correlates with the infiltration of macrophages and interstitial fibrosis. This study tested the hypothesis that the absence of OPN would ameliorate CsA nephropathy. METHODS: OPN knockout (-/-) and wild type (+/+) mice were fed a low salt diet (Na+ 0.01%) for one week and then received daily CsA injections (30 mg/kg, SC) until sacrifice at two weeks. Afferent arteriolopathy, tubulointerstitial injury, macrophage infiltration, collagen III deposition, transforming growth factor-beta (TGF-beta) expression, and tubular and interstitial cell proliferation and apoptosis were evaluated. RESULTS: Wild type mice developed early features of CsA nephropathy, with arteriolar hyalinosis and cortical and tubulointerstitial fibrosis. Despite comparable CsA levels, OPN-/- mice had less arteriolopathy (15 vs. 24%, P < 0.05), a 20% reduction in cortical macrophage infiltration (P < 0.05), and 20% reduction in interstitial collagen deposition (P < 0.05). OPN-/- mice also showed less cortical interstitial cell proliferation but no differences in tubular cell proliferation or apoptosis. OPN+/+ mice also developed some neurotoxicity, consisting of ataxia, and this was associated with increased mortality at two weeks. CONCLUSION: OPN partially mediates arteriolopathy, early macrophage recruitment and fibrosis in murine CsA nephropathy. OPN also may be involved in CsA associated neurotoxicity.  相似文献   

15.
A role for extrarenal cells in the regeneration following acute renal failure   总被引:45,自引:0,他引:45  
BACKGROUND: Recovery of renal function following acute tubular necrosis (ATN) is dependent on the replacement of necrotic tubular cells with functional tubular epithelium. The source of these new tubular cells is thought to be resident renal tubular cells. The discovery of pluripotent bone marrow-derived stem cells has led to a reexamination of the cellular source and processes involved in the recovery from organ injury. METHODS: To test the hypothesis in humans that extrarenal cells participate in the recovery following ATN, we examined the origin of tubular cells in male patients with resolving ATN who had received a kidney transplant from a female donor. Immunohistochmistry of kidney biopsies was performed to identify renal tubular epithelial cells (cytokeratin positive) and leukocytes (CD45 positive). Fluorescent in-situ hybridization was used to detect Y chromosome containing cells with DAPI serving as a nuclear stain. All staining was performed on the same section. RESULTS: The Y chromosome was detected in approximately 40% of tubular cell nuclei in male kidneys (positive control) and in no nuclei of female kidneys (negative control). In male recipients of female kidneys who developed ATN, 1% of tubules contained Y chromosome cells defined by their morphology, positive staining for cytokeratin, and negative staining for CD45. When present, multiple cells in a positive tubule stained for the Y chromosome. No Y chromosome containing tubular cells were seen in similar sex mismatched transplants in male recipients who did not develop ATN, suggesting that recipient derived cells do not routinely repopulate the transplanted kidney. CONCLUSIONS: This proof-of-principle clinical observation demonstrates that extrarenal cells can participate in the regenerative response following ATN. These findings provide rationale for the cellular therapy of acute renal failure.  相似文献   

16.
17.
BACKGROUND: Apolipoprotein A-IV (ApoA-IV) is a 46 kD glycoprotein thought to protect against atherosclerosis. It is synthesized primarily in epithelial cells of the small intestine. Elevated plasma concentrations of ApoA-IV in patients with chronic kidney disease suggest that the human kidney is involved in ApoA-IV metabolism. METHODS: To investigate whether the human kidney directly metabolizes ApoA-IV and which kidney tissue compartment is involved therein, ApoA-IV was localized by immunohistochemistry in 28 healthy kidney tissue samples obtained from patients undergoing nephrectomy. ApoA-IV mRNA expression was analyzed by real-time polymerase chain reaction (PCR) to exclude de novo synthesis in the kidney. RESULTS: ApoA-IV immunostaining was detected in proximal and distal tubular cells, capillaries and blood vessels but not inside glomeruli. ApoA-IV was predominantly found in the brush border of proximal tubules and in intracellular granules and various plasma membrane domains of both proximal and distal tubules. mRNA expression analysis revealed that no ApoA-IV was produced in the kidney. CONCLUSION: The immunoreactivity of ApoA-IV observed in kidney tubular cells suggests a direct role of the human kidney in ApoA-IV metabolism. The granular staining pattern probably represents lysosomes degrading ApoA-IV. The additional ApoA-IV localization in distal tubules suggests a rescue function to reabsorb otherwise escaping ApoA-IV in case proximal tubules cannot reabsorb all ApoA-IV. Since no mRNA expression could be detected in any kidney cells, the observed ApoA-IV immunoreactivity represents uptake and not de novo synthesis of ApoA-IV.  相似文献   

18.
The histologic diagnosis of acute tubular necrosis (ATN) frequently poses considerable difficulty, especially in its early phases. This is particularly true in postmortem material in which autolysis is commonly present. This study was designed to assess the value of enhanced autofluorescence in the diagnosis of ATN. The method has previously been shown to be useful in the identification of myocardial infarcts in both humans and experimental animals. We studied 12 patients with a histologic and clinical diagnosis of ATN. In all, severe hypotension of diverse etiology was detected from 15 hours to seven days prior to death. In all cases, a bright yellow autofluorescence was observed in the necrotic tubules in ordinary H & E sections. In addition, enhanced autofluorescence was observed in the necrotic tubular epithelium in the unstained, paraffin-embedded sections. Nine kidney sections from five medico-legal autopsy cases undergoing autolysis from 11 to 48 hours after death were used as controls. These kidneys invariably exhibited a faint dull olive green fluorescence, quite different from the fluorescence of the necrotic tubules. No effort was made to distinguish between ischemic (tubulorrhexis) and toxic (tubulonecrosis) changes by the fluorescent method. The mechanism of the enhanced autofluorescence is not clear. We conclude that ultraviolet light examination of H & E kidney sections allows accurate recognition of ATN.  相似文献   

19.
Summary: Epidermal growth factor (EGF) is a potent mesangial cell and tubular epithelial cell mitogen. Based upon the novel finding that rat mesangial cells express EGF mRNA and protein in vitro, we investigated whether renal EGF production was involved in mesangial proliferation and concomitant tubular epithelial proliferation in rat anti-Thy-1 mesangial proliferative nephritis. During the period of mesangial proliferation in anti-Thy-1 nephritis (days 4–14) no EGF immunoreactive material was detected within the glomerulus. Epidermal growth factor-receptor (EGF-R) expression, which is strong on podocytes in normal glomeruli, was notably absent from focal areas of proliferating mesangial cells, suggesting that EGF available from the circulation was not involved in mesangial cell proliferation. Concomitant with the transient decline in creatinine clearance on day 8 of disease, there was mild tubular injury and a significant increase in cortical tubular proliferation as assessed by expression of the proliferating cell nuclear antigen (PCNA). Double immunohistochemistry staining found that the increased cortical tubular proliferation on day 8 occurred in EGF? tubules, but not EGF+ tubules. In contrast, there was an increase in proliferation of EGF+ tubules, but not EGF? tubules, on day 28. Renal EGF mRNA and protein expression was down-regulated over days 1-14, with a rebound in expression on day 28 which correlated with proliferation of EGF+ tubules. Tubular EGF-R expression, which is most clearly seen on EGF+ tubules in normal rat kidney, was unchanged over the disease course. the potential role of EGF in tubular proliferation in normal and diseased states is discussed. In summary, this study finds no evidence to implicate EGF in mesangial cell proliferation in rat anti-Thy-1 nephritis, even though mesangial cells can express EGF in vitro, and suggests that EGF may regulate proliferation of tubular epithelial cells in different stages of disease.  相似文献   

20.
BACKGROUND: Osteopontin (OPN) is a highly acidic phosphoprotein containing an arginine-glycine-aspartic acid (RGD) cell adhesion motif. High OPN expression has been found in tissues with high cell turnover, and OPN up-regulation has been demonstrated in several models of renal injury, suggesting a possible role in tissue remodeling and repair. However, its exact function in the kidney remains unknown. In this study, the possible contribution of OPN to regeneration and repair in the kidney was explored by studying the time course and subcellular localization of OPN up-regulation after renal ischemia/reperfusion injury in different nephron segments and by investigating its relationship with tubular morphology. METHODS: Rats that underwent 60 minutes of left renal ischemia and a right nephrectomy sacrificed at 10 different time points (from 1 hr to 10 days after reperfusion) were compared with uninephrectomized rats at each time point. In renal tissue sections immunostained for OPN, proximal (PTs) and distal tubules (DTs) in both the renal cortex and outer stripe of the outer medulla (OSOM) were scored for the degree of OPN expression and tubular morphology. RESULTS: Kidneys of uninephrectomized rats showed no injury, and the localization and intensity of their OPN expression remained unaltered compared with normal rats. After ischemia/reperfusion, morphological damage was most severe in PTs of the OSOM, but all examined nephron segments showed a significant increase in OPN expression. The time course of OPN up-regulation was different in PTs and DTs. DTs in both cortex and OSOM rapidly increased their OPN expression, with a maximum at 24 hours after reperfusion followed by a slow decrease. In contrast, PTs showed a delayed increase in OPN staining, with a maximum after five to seven days, higher in the OSOM than in the cortex. In OSOM PTs, OPN expression was predominantly associated with morphological regeneration, whereas DTs showed a substantial OPN up-regulation without major morphological damage. PTs and DTs displayed a different subcellular OPN staining pattern: OPN staining in DTs was located to the apical side of the cell; PTs, however, presented a vesicular, perinuclear staining pattern. CONCLUSIONS: Our study found a different pattern of OPN up-regulation after renal ischemia/reperfusion in PTs versus DTs, both with regard to time course and subcellular localization. DTs show an early and persistent increase in OPN staining in the absence of major morphological injury, whereas OPN staining in PTs is delayed and is mostly associated with morphological regeneration. PTs show a vesicular, perinuclear OPN staining pattern, whereas DTs show OPN staining at the apical cell side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号