首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodendrocyte-myelin glycoprotein (OMgp) is a myelin component that has been shown in vitro to inhibit neurite outgrowth by binding to the Nogo-66 receptor (NgR1)/Lingo-1/Taj (TROY)/p75 receptor complex to activate the RhoA pathway. To investigate the effects of OMgp on axon regeneration in vivo, OMgp(-/-) mice on a mixed 129/Sv/C57BL/6 (129BL6) or a C57BL/6 (BL6) genetic background were tested in two spinal cord injury (SCI) models - a severe complete transection or a milder dorsal hemisection. OMgp(-/-) mice on the mixed 129BL6 genetic background showed greater functional improvement compared to OMgp(+/+) littermates, with increased numbers of cholera toxin B-labeled ascending sensory axons and 5-HT(+) descending axons and less RhoA activation after spinal cord injury. Myelin isolated from OMgp(-/-) mice (129BL6) was significantly less inhibitory to neurite outgrowth than wild-type (wt) myelin in vitro. However, OMgp(-/-) mice on a BL/6 genetic background showed neither statistically significant functional recovery nor axonal sprouting following dorsal hemisection.  相似文献   

2.
3.
This study examined the extent of axon retraction (dieback) exhibited by injured brain stem neurons in a chronic spinal cord injury (SCI) condition. Adult female rats subjected to a cervical (C3) hemisection lesion were sacrificed 1, 4, 8, or 14 weeks after injury and the spinal cord from C1 to the lesion cavity was removed. One week prior to sacrifice, a microinjection of biotinylated dextran amine (BDA, 0.5 microliter) was made into the red nucleus, lateral vestibular nucleus, or medullary reticular formation of each animal. Horizontal cryostat sections were processed with avidin-HRP to detect supraspinal axons anterogradely labeled with BDA. Terminal end bulbs of axons were identified and their distance from the lesion site was measured by a computerized image analysis program. At all postinjury intervals, numerous rubrospinal, vestibulospinal, and reticulospinal tract axons were found immediately adjacent to the lesion site and over 60% of all terminals were within 500 micrometer at 1 and 4 weeks. The mean axonal distance of 450-500 micrometer from the lesion indicated that many injured axons had retracted farther than 500 micrometer from the lesion site; however, long-term maintenance of the mean axonal distance from the lesion at less than 500 micrometer indicated the absence of progressive dieback after SCI. While some modest changes occur in specific supraspinal pathways following SCI, axonal retraction does not appear to be a contributing factor to the diminished regenerative effort by certain brain stem neurons that has been observed at long postinjury intervals.  相似文献   

4.
One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell–cell interactions at the injury site after SCI, thus modulating the formation of the astroglial–fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by β-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial–fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.  相似文献   

5.
Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the biological consequences of up-regulating MHCI's expression on neurons. To understand MHCI's neurobiological activity better, and in particular its role in neurorepair after injury, we have studied neurorepair in a transgenic mouse model in which classical MHCI expression is up-regulated only on neurons. Using a well-established spinal cord injury (SCI) model, we observed that transgenic mice with elevated neuronal MHCI expression had significantly better recovery of locomotor abilities after SCI than wild-type mice. Although previous studies have implicated inflammation as both deleterious and beneficial for recovery after SCI, our results point directly to enhanced neuronal MHCI expression as a beneficial factor for promoting recovery of locomotor function after SCI.  相似文献   

6.
Mice exhibit a unique wound healing response following spinal cord injury in which the lesion site fills in with a connective tissue matrix. Previous studies have revealed that axons grow into this matrix, but the source of the axons remained unknown. The present study assesses whether any of these axons were the result of long tract regeneration. C57Bl/6 mice received crush injuries and were allowed to survive for 6 weeks to 7 months. Biotinylated dextran amine (BDA) was injected into the somato-motor cortex to trace descending corticospinal tract (CST) axons, into the midbrain to label descending brainstem pathways including the rubrospinal and reticulospinal tracts, or into the L5 dorsal root ganglion to trace ascending projections of first-order sensory neurons. Spinal cords from other mice were prepared for immunocytochemistry using antibodies against neurofilament protein (NF), 5-HT to reveal descending serotonergic axons, calcitonin gene-related protein (CGRP) to reveal ascending sensory axons, and chondroitin sulfate proteoglycan (CSPG) to assess the distribution of molecules that are inhibitory to axon growth. NF immunostaining revealed axons in the connective tissue matrix at the lesion site, confirming previous studies that used protargol staining. CST axons did not enter the connective tissue matrix, but did sprout extensively in segments adjacent to the injury site. Rubrospinal and reticulospinal tract axons also did not grow into the lesion site. 5-HT-positive axons extended to the edge of the lesion, and a few axons followed astrocyte processes into the margins of the lesion site. In contrast to the other pathways, BDA-labeled ascending sensory axons did extend into and arborized extensively within the connective tissue matrix, although the subgroup of ascending axons that are positive for CGRP did not. These results indicate that the connective tissue matrix is permissive for regeneration of some classes of ascending sensory axons but not for other axonal systems.  相似文献   

7.
Yu P  Huang L  Zou J  Yu Z  Wang Y  Wang X  Xu L  Liu X  Xu XM  Lu PH 《Neurobiology of disease》2008,32(3):535-542
Nogo-66 receptor (NgR), a common receptor for the three known myelin-associated inhibitors, i.e., Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp), plays a key role in the failure of axonal regeneration in the adult mammalian central nervous system (CNS). Here we report a novel vaccine approach that stimulates the production of anti-NgR antibody to overcome NgR-mediated growth inhibition after spinal cord injury (SCI). We showed that adult rats immunized with recombinant NgR produced high titers of the anti-NgR antibody and that antisera obtained from the immunized rats promoted neurite outgrowth of rat cerebellar neurons on the inhibitory MAG substrate in vitro. In a spinal cord dorsal hemisection model, NgR immunization promoted regeneration of lesioned corticospinal tract (CST) axons, anterogradely labeled with biotin dextran amine (BDA), beyond the lesion site. In a contusive SCI model, NgR immunization markedly reduced the total lesion volume and improved Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and grid walking performance. Thus, the NgR vaccine approach may represent a promising repair strategy to promote structural and functional recovery following SCI.  相似文献   

8.
Vallières N  Berard JL  David S  Lacroix S 《Glia》2006,53(1):103-113
The phagocytic cell response within the injured spinal cord is inefficient, allowing myelin debris to remain for prolonged periods of time within white matter tracts distal to the injury. Several proteins associated with this degenerating myelin are inhibitory to axon growth and therefore prevent severed axons from regenerating. Inflammatory agents such as lipopolysaccharide (LPS) can stimulate both the migration and phagocytic activity of macrophages. Using in situ hybridization, we found that the expression of the LPS membrane receptor, CD14, was enhanced in the mouse dorsal column following a dorsal hemisection. Double labeling studies showed that microglia and macrophages are the two major cell types expressing CD14 mRNA following spinal cord injury (SCI). We therefore tested whether systemic injections of LPS would increase the number and phagocytic activity of macrophages/microglia in the ascending sensory tract (AST) of the mouse dorsal column following a dorsal hemisection. Mice were treated daily via intraperitoneal injections of either LPS or phosphate-buffered saline (PBS). At 7 days post-SCI, greater numbers of activated mononuclear phagocytes were present in the AST undergoing Wallerian degeneration (WD) in LPS-treated animals compared with controls. Animals treated with LPS also exhibited greater Oil Red O staining, which is specific for degenerating myelin and macrophages phagocytosing myelin debris. Myelin clearance was confirmed at 7 days using Luxol Fast Blue staining and on toluidine blue-stained semi-thin sections. These results indicate that it is possible to manipulate the innate immune response to accelerate myelin clearance during WD in the injured mouse spinal cord.  相似文献   

9.
Receptor protein tyrosine phosphatase sigma (RPTPσ) plays a role in inhibiting axon growth during development. It has also been shown to slow axon regeneration after peripheral nerve injury and inhibit axon regeneration in the optic nerve. Here, we assessed the ability of the corticospinal tract (CST) axons to regenerate after spinal hemisection and contusion injury in RPTPσ deficient (RPTPσ−/−) mice. We show that damaged CST fibers in RPTPσ−/− mice regenerate and appear to extend for long distances after a dorsal hemisection or contusion injury of the thoracic spinal cord. In contrast, no long distance axon regeneration of CST fibers is seen after similar lesions in wild‐type mice. In vitro experiments indicate that cerebellar granule neurons from RPTPσ−/− mice have reduced sensitivity to the inhibitory effects of chondroitin sulfate proteoglycan (CSPG) substrate, but not myelin, which may contribute to the growth of CST axons across the CSPG‐rich glial scar. Our data suggest that RPTPσ may function to prevent axonal growth after injury in the adult mammalian spinal cord and could be a target for promoting long distance regeneration after spinal cord injury. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The previous studies suggested that some subpopulations of T lymphocytes against central nervous system (CNS) antigens, such as myelin basic protein (MBP), are neuroprotective. But there were few reports about the effect of these T cells on axon regeneration. In this study, the neonatally thymectomied (Tx) adult rats which contain few T lymphocytes were subjected to spinal cord hemisection and then passively immunized with MBP-activated T cells (MBP-T). The regeneration and dieback of transected axons of cortico-spinal tract (CST) were detected by biotin dextran amine (BDA) tracing. The behavioral assessments were performed using the Basso, Beattie, and Bresnahan locomotor rating scale. We found that passive transferring of MBP-T could attenuate axonal dieback. However, no significant axon regeneration and behavioral differences were observed among the normal, Tx and sham-Tx (sTx) rats with or without MBP-T passive immunization. These results indicate that passive transferring of MBP-T cells can attenuate axonal dieback and promote neuroprotection following spinal cord injury (SCI), but may not promote axon regeneration.  相似文献   

11.
Little spontaneous regeneration of axons occurs after acute and chronic injury to the CNS. Previously we have shown that the continuous local delivery of neurotrophic factors to the acutely injured spinal cord induces robust growth of spinal and supraspinal axons. In the present study we examined whetherchronicallyinjured axons also demonstrate significant neurotrophin responsiveness. Adult rats underwent bilateral dorsal hemisection lesions that axotomize descending supraspinal pathways, including the corticospinal, rubrospinal, and cerulospinal tracts, and ascending dorsal spinal sensory projections. One to three months later, injured rats received grafts of syngenic fibroblasts genetically modified to produce nerve growth factor (NGF). Control subjects received unmodified cell grafts or cells transduced to express the reporter gene β-galactosidase. Three to five months after grafting, animals that received NGF-secreting grafts showed dense growth of putative cerulospinal axons and primary sensory axons of the dorsolateral fasciculus into the grafted lesion site. Growth from corticospinal, raphaespinal, and local motor axons was not detected. Thus, robust growth of defined populations of supraspinal and spinal axons can be elicited in chronic stages after spinal cord injury by localized, continuous transgenic delivery of neurotrophic factors.  相似文献   

12.
Axon regeneration after experimental spinal cord injury (SCI) can be promoted by combinatorial treatments that increase the intrinsic growth capacity of the damaged neurons and reduce environmental factors that inhibit axon growth. A prior peripheral nerve conditioning lesion is a well-established means of increasing the intrinsic growth state of sensory neurons whose axons project within the dorsal columns of the spinal cord. Combining such a prior peripheral nerve conditioning lesion with the infusion of antibodies that neutralize the growth inhibitory effects of the NG2 chondroitin sulfate proteoglycan promotes sensory axon growth through the glial scar and into the white matter of the dorsal columns. The physiological properties of these regenerated axons, particularly in the chronic SCI phase, have not been established. Here we examined the functional status of regenerated sensory afferents in the dorsal columns after SCI. Six months post-injury, we located and electrically mapped functional sensory axons that had regenerated beyond the injury site. The regenerated axons had reduced conduction velocity, decreased frequency-following ability, and increasing latency to repetitive stimuli. Many of the axons that had regenerated into the dorsal columns rostral to the injury site were chronically demyelinated. These results demonstrate that regenerated sensory axons remain in a chronic pathophysiological state and emphasize the need to restore normal conduction properties to regenerated axons after spinal cord injury.  相似文献   

13.
Proteins characteristic of growing axons often fail to be induced or transported along axons that have been interrupted far from their cell bodies in the adult mammalian CNS. Here, we inquire whether long axons in the mammalian CNS can support efficient axonal transport and deposition of one such protein, GAP-43, when the protein is induced in neuron cell bodies. We have used immunocytochemistry to follow the fate of GAP-43 in dorsal column axons ascending the rat spinal cord from dorsal column axons ascending the rat spinal cord from dorsal root ganglion (DRG) neurons, after synthesis of the protein is induced in these cells by peripheral nerve injury. Sciatic nerve lesions do lead to an accumulation of GAP-43 in dorsal column axons derived from the lumbar DRG. However, in distal segments of these CNS axons, accumulation of GAP-43 is apparent only after a delay of 1-2 weeks, in contrast to its rapid accumulation in axon segments within the PNS environment, suggesting that deposition and stabilization of GAP-43 can be limited by local, posttranslational regulation. GAP-43 immunoreactivity subsides to control levels within 8 weeks after crush lesions that permit peripheral axon regeneration, but remains robust 8 weeks after resection lesions that prevent peripheral regeneration. Accumulation of GAP-43 in cervical dorsal column axons after peripheral nerve injury is closely correlated with the ability of these axons to respond to local cues capable of eliciting axon growth (Richardson and Verge, 1986).  相似文献   

14.
We have imposed a steady, rostrally negative, weak (ca 0.4 mV/mm) voltage gradient across transections of ascending white matter tracts in the adult guinea pig using an implanted stimulator and electrodes for about 1 month. We have evaluated the projections of these axons relative to the transection approximately 2 months postinjury by anterograde transport of injected tetramethylrhodamine-conjugated dextran and the use of an indwelling marker device which locates the plane of the original transection. Tract tracing was accomplished with conventional epifluorescence microscopy and confocal laser microscopy. Sham-treated control spinal cords contained well-filled lateral and dorsal column ascending tracts terminating caudal to the lesion which formed at the level of the hemisection. Electric field-treated spinal cords contained similarly labeled columns of axons that penetrated the lesion within the caudal segment of the spinal cord, branched within it, and in some cases such branches projected across the plane of transection. Ascending axons also passed around the lesion through undamaged parenchyma, branched repeatedly at the plane of the hemisection, and passed into the rostral segment of the spinal cord. Spear-shaped endings typical of growth cones were found at the terminals of these processes which often branched again within the rostral segment. Centrally projecting fibers, their processes, and the overall level of branching in these projections was not observed in our previous studies using high molecular weight horseradish peroxidase tracers.  相似文献   

15.
The demonstration that some central nervous system (CNS) axons can regenerate when provided with a suitable environment raises the possibility of new treatments for CNS injury. However, at present the conditions for optimal regeneration are not well understood. For example, the methods used in previous studies have entailed CNS trauma as part of the research protocol (e.g. that resulting from the implantation of peripheral nerve grafts), and so the role of neuronal or axonal injury in the regrowth observed has been difficult to establish. To determine whether such injury is necessary for the central reinnervation of denervated peripheral nerve, the L5 dorsal root has been chronically denervated in rats by freeze-thawing its dorsal root ganglion (DRG), and the root has been left attached to either traumatized or non-traumatized spinal cord. The trauma induced was quite mild, and resulted from several vertical insertions of a fine needle. Two to 4 months later, retrogradely transported horseradish peroxidase (HRP) was used to label spinal neurons which sent axons into the denervated roots. HRP-labelled neurons were found in each of the spinal cords subjected to trauma, but no labelled neurons were observed in any of the non-traumatized cords. The number of HRP-labelled neurons in individual spinal cords was positively correlated with the degree of spinal cord trauma. We conclude first that the chronic and intimate presence of a denervated PNS tissue in continuity with the spinal cord is not, in itself, a sufficient stimulus to induce its reinnervation by CNS axons. Second, we conclude that under the conditions of this experiment CNS trauma is a prerequisite for the reinnervation of denervated peripheral nervous tissue by CNS axons.  相似文献   

16.
Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Overexpression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/nontransected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (P < 0.05) of BDA(+) fibers was found in thoracic dorsal gray matter of injured vs. nontransected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks postinjury/nontransection. After 1 week transport, more retrogradely labeled (P < 0.05) DGC propriospinal neurons (T13-S1) were quantified in injured vs. nontransected cords. We also monitored immediate early gene c-fos expression following colorectal distension and found increased (P < 0.01) c-Fos(+) cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.  相似文献   

17.

Background

Newts have the remarkable ability to regenerate their spinal cords as adults. Their spinal cords regenerate with the regenerating tail after tail amputation, as well as after a gap-inducing spinal cord injury (SCI), such as a complete transection. While most studies on newt spinal cord regeneration have focused on events occurring after tail amputation, less attention has been given to events occurring after an SCI, a context that is more relevant to human SCI. Our goal was to use modern labeling and imaging techniques to observe axons regenerating across a complete transection injury and determine how cells and the extracellular matrix in the injury site might contribute to the regenerative process.

Results

We identify stages of axon regeneration following a spinal cord transection and find that axon regrowth across the lesion appears to be enabled, in part, because meningeal cells and glia form a permissive environment for axon regeneration. Meningeal and endothelial cells regenerate into the lesion first and are associated with a loose extracellular matrix that allows axon growth cone migration. This matrix, paradoxically, consists of both permissive and inhibitory proteins. Axons grow into the injury site next and are closely associated with meningeal cells and glial processes extending from cell bodies surrounding the central canal. Later, ependymal tubes lined with glia extend into the lesion as well. Finally, the meningeal cells, axons, and glia move as a unit to close the gap in the spinal cord. After crossing the injury site, axons travel through white matter to reach synaptic targets, and though ascending axons regenerate, sensory axons do not appear to be among them. This entire regenerative process occurs even in the presence of an inflammatory response.

Conclusions

These data reveal, in detail, the cellular and extracellular events that occur during newt spinal cord regeneration after a transection injury and uncover an important role for meningeal and glial cells in facilitating axon regeneration. Given that these cell types interact to form inhibitory barriers in mammals, identifying the mechanisms underlying their permissive behaviors in the newt will provide new insights for improving spinal cord regeneration in mammals.  相似文献   

18.
Spinal cord injury (SCI) is followed by a secondary degenerative process that includes cell death. We have previously demonstrated that the chemokine CXCL10 is up-regulated following SCI and plays a critical role in T-lymphocyte recruitment to sites of injury and inhibition of angiogenesis; antibody-mediated functional blockade of CXCL10 reduced inflammation while enhancing angiogenesis. We hypothesized, based on these findings, that the injury environment established by anti-CXCL10 antibody treatment would support greater survival of neurons and enhance axon sprouting compared with the untreated, injured spinal cord. Here, we document gene array and histopathological data to support our hypothesis. Gene array analysis of treated and untreated tissue from spinal cord-injured animals revealed eight apoptosis-related genes with significant expression changes at 3 days postinjury. In support of these data, quantification of TUNEL-positive cells at 3 days postinjury indicated a 75% reduction in the number of dying cells in treated animals compared with untreated animals. Gene array analysis of treated and untreated tissue also revealed six central nervous system growth-related genes with significant expression changes in the brainstem at 14 days postinjury. In support of these data, quantification of anterograde-labeled corticospinal tract fibers indicated a 60-70% increase in axon sprouting caudal to the injury site in treated animals compared with untreated animals. These findings indicate that anti-CXCL10 antibody treatment provides an environment that reduces apoptosis and increases axon sprouting following injury to the adult spinal cord.  相似文献   

19.
The demographics of acute spinal cord injury (SCI) are changing with an increased incidence in older age. However, the influence of aging on the regenerative growth potential of central nervous system (CNS) axons following SCI is not known. We investigated axonal sprouting along with the efficiency of the infusion of the stromal cell-derived growth factor-1 (SDF-1/CXCL12) and regenerative growth along with the anti-scarring treatment (AST) in young (2–3 months) and geriatric (22–28 months) female rats following SCI. AST included local injection of iron chelator (2,2′-dipyridine-5,5′-dicarboxylic acid) and 8-bromo-cyclic adenosine monophosphate solution into the lesion core. Axon outgrowth was investigated by immunohistological methods at 5 weeks after a partial dorsal hemisection at thoracic level T8. We found that aging significantly reduces spontaneous axon sprouting of corticospinal (CST), serotonergic (5-HT) raphespinal and catecholaminergic (TH) coerulospinal tracts in distinct regions of the spinal cord rostral to the lesion. However, impairment of axon sprouting could be markedly attenuated in geriatric animals by local infusion of SDF-1. Unexpectedly and in contrast to rostral sprouting, aging does not diminish the regenerative growth capacity of 5-HT-, TH- and calcitonin gene-related peptide (CGRP)-immunoreactive axons at 5 weeks after SCI. Moreover, 5-HT and TH axons maintain the ability to react upon AST with significantly enhanced regeneration in aged animals. These data are the first to demonstrate, that old age compromises axonal plasticity, but not regenerative growth, after SCI in a fiber tract-specific manner. Furthermore, AST and SDF-1 infusions remain efficient, which implicates that therapy in elderly patients is still feasible.  相似文献   

20.
The capacity for regeneration in the injured adult mammalian central nervous system (CNS) is largely limited by potent inhibitory barriers. Chondroitin sulfate proteoglycans (CSPGs) are major inhibitors of axonal regeneration/sprouting and accumulate at lesion sites after CNS trauma. Despite extensive research during the two decades since their discovery, the molecular mechanisms remain elusive, including intracellular phosphorylation events. Collapsin response mediator protein 4 (CRMP4) is known to directly regulate cytoskeletal dynamics and neurite extension, while phosphorylated CRMP4 loses its binding affinity for cytoskeletal proteins. We have previously found that spinal cord injury (SCI) induces CRMP4 upregulation and phosphorylation and that CRMP4 knockout (Crmp4 −/−) mice show behavioral recovery of locomotor function after SCI. However, the role of CRMP4 in the recovery of other forms of physiological function such as sensation remains largely unknown. We here have demonstrated CRMP4 involvement in CSPG-induced inhibitory signaling and nociceptive recovery in Crmp4 −/− mice after SCI. We cultured dorsal root ganglion (DRG) neurons on CSPG-coated dishes; Crmp4 deletion overrode CSPG-induced inhibition of axon growth in vitro. CRMP4 levels were increased in DRGs in vivo after SCI. Crmp4 −/− mice exhibited axonal growth of sensory neurons and recovery of nociceptive function after spinal transection. These results support Crmp4 deletion as a therapeutic target in the treatment of SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号