首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap junction hemichannels in astrocytes of the CNS   总被引:9,自引:0,他引:9  
Connexins are protein subunits that oligomerize into hexamers called connexons, gap junction hemichannels or just hemichannels. Because some gap junction channels are permeable to negatively and/or positively charged molecules up to approximately 1kDa in size, it was thought that hemichannels should not open to the extracellular space. A growing amount of evidence indicates that opening of hemichannels does occur under both physiological and pathological conditions in astrocytes and other cell types. Electrophysiological studies indicate that hemichannels have a low open probability under physiological conditions but may have a much higher open probability under certain pathological conditions. Some of the physiological behaviours of astrocytes that have been attributed to gap junctions may, in fact, be mediated by hemichannels. Hemichannels constituted of Cx43, the main connexin expressed by astrocytes, are permeable to small physiologically significant molecules, such as ATP, NAD+ and glutamate, and may mediate paracrine as well as autocrine signalling. Hemichannels tend to be closed by negative membrane potentials, high concentrations of extracellular Ca2+ and intracellular H+ ions, gap junction blockers and protein phosphorylation. Hemichannels tend to be opened by positive membrane potentials and low extracellular Ca2+, and possibly by as yet unidentified cytoplasmic signalling molecules. Exacerbated hemichannel opening occurs in metabolically inhibited cells, including cortical astrocytes, which contributes to the loss of chemical gradients across the plasma membrane and speeds cell death.  相似文献   

2.
Evoked release of [3H]dopamine ([3H]DA) from pheochromocytoma cells (PC 12) is dependent on extracellular calcium ([Ca2+]ex), but it can take place if calcium ions (Ca2+) are substituted by other divalent ions such as strontium (Sr2+) and barium (Ba2+). The potency of the divalent cations at supporting release varies with the cell type; in PC 12 cells the order of potency is Ba2+ > Sr2+ > Ca2+. The close correlation between depolarization-evoked Ca2+ entry and depolarization-evoked transmitter release prompted us to examine whether the higher evoked transmitter release in the presence of Sr2+ correlates with an increased evoked Sr2+ influx. Influx studies were conducted on PC12 cells using a radioactive tracer (45Ca2+ or 85Sr2+, < 1 microM) in the presence of either Sr2+ (0.5 mM) or Ca2+ (0.5 mM). Depolarization with K Cl (60 mM) increased evoked 45Ca2+ influx 2-fold when Ca2+ was substituted with Sr2+. Similarly, evoked 85Sr2+ influx increased 1.87-fold by substituting Ca2+ for Sr2+. Thus the amount of evoked cation influx is determined by the type of divalent ion which is accessible in the extracellular medium, independently of the radioactive tracer used. Increased evoked transmitter release in the presence of Sr2+ was associated with increased evoked Sr2+ influx. This suggests that the potency of evoked transmitter release is determined predominantly by the influx of divalent cations. Furthermore, the steps subsequent to cation influx in the release process are equally efficient for both cations.  相似文献   

3.
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.  相似文献   

4.
It has long been known that extracellular Ca2+ and Mg2+ modulate synaptic transmission at the neuromuscular junction, acting both pre- and post-synaptically. Relevant questions concerning the modulation of acetylcholine (ACh) receptors (AChRs) are however still open: are the fetal (gamma-AChR) and adult (epsilon-AChR) receptors modulated differently? Does the ACh concentration influence the effect of divalent cations? Is the effect on channel open duration dependent on type and concentration of divalent cation? These questions were addressed by studying the modulation of the single-channel behaviour of gamma- and epsilon-AChRs by Ca2+ and Mg2+ at the endplate of muscle fibres acutely dissociated from 12- to 14-day-old mice. Ca2+ reduced the conductances of the two receptor channels comparably. Mg2+ had a stronger effect than Ca2+ and reduced the conductance of epsilon-AChR significantly more than that of gamma-AChR. With 0.1 microM ACh, Ca2+ and Mg2+ increased the mean open duration of gamma- and epsilon-AChR channels comparably. At 100 microM ACh, gamma- and epsilon-AChR channels opened in bursts of strikingly similar duration, which was unaffected by divalent cations. These findings indicate that Ca2+, and even more so Mg2+, may regulate synaptic transmission by modulating the function of AChRs in addition to the well-established effects on transmitter release.  相似文献   

5.
A BASIC program is presented which facilitates the formulation of biologically relevant chemical solutions containing specified free concentrations of as many as three divalent metal cations (Ca2+, Mg2+ and the choice of a third divalent cation) at any pH in the presence of as many as three ligands (EGTA, ATP and GTP). The program uses the law of mass action and the absolute stability (association) constants found in the literature to calculate the total concentration of divalent metal cation needed to achieve a desired free concentration. The user enters the pH, the concentrations of the ligands used and the desired free concentrations of the divalent cations. This program was developed for use in a wide range of biological applications, particularly the rapid design of solutions which mimic certain aspects of intracellular fluid.  相似文献   

6.
1. The effects of the Ca2+-ionophore A23187 and the non-metabolizable cholinergic agonist bethanechol on acinar cell membrane potentials and amylase release from the superfused mouse pancreas were studied. 2. In the presence of extracellular Ca2+ (2.56 mM), A23187 (10(-5)M) and bethanechol (3 X 10(-5)M) caused an equal increase in the release of amylase. Both stimulants depolarized theacinar cells, A23187 by 6-0 mV and bethanechol by 12-3 mV. 3. When Ca2+ and Mg2+ were removed from the superfusate, the ability of A23187 to increase the rate of amylase release was virtually abolished, while the effect of bethanechol remained unaltered. Similarly, in the absence of these divalent cations, A23187 did not cause depolarization of the acinar cells, while depolarization in response to bethanechol was largely normal. Consequently it is unlikely that cholinergic agonists initiate secretion by activating a Ca2+-ionophore-like mechanism in the cell membrane. 4. When the concentration of Ca2+ in the medium was raised to 10 mM was the only extracellular divalent cation present, the depolarization in response to A23187 was increased to 11-8 mV. When Mg2+ in a concentration of 10 mM was the only extracellular divalent cation, the depolarization was only 2-1 mV. 5. The Ca2+ dependent, A23187-induced depolarization was abolished in the absence of Na+ (Tris substitution). Addition of Na+ to the superfusate caused an immediate depolarization. 6. It is concluded that the Ca2+ dependent depolarization of pancreatic acinar cells induced by A23187 is not directly due to an increased divalent cation conductance. Our findings are consistent with the view that the depolarization is due to an increased influx of Na+ resulting from a Ca2+ mediated increase in Na+ permeability.  相似文献   

7.
1. X-537A is an ionophore that can carry cations across cell membranes. We studied its effects on spontaneous and stimulated quantal acetylcholine (ACh) release at the frog neuromuscular junction. 2. When neuromuscular transmission was blocked with high Mg2+ or with curare, X-537A markedly increased the end-plate potential (e.p.p.) amplitude. Then a few minutes later the e.p.p. disappeared. 3. When neuromuscular transmission was blocked with hypertonic saline solution, X-537A did not increase e.p.p. amplitude; it did produce many transmission failures. 4. X-537A decreased the depolarization of the end-plate produced by iontophoretically applied ACh. this may account in part for the disappearance of the e.p.p. in solutions containing the ionophore. 5. X-537A depolarized muscle fibres by about 15 mV. 6. When the extracellular divalent cation concentration was very low, X-537A had little or no effect on miniature end-plate potential (min.e.p.p.) frequency. 7. When a divalent cation was present in the extracellular fluid, X-537A increased the frequency of the min.e.p.p.s. The sequence of effectiveness of the divalent ions we have tested is: Ba2+ greater than Sr2+ greater than Ca2+ greater than Mn2+ congruent to Co2+ congruent to Ni2+ greater than Mg2+. There is a rough parallel between these results and the reported affinity of X-537A for various divalent ions. 8. The increase in min.e.p.p. frequency caused by X-537A was transitory, following the increase min.e.p.p. frequency fell to a very low rate or to zero. Then nerve stimulation did not cause quantal release. A second application of X-537A was without effect. 9. X-537A decreased min.e.p.p. amplitude, in accord with the effect on the sensitivity of the end-plate to ACh. 10. The results support the idea that increases in intracellular divalent cation concentrations trigger quantal release from nerve terminals and are involved in the disensitization of end plate receptors to ACh.  相似文献   

8.
The body wall of sea cucumber Stichopus japonicus was treated with various concentrations of several cations, and examined for changes in toughness, taking punch force as parameter. Toughness of the body wall tended to decrease with increasing concentration of each cation, but in different modes depending mainly upon the valency of cation: e.g., the body wall completely lost toughness in 0.3 M Na+ or 0.4 M K+, whereas it retained more than half the initial toughness even in 0.4 M Ca2+ or Mg2+. Glycosaminoglycan (GAG) from the body wall was dissolved in water, and examined for viscosity changes as caused by those cations. Specific viscosity (eta sp) decreased from 0.71 (without cation) to 0.47-0.57 in the presence of 0.1 M monovalent and divalent cations. At 0.4 M, monovalent cations reduced eta sp to 0.38-0.46, but divalent cations increased eta sp to 0.56-0.63. Electron microscopy demonstrated that GAG matrix was clearly observed in the absence of cation, but disappeared in 0.4 M NaCl, forming wide free spaces in the body wall. These results all suggested that GAG is closely involved in the change of toughness of sea cucumber body wall.  相似文献   

9.
alpha-Latrotoxin of black widow spider venom was found to bind with high affinity (KA = 1.8 X 10(9)M-1) to specific sites present in discrete number (approximately 6300/cell, approximately 12/micron2) at the surface membrane of PC12 cells. This binding correlated with (and therefore, probably caused) the secretory response produced by the toxin. Binding was enhanced (approximately 2-fold) in the presence of mM concentrations of various divalent cations (Ca2+, Mn2+ and Co2+) while Ba2+ and Sr2+ had a smaller effect and Mg2+ was inactive. Hypertonicity, concanavalin A and trypsin pretreatment of the cells blocked the binding interaction. The alpha-latrotoxin-induced stimulation of 3H-dopamine release was massive and occurred very rapidly when cells were exposed to the toxin in a Ca2+-containing Krebs-Ringer medium, whereas it occurred at a much slower rate in a Ca2+-free, Mg2+-containing Ringer. Introduction of Ca2+ into the latter medium resulted in a shift of the release rate from slow to fast. In contrast, in divalent cation-free medium the response was abolished. The toxin-induced secretory response was unaffected by Na+ and Ca2+ channel blockers (tetrodotoxin and D600) as well as by calmodulin inhibitors (calmidazolium and trifluoperazine). The effects of Ca2+ and Mg2+ were found to be concentration-dependent, with half maximal responses occurring at approximately 0.3 and 1.5 mM for the two divalent cations, respectively. Other divalent cations could substitute for Ca2+ and Mg2+, the relative efficacy being Sr2+ greater than Ca2+ greater than Ba2+ much greater than Mn2+ greater than Mg2+ greater than Co2+. Moreover, the response occurring at suboptimal concentration of Ca2+ (0.4 mM) was potentiated by the concomitant addition of either Mg2+, Mn2+ or Co2+. The effect(s) of divalent cations in supporting the alpha-latrotoxin-induced release response seem(s) to occur primarily at step(s) beyond toxin binding because (a) the stimulatory effects of the various cations on release were not matched by parallel effects on binding, and (b) Ca2+ maintained its ability to stimulate fast release even when toxin binding had occurred in a Ca2+-free medium. Delays in the release responses were observed when cells were exposed to alpha LTx in Na+-free, glucosamine or methylamine-based media, or depolarized with high K+ (in the presence of D600) before toxin treatment. Moreover, in these two conditions the ability of Mg2+ to support the alpha LTx response was considerably decreased.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
1. The nerve-muscle preparation of the cutaneous pectoris of the frog has been used to study quantal transmitter release.2. When the osmotic pressure of the external solution is raised 1.5-2 fold, the frequency of miniature end-plate potentials (m.e.p.p.s) rises by 1.5-2 orders of magnitude. This effect is independent of the presence of Ca(2+) ions and of the nature of the substances by which the osmotic pressure has been increased.3. In Ca(2+) free hypertonic solution the nerve impulse still invades the nerve terminals but does not alter the frequency of the m.e.p.p.s.4. The arrival of the impulse in the terminals causes an immediate increase in the rate of quantal release, provided divalent cations are present whose passage through the axon membrane is facilitated by excitation (Ca(2+), Sr(2+), Ba(2+)).5. Divalent cations which penetrate only slightly (Mg(2+), Be(2+)) lower the frequency of m.e.p.p.s and suppress the end-plate potential (e.p.p.) evoked by an impulse, in the presence of Ca(2+) ions. Be(2+) is a more effective inhibitor than Mg(2+).6. In Ca(2+) free solutions, adding Mg(2+) causes an increase in the frequency of m.e.p.p.s evoked by depolarization of the nerve endings or by treatment with ethanol.7. The trivalent cation La(3+) is more effective than divalent cations are in increasing the frequency of m.e.p.p.s. The tetravalent cation Th(4+) also raises the m.e.p.p. frequency.8. The observations summarized in paragraphs 2-7 indicate that the frequency of m.e.p.p.s at a constant temperature depends only on the concentration of uni-, di- and trivalent cations inside the nerve ending. It is suggested that the internal cation concentration influences the adhesion between synaptic vesicles and the membrane of the nerve ending.9. For a model experiment, artificial phospholipid membranes have been used to study the effect of uni-, di-, tri- and tetravalent cations on the adhesion process. At pH 7-7.4, the time required for adhesion to take place decreases with increasing cation concentration in the bath. Ca(2+) ions are 100-1000 times more effective than K(+) ions; La(3+) and Th(4+) ions are still more effective. The ;adhesion time' decreases when the pH is lowered; it increases greatly with lowering of temperature.10. The hypothesis is put forward that the mutual adhesion of artificial vesicles made of phospholipid membranes, and the adhesion between synaptic vesicles and the membrane of the nerve ending arise by a common mechanism. In both cases, the important factor is the influence of cations on the electric double layer at the membrane surface.  相似文献   

11.
Single fibres or small fibre bundles were dissected from twitch muscles of frogs and washed in low Cl-solutions. Contractures were provoked by 122.5 mM K+. At room temperature (17–20° C) the contracture duration was about 1.5 s in the absence of divalent cations and about 3 s in the presence of 2 mM Ca2+. Contractures were prolonged when Ca2+ was replaced by Ni2+ showing that inward Ca current was not the factor responsible for the contracture prolongation. K contracture duration was prolonged in the cold (3° C) by a factor of about 4 in the presence of non-permeating divalent cations (Ni, Co), when 0.1 mM La3+ was applied together with 2 mM Ca2+, and in the virtual absence of divalent cations. The contractures were prolonged in the cold by a factor of 6 or more in the presence of permeant divalent cations (Ca, Sr, Ba, Mg, and Mn at 8 mM). Diffusion of divalent cations in the transverse tubules of the muscle fibres was shown to have a Q10 similar to that in free solution. It was concluded that inward current of divalent cations may shorten contracture duration by causing ionic depletion of the transverse tubules.  相似文献   

12.
In single fibers of frog toe muscles placed in a Cl- free MOPS solution containing 1.8 mM Ca2+, tension developed slowly in the presence of very low concentrations of Ag+. This tension was not blocked by the administration of Co2+ or Ni2+. On the other hand, two types of transient tensions developed with the application of 5 microM Ag+, in fibers pretreated with 0-Ca2+ MOPS solution, containing either 2 mM Co2+ or 1mM Ni2+, for 10 min. In the presence of divalent cations or TTX, the first repetitive twitch-like contraction disappeared, indicating this tension is induced by action potentials repeatedly generated by the lack of divalent cations. The 2nd subsequent transient tension was caused by 5 microM Ag+ in the presence of various kinds of divalent cations, or TTX. After reversion to the resting tension, the fiber was contracted by adding more than 0.1 mM of Ca2+ or 25 mM caffeine to the external medium. Even when placed in a Ca2+-free solution containing 3 mM EGTA and 3 mM Mg2+ for 30 min, the fiber still developed an appreciable tension in response to 5 microM Ag+. These findings suggest that a transient development of the Ag+-induced tension does not require the presence of external Ca2+. A specific sulfhydryl reagent, pCMPS, did not contract the muscle fiber. Therefore, Ag+ may develop tension by mediating unknown chemical reaction(s) other than the sulfhydryl group on T-tubular membrane proteins.  相似文献   

13.
In the present study we combined FM 1-43 imaging and electrophysiological recording of miniature end-plate currents (MEPCs) to determine the role of extracellular calcium in synaptic vesicle exo- and endocytosis at the frog motor nerve terminals. We replaced extracellular Ca2+ ions with other bivalent cations (Sr2+, Ba2+, Cd2+, Mg2+) or used a calcium-free solution and monitored fluorescent staining of the nerve terminals in the presence of caffeine, which promotes the release of Ca2+ from intracellular stores. Caffeine has induced FM1-43 internalization only in the presence of bivalent cations in the external solution. The exposure of the neuromuscular junction to caffeine in a calcium-free solution caused a reversible failure of FM 1-43 loading and an increase in the nerve terminal width. This effect of a calcium-free solution was not due to a decrease in exocytosis, because caffeine-induced FM1-43 unloading from the previously loaded nerve terminals, as well as a degree of the MEPCs frequency increase, was unchanged. We conclude that the presence of Ca2+ or other bivalent cations in extracellular space is necessary for endocytosis but not for exocytosis of synaptic vesicles, while transmitter release is promoted by efflux of Ca2+ from intracellular stores. The effect of extracellular Ca2+ on endocytosis might be driven by the non-specific interactions with membrane lipids.  相似文献   

14.
alpha-Latrotoxin, a high molecular weight protein (130,000) purified from the venom of the black widow spider, and a partially purified neurotoxin, glycerotoxin, prepared from extracts of the jaw glands of the polichaete annelid Glycera convoluta, were previously found to induce similar effects (stimulation of quantal acetylcholine release) at the frog neuromuscular junction. In the present study parallel experiments performed with these two toxins revealed that only glycerotoxin was able to release acetylcholine from Torpedo electric organ synaptosomes, while alpha-latrotoxin did not affect release in this system. In contrast, alpha-latrotoxin stimulated release of dopamine from PC12 cells (a cloned neurosecretory cell line), whereas glycerotoxin was almost inactive. In rat brain synaptosomes both toxins were active. Preincubation of synaptosomal membranes with glycerotoxin was without effect on the subsequent binding of alpha-latrotoxin. Glycerotoxin application induced depolarization of synaptosomal plasma membrane, massive Ca2+ influx, marked increase of the cytosolic Ca2+ concentration, and stimulation of catecholamine release. The latter effect occurred to the same extent when glycerotoxin was applied either in complete medium (containing both Ca2+ and Mg2+), Ca2+-free medium or divalent cation-free medium. Some of these effects of glycerotoxin in rat brain synaptosomes (depolarization, increased Ca2+ influx and increased cytosolic Ca2+ concentration) resemble effects previously reported for alpha-latrotoxin. However, the secretory response induced by the latter was reduced in Ca2+-free, and abolished in divalent cation-free media. The different target specificity and the lack of binding competition of the two toxins could be due to their ability to recognize different receptors whose distribution overlap only in part in the cellular systems we have studied. The differences in action, on the other hand, could depend on postreceptor events, possibly related to the transmembrane insertion of toxin molecules demonstrated by others in artificial lipid membranes.  相似文献   

15.
Astrocytes are coupled via gap junctions, predominantly formed by connexin-43 proteins, into cellular networks. This coupling is important for the propagation of intercellular calcium waves and for the spatial buffering of K+. Using the scrape-loading/dye transfer technique, we studied gap junction permeability in rat astrocytes cultured from four different brain regions. The cultures were shown to display regional heterogeneity with the following ranking of the gap junction coupling strengths: hippocampus = hypothalamus > cerebral cortex = brain stem. Similar relative patterns were found in connexin-43 messenger RNA and protein levels using solution hybridization/RNase protection assay and western blots, respectively. The percentages of the propagation area of mechanically induced intercellular calcium waves for cortical, brain stem and hypothalamic astrocytes compared with hippocampal astrocytes were approximately 77, 42, and 52, respectively. Thus, the extent of calcium wave propagation was due to more than just gap junctional permeability as highly coupled hypothalamic astrocytes displayed relatively small calcium wave propagation areas. Incubation with 5-hydroxytryptamine decreased and incubation with glutamate increased the calcium wave propagation area in hippocampal (67% and 170% of the control, respectively) and in cortical astrocytes (82% and 163% of the control, respectively). Contrary to hippocampal and cortical astrocytes, the calcium wave propagation in brain stem astrocytes was increased by 5-hydroxytryptamine incubation (158% of control), while in hypothalamic astrocytes, no significant effects were seen. Similar effects from 5-hydroxytryptamine or glutamate treatments were observed on dye transfer, indicating an effect on the junctional coupling strength. These results demonstrate a strong relationship between connexin-43 messenger RNA levels, protein expression, and gap junction permeability among astroglial cells. Furthermore, our results suggest heterogeneity among astroglial cells from different brain regions in intercellular calcium signaling and in its differential modulation by neurotransmitters, probably reflecting functional requirements in various brain regions.  相似文献   

16.
Brief pretreatment of astrocytes in culture with glutamate (500 microM for 20 min), was earlier shown to significantly enhance the Ca(2+) responses to a depolarizing pulse. It is known that malfunction of glutamate transporters increases extracellular glutamate concentration. We hypothesized that pretreatment of astrocytes with glutamate in conditions where the glutamate transporter activity is blocked should cause further elevation of the Ca(2+) responses to a depolarizing pulse. To test the hypothesis we pretreated astrocytes in culture (primary rat astrocyte cultures) with glutamate (500 microM) and glutamate transport inhibitor, threo-beta-hydroxy-aspartate (200 microM, TBHA) or glutamate (500 microM) in Na(+) free extracellular solution for 20 min. The Ca(2+) responses were elicited by depolarization of the astrocyte to evoke voltage-gated Ca(2+) currents. Paradoxical attenuation of the Ca(2+) transients was observed when the glutamate pretreatment was done in conditions that blocked glutamate transport, accompanied by faster rise and decay times. When the experiments were done on astrocyte pairs that were pretreated with glutamate and TBHA, we observed attenuated Ca(2+) responses in the adjoining cell when compared with the depolarized cell. The results were contrary to our earlier observation of heightened responses in the adjoining cell of the astrocyte pair, in cells pretreated with glutamate alone. The attenuated Ca(2+) responses in astrocytes would imply decrease in the vesicular release of glutamate and ATP. Extracellular glutamate concentration dependent regulation of the Ca(2+) signaling mechanism thus seems to operate in astrocytes, which may be important in regulating the neurotoxic accumulation of glutamate in the extracellular space and the synapse.  相似文献   

17.
Santello M  Volterra A 《Neuroscience》2009,158(1):253-259
In the past 15 years the classical view that astrocytes play a relatively passive role in brain function has been overturned and it has become increasingly clear that signaling between neurons and astrocytes may play a crucial role in the information processing that the brain carries out. This new view stems from two seminal observations made in the early 1990s: 1. astrocytes respond to neurotransmitters released during synaptic activity with elevation of their intracellular Ca2+ concentration ([Ca2+]i); 2. astrocytes release chemical transmitters, including glutamate, in response to [Ca2+]i elevations. The simultaneous recognition that astrocytes sense neuronal activity and release neuroactive agents has been instrumental for understanding previously unknown roles of these cells in the control of synapse formation, function and plasticity. These findings open a conceptual revolution, leading to rethink how brain communication works, as they imply that information travels (and is processed) not just in the neuronal circuitry but in an expanded neuron-glia network. In this review we critically discuss the available information concerning: 1. the characteristics of the astrocytic Ca2+ responses to synaptic activity; 2. the basis of Ca2+-dependent glutamate exocytosis from astrocytes; 3. the modes of action of astrocytic glutamate on synaptic function.  相似文献   

18.
Slow Ca and K currents across frog skeletal muscle membrane were recorded with the Vaseline gap voltage clamp in order to investigate block by divalent cations and various organic compounds. Cd2+, Ni2+, Co2+, Mn2+, Mg2+ all block Ca currents, as do barbiturates, D-600 and nifedipine. Local anesthetics also block Ca currents, with the impermeant quaternary lidocaine derivative, QX-314, being more than an order of magnitude less potent than its permeant parent compound. Surprisingly, all agents that blocked Ca currents also blocked the slow K currents. To explain this pharmacologic parallel, one could suggest that K current is activated by Ca2+ appearing in the myoplasm due to the combination of Ca current and release from internal stores. While possibly correct for intact fibres, this hypothesis appears not to apply in our case where the myoplasm contained the Ca chelator EGTA at high concentration. Instead, K currents seem to be activated by a decrease in external [Ca2+]. In the transverse tubules, Ca current is known to cause [Ca2+] to decline to submicromolar concentrations, and evidence is presented that K currents are activated by Ca depletion from a restricted extracellular space. It is suggested that K currents flow through Ca channels that have become capable of passing monovalent cations after the tubules have become depleted of Ca2+.  相似文献   

19.
Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to -40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors.  相似文献   

20.
To understand further how oligodendrocytes regulate brain function, the mechanism of communication between oligodendrocytes and other cell types needs to be explored. An important mode of communication between various cell types in the nervous system involves gap junctions. Astroglial cells are extensively connected through gap junctions forming the glial syncytium. Although the presence of gap junctions between oligodendrocytes and astrocytes have been well documented, evidence for gap junction-mediated calcium transfer between these two glial populations is still missing. To measure functional coupling between astrocytes and oligodendrocytes and to test whether this coupling is mediated by gap junctions we used laser photostimulation and monitored Ca2+ propagation in cultures from transgenic animals in which oligodendrocytes express enhanced green fluorescent protein (eGFP). We show that waves of Ca2+ spread from astrocytes to oligodendrocytes and that these waves are blocked by the broad-spectrum gap junction blocker carbenoxolone, but not the neuron-specific gap junction blocker quinine. We also show that the spread of Ca2+ waves between astrocytes and oligodendrocytes is bi-directional. Thus, increase of Ca2+ concentration in astrocytes triggered by surrounding neuronal activity may feed back onto different neuronal populations through oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号