首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental estrogens and androgens can be present simultaneously in aquatic environments and thereby interact to disturb multiple physiological systems in organisms. Studies on interaction effects in fish of androgenic and estrogenic chemicals are limited. Therefore, the aim of the present study was to evaluate feminization and masculinization effects in zebrafish (Danio rerio) exposed to combinations of two synthetic steroid hormones detected in environmental waters: the androgen 17β-trenbolone (Tb) and the oestrogen 17α-ethinylestradiol (EE2). Juvenile zebrafish were exposed between days 20 and 60 post-hatch to different binary mixtures of Tb (1, 10, and 50 ng/L) and EE2 (2 and 5 ng/L). The endpoints studied were whole-body homogenate vitellogenin concentration at 40 days post-hatch, and sex ratio including gonad maturation at 60 days post-hatch. The feminizing potency of 5 ng/L of EE2, alone as well as in combination with Tb, was clear in the present study, with exposures resulting in almost all-female populations and females being sexually immature. Masculinization effects with male-biased sex ratios were observed when fish were exposed to 2 ng/L of EE2 in combination with Tb concentrations. Intersex fish were observed after exposure to mixtures of 2 ng/L EE2 with 50 ng/L Tb. Sexual maturity generally increased among males at increasing concentrations of Tb. The results of the present study show that exposure to environmentally relevant mixtures of an oestrogen and androgen affects the process of gonad differentiation in zebrafish and lead to sexual disruption.  相似文献   

2.
Guo  Dongmei  Liu  Wenping  Qiu  Jing  Li  Yun  Chen  Liezong  Wu  Shenggan  Wang  Qiang  Qian  Yongzhong 《Ecotoxicology (London, England)》2020,29(5):584-593
Ecotoxicology - Bifenthrin (BF) and acetochlor (AT) are widely used as an insecticide and herbicide, respectively, which are introduced to the aquatic environment as a natural result. Although the...  相似文献   

3.
γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500 mg/kg body weight to groups of 10 male and 10 female Sprague–Dawley rats for 13 weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient.  相似文献   

4.
Ethinyl estradiol is a potent endocrine disrupting compound in fish and ubiquitously present in the aquatic environment. In this study, we exposed adult zebra fish (Danio rerio) males to 0, 5 or 25 ng Ethinyl estradiol/L for 14 days and analyzed the effects on non-reproductive behavior. Effects of treatment of the exposed males was shown by vitellogenin induction, while brain aromatase (CYP 19B) activity was not significantly altered. Both concentrations of Ethinyl estradiol significantly altered the behavior in the Novel tank test, where anxiety is determined as the tendency to stay at the bottom when introduced into an unfamiliar environment. The effects were, however, opposite for the two concentrations. Fish that were exposed to 5 ng/L had longer latency before upswim, fewer transitions to the upper half and shorter total time spent in the upper half compared with control fish, while 25 ng Ethinyl estradiol treatment resulted in shorter latency and more and longer visits to the upper half. The swimming activity of 25, but not 5 ng-exposed fish were slightly but significantly reduced, and these fish tended to spend a lot of time at the surface. We also studied the shoaling behavior as the tendency to leave a shoal of littermates trapped behind a Plexiglas barrier at one end of the test tank. The fish treated with Ethinyl estradiol had significantly longer latency before leaving shoal mates and left the shoal fewer times. Further, the fish exposed to 5 ng/L also spent significantly less time away from shoal than control fish. Fertilization frequency was higher in males exposed to 5 ng/L Ethinyl estradiol when compared with control males, while no spawning was observed after treatment with 25 ng/L. The testes from both treatment groups contained a normal distribution of spermatogenesis stages, and no abnormality in testis morphology could be observed. In conclusion, we have observed effects on two behaviors not related to reproduction in zebra fish males after treatment with Ethinyl estradiol, adding to the ecological consequences of contamination of aquatic environments with estrogenic substances.  相似文献   

5.
6.
The use of fish embryos is gaining popularity for research in the area of toxicology and teratology. Particularly embryos of the zebrafish offer an array of different applications ranging from regulatory testing to mechanistic research. For this reason a consortium of two research centres and a company with the support of the COST Action EuFishBiomed has organised the Workshop “The zebrafish embryo model in toxicology and teratology”, in Karlsruhe, Germany, 2nd–3rd September 2010. The workshop aimed at bringing together experts from different areas of toxicology using the (zebra)fish embryo and stimulating networking between scientists and representatives from regulatory bodies, research institutions and industry. Recent findings, presented in various platform presentations in the area of regulatory toxicity, high throughput screening, toxicogenomics, as well as environmental and human risk assessment are highlighted in this meeting report. Furthermore, the constraints and possibilities of the model as discussed at the workshop are described. A follow up-meeting was appreciated by the about 120 participants and is planned for 2012.  相似文献   

7.
To achieve more information about growth and development of oocytes in teleost fish or concerning toxicity testing, it is necessary to develop adequate in vitro oocyte culture conditions. Herein, initial stages of zebrafish oocytes (I, primary; II, cortical; III, vitellogenic) were analyzed under serum-free medium conditions as gonadal fragments or as separated oocyte–follicle complexes. Two vital dye staining methods (MTT, trypan blue) were applied to assess mitochondrial activity and membrane integrity of the oocytes during 4 days, and compared to morphological alterations studied by transmission electron microscopy. Vital dye staining indicated reduced viability at day 4 for all stages in both in vitro culture methods. Additionally, the viability decreased significantly in gonadal fragments at day 2 for stages III (MTT, TB) and II (TB only). Signs of degradation at the ultrastructural level (vacuoles, disintegration of endoplasmic reticulum and detachment of follicular cell layers) appeared in gonadal fragments at day 4 for stages II and III, and in separated oocyte–follicle complexes both at day 4 for stages I–III, and at day 2 for stage III. In conclusion, zebrafish oocytes at stages I and II seemed viable for 2 days as separated oocyte–follicle complexes considering their mitochondrial activity, membrane integrity and ultrastructural morphology. Cultured as gonadal fragments, the majority of analyses indicated similar results for stages I and II oocytes. In contrast, stage III oocytes seemed viable for not longer than 24?h. Results should be taken into consideration for the experimental design of in vitro assays using teleost fish oocytes.  相似文献   

8.
9.
Pyrethroids are commonly used as pesticides which are suspected as endocrine disruptors in many studies; however, still we do not know their effects on different species. To compare their effects on human estrogen receptor (hERα) and rat estrogen receptor (rERα), we developed a hERα and rERα mediated luciferase reporter assay to investigate the (anti)estrogenic activities of three frequently used pyrethroids (fenvalerate, cypermethrin, permethrin) and their metabolite 3-phenoxybenzoic acid (3-PBA). All three pyrethroids significantly induced expression of the luciferase, while none of them were antagonistic to 1 nM E2 mediated induction. Interestingly, 3-PBA, showed antagonist activity by decreasing the effect of 1 nM E2 to 55.12% in hERα assay and to 45.12% in rERα assay. Our results firstly demonstrated that pyrethroids and 3-PBA showed similar response in the hERα and rERα mediated reporter gene assay, which indicated that data derived from reporter gene assay or other receptor mediated assay systems with rat ER system might be used to predict to estrogenic or anti-estrogenic effects to human systems.  相似文献   

10.
2-Phenylaminophenylacetic acid is a widely-exploited chemical scaffold whereby notable NSAIDs such as diclofenac and lumiracoxib were derived. Yet, their clinical usage has been associated with toxicities in the liver. While some studies have attributed toxicities to the bioactivation of both drugs to reactive intermediates, the structural predisposition for toxicity, as well as relationship between this toxicity and COX inhibitory activity has not been elucidated. In this study, we aimed to address their intricate link by synthesizing compounds that possess the 2-phenylaminophenylacetic acid backbone with varying alkyl and halogen substituents at three positions critical to the COX inhibitory pharmacophore. These compounds were subjected to cytotoxicity testing on two liver cell lines of contrasting metabolic competencies. We observed higher toxicity in the more metabolically competent cell line, supporting the role of bioactivation as a prerequisite for toxicity. We have also shown that structural changes on the chemical scaffold exerted pronounced effect on liver cytotoxicity. The most lipophilic and brominated compound (24) was identified as the most cytotoxic of all the compounds. A concurrent determination of their pharmacological activity using COX inhibition assays allowed us to derive a safety profile, which showed that selectivity towards COX-2 negatively affected activity and toxicity.  相似文献   

11.
Melamine-induced renal toxicity is associated with crystal formation in the kidney following exposure to melamine and cyanuric acid. However, metabolomic profiling of intact kidney tissue after chronic intake of melamine and cyanuric acid (M?+?CA) mixtures has rarely been studied. The present study investigated the melamine-induced renal toxicity by determining metabolites in the kidney through [1H]nuclear magnetic resonance. Melamine (63?mg/kg) and cyanuric acid (6.3?mg/kg) were co-administered to rats via oral gavage for 30?days. The mixture of M?+?CA (63/6.3?mg/kg) induced nephrotoxicity, as determined by increased blood urea nitrogen (BUN) and creatinine levels. The kidney weights were significantly increased in the animals treated with M?+?CA (63/6.3?mg/kg). The histological analysis revealed epithelial degeneration and necrotic cell death in the proximal and distal tubules. Furthermore, various metabolites were altered in both renal medullar and cortical tissues. In the medullar tissues, asparagine, choline, creatinine, cysteine, ethanolamine, glucose, isoleucine, glutamine, and myo-inositol levels were elevated, but glucitol, phenylalanine, tyrosine, and sn-glycero-3-levels were reduced. In the cortex, ethanolamine, hypoxanthine, isoleucine and o-phosphoethanolamine levels were increased, whereas formate, glucose, glutathione, threonine, and myo-inositol levels were decreased, suggesting the M?+?CA-induced renal cell injury. These data suggest that a mixture of M?+?CA-induced metabolites may be useful biomarkers for the detection of kidney injury.  相似文献   

12.
Dihomo-γ-linolenic acid (DGLA) is one of the essential fatty acids, and has anti-inflammatory and anti-allergic effects. To assess the toxicity of a novel DGLA oil produced by the fungus Mortierella alpina, we examined it in the Ames test and in acute and subchronic oral toxicity tests in rats. In the Ames test, no mutagenicity was found up to 5000 μg/plate. The acute toxicity test revealed no toxicity related to DGLA oil at 10 g/kg. In the subchronic toxicity test, DGLA oil (500, 1000, and 2000 mg/kg) was orally administered. Water and soybean oil (2000 mg/kg) were used for the no-oil control and soybean oil control groups, respectively. There was no death in either sex. Because of administration of large amounts of oil, food consumption was low in the soybean oil control and the three test groups, which appeared to mildly decrease urinary excretion of Na, K, and Cl, as well as total serum protein, albumin, and blood urea nitrogen levels. There were no toxicological changes in body weight, food consumption, ophthalmological examination, urinalysis, hematological examination, blood biochemical examination, necropsy, organ weight, or histopathological examination. These findings show that the no-observed-adverse-effect level of the DGLA oil was 2000 mg/kg.  相似文献   

13.
Prednisolone is a synthetic glucocorticoid used clinically for treating allergies, inflammation, and autoimmune diseases. Long-term prednisolone use has been shown to have negative effects on physiology and mood. We aimed to study the pharmacology and toxicology of glucocorticoid-like drugs by investigating behavioral and hypothalamic–pituitary–interrenal (HPI) axis effects in a zebrafish model. Zebrafish embryos 24 h post fertilization were exposed to 25 μM prednisolone. Their behavior was investigated 5 days post fertilization (dpf), and their HPI axis-related activity and related neurotransmitter levels were investigated 3, 4, 5, and 6 dpf. The behavior results showed that exposure to prednisolone resulted in decreased autonomic activity and low sensitivity to light. qRT-PCR and ELISA results showed decreased activity of the HPI axis and increased secretion of dopamine and serotonin after exposure to prednisolone. This study provides us with new insights into understanding the effects of glucocorticoids on the HPI axis.  相似文献   

14.
Calcium β-hydroxy-β-methylbutyrate-monohydrate (CaHMB) is a dietary supplement used as an ergogenic aid and in functional and medical foods. A new delivery form has been developed, β-hydroxy-β-methylbutyric free acid (HMBFA), which has improved bioavailability. While the safety of CaHMB is well documented, there are few published studies demonstrating the safety of HMBFA. Because HMBFA results in greater serum levels of β-hydroxy-β-methylbutyrate (HMB) and greater clearance rates, a 91-day subchronic toxicity study was conducted in male and female Sprague–Dawley Crl:CD rats assigned to HMBFA treatments at either 0%, 0.8%, 1.6%, or 4% of the diet by weight. No deaths or untoward clinical observations, and no negative clinical chemistry or hematology were attributed to the administration of HMBFA. Gross pathology and histopathology results showed no tissue abnormalities due to HMBFA and all measures were within a normal physiological range for the animals or were expected in the population studied. In conclusion, the no-observed-adverse-event-level (NOAEL) for HMBFA was the highest level administered, 4% of the diet, which corresponded to an intake of 2.48 and 2.83 g/kg BW d−1 in the males and females, respectively. The equivalent human dosage using body surface area conversion would be 402 and 459 mg/kg BW d−1 for men and women, respectively.  相似文献   

15.
The 4-hr inhalation LC50 was determined for methyl-, ethyl-, n-propyl-, n-butyl-, isobutyl-, and isopentyl nitrite in Sprague-Dawley rats. LC50 values were 176, 160, 300, 420, 777, and 716 ppm, respectively. The dose-mortality curves were characterized by extremely steep slopes. Toxic signs observed during exposure included cyanosis, prostration, and rarely, convulsions. There were no effects of exposure on body weight gain during a 14-day postexposure observation period. Signs of pulmonary hemorrhage were apparent in rats which died during exposure but were much less prominent in rats sacrificed at study termination. No animals died after cessation of exposure, and rapid recovery was apparent after exposure. Concentration × Time (CT) relationships suggested that the actual concentration was more important than the “dose” in determining the lethal effects of inhalation exposure to nitrites. Because of the extremely steep dosemortality curves, the aliphatic nitrites are more hazardous than the LC50 values would indicate.  相似文献   

16.
Methoxyethanol (ME) produces embryotoxic effects in rodents, rabbits, and nonhuman primates. Mechanistic evaluations of ME dysmorphogenesis have focused mainly on developmental insults and chemical disposition in the mouse. These assessments in mice were based on developmental phase specificity (DPS) and dose–response relationship (DRR) of ME. DPS and DRR indicated treatments for selectively inducing defects to study ME disposition and expressed dysmorphogenesis. This study was conducted to establish DPS and DRR of ME in the rat. DPS was determined by injecting 500 mg ME/kg (6.6 mmol/kg) into the tail vein on Gestational Day (gd; sperm-positive day = gd 0) 10, 11, 12, 13, 14, or 15 (n= 6 dams/gd; saline controls on gd 12). On gd 20, embryolethality incidence was 100% after gd 10 dosing; at gd 11 through 15, it was 50, 32, 15, 2, and 5%, respectively (control, 2%). Incidences of external defects in live fetuses exposed on gd 11–15 were 97, 98, 100, 44, and 0% and those of viscera were 100, 62, 44, 10, and 0%, respectively. The predominant anomalies observed were ectrodactyly and renal agenesis. DRR was determined on gd 13, when live embryos/litter and external malformations (ectro- and syndactyly, micromelia) were maximal. Dams (n= 8/dose group) were injected intravenously with 0, 100, 250, 350, or 500 mg ME/kg. On gd 20, fetal defect rates were 0, 0, 82.5, 83.0, and 100% at these concentrations, respectively. Based on these studies, appropriate ME doses, times of maternal exposure, and critical phases of development in the rat model are available for reproducing selective defects to investigate biochemical and pharmacokinetic determinants underlying their expression.  相似文献   

17.
Regulatory non-clinical safety testing of human pharmaceuticals typically requires embryo–fetal developmental toxicity (EFDT) testing in two species (one rodent and one non-rodent). The question has been raised whether under some conditions EFDT testing could be limited to one species, or whether the testing in a second species could be decided on a case-by-case basis. As part of a consortium initiative, we built and queried a database of 379 compounds with EFDT studies (in both rat and rabbit animal models) conducted for marketed and non-marketed pharmaceuticals for their potential for adverse developmental and maternal outcomes, including EFDT incidence and the nature and severity of adverse findings. Manifestation of EFDT in either one or both species was demonstrated for 282 compounds (74%). EFDT was detected in only one species (rat or rabbit) in almost a third (31%, 118 compounds), with 58% (68 compounds) of rat studies and 42% (50 compounds) of rabbit studies identifying an EFDT signal. For 24 compounds (6%), fetal malformations were observed in one species (rat or rabbit) in the absence of any EFDT in the second species. In general, growth retardation, fetal variations, and malformations were more prominent in the rat, whereas embryo–fetal death was observed more often in the rabbit. Discordance across species may be attributed to factors such as maternal toxicity, study design differences, pharmacokinetic differences, and pharmacologic relevance of species. The current analysis suggests that in general both species are equally sensitive on the basis of an overall EFDT LOAEL comparison, but selective EFDT toxicity in one species is not uncommon. Also, there appear to be species differences in the prevalence of various EFDT manifestations (i.e. embryo–fetal death, growth retardation, and dysmorphogenesis) between rat and rabbit, suggesting that the use of both species has a higher probability of detecting developmental toxicants than either one alone.  相似文献   

18.
Gallium arsenide (GaAs), an inter-metallic semiconductor, known to exhibit superior optical and electronic properties compared to silicon, promotes its use in semiconductor industries. Extensive use of GaAs will inevitably lead to an increase in the exposure of workers manufacturing these products. Antioxidants are exogenous or endogenous compounds acting in several ways, including scavenging reactive oxygen species (ROS) or their precursors, inhibiting ROS formation, and binding metal ions needed for the catalysis of ROS generation. In the present study we investigated the protective efficacy of α-lipoic acid, quercetin and captopril individually against gallium arsenide exposure. Co-administration of α-lipoic acid with GaAs was most effective in reducing GaAs induced inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver, kidney and brain reduced glutathione (GSH) level and elevation of oxidized glutathione (GSSG). Captopril, on the other hand was effective in reducing thiobarbituric acid reactive substance (TBARS) levels, while quercetin reduced ROS in liver and kidney. The results suggest comparatively better preventive efficacy of concomitant α-lipoic acid administration during Gallium arsenide exposure compared to quercetin and captopril in preventing GaAs induced oxidative stress.  相似文献   

19.
Synthetic pyrethroids are one of the most frequently and widely used class of insecticides, primarily because they have a higher insect to mammalian toxicity ratio than organochlorines or organophosphates. The basic structure of pyrethroids can be characterized as an acid joined to an alcohol by an ester bond. Pyrethroid degradation occurs through either oxidation at one or more sites located in the alcohol or acid moieties or hydrolysis at the central ester bond, the latter reaction being important for mammalian metabolism of most pyrethroids. The primary alcohol liberated from the ester cleavage is hydroxylated to 3-phenoxybenzyl alcohol, which for most pyrethroids is then oxidized to 3-phenoxybenzoic acid. These products may then be conjugated with amino acids, sulfates, sugars, or sugar acids. In vitro studies have suggested that some of the pyrethroids may have estrogenic activity. Interestingly, the chemical structure of specific pyrethroid metabolites indicates that they may be more likely to interact with the estrogen receptor than the parent compounds. Two of the pyrethroid metabolites, 3-phenoxybenzoic acid (3PBA) and 3-phenoxybenzyl alcohol (3PBalc) have been reported to have endocrine activity using a yeast based assay. 3PBAlc exhibited estrogenic activity with reported EC50s of 6.67 × 10?6 and 2 × 10?5 while 3PBAcid exhibited anti-estrogenic activity with a calculated IC50 of 6.5 × 10?5. To determine if the metabolites were able to cause the same effects in a mammalian system, the estrogen-dependent cell line, MCF-7, was utilized. Cells were treated with 1.0, 10.0 or 100.0 μM concentrations of each metabolite and cytotoxicity was assessed. The two lowest concentrations of both metabolites did not induce cell death and even appeared to increase proliferation over that of the control cells. However, when cellular proliferation was measured using a Coulter counter neither metabolite stimulated proliferation (1.0 nM, 10.0 nM, or 10.0 μM) or induced an estrogen receptor α/ERE-controlled luciferase reporter in the MCF-7 cells. Following the in vitro screenings, the metabolites were then evaluated for estrogenic activity in vivo using the uterotrophic assay in Sprague–Dawley rats. Animals were orally gavaged (10.0, 5.0, and 1.0 mg/kg) once daily for 3 days. Neither metabolite had any effect on uterine wet weight, body weight, or organ weight. Lastly, in order to determine if either metabolite was able to alter the onset of puberty, immature female rats were orally gavaged (10.0, 5.0, and 1.0 mg/kg) once a day with the metabolites beginning 1 day post-weaning until the onset of puberty as evidenced by vaginal opening (VO). Again, neither metabolite had any effect on the onset of VO.  相似文献   

20.
Genistein and ethinyl estradiol (EE2) were examined in multigenerational reproductive and chronic toxicity studies that had different treatment intervals among generations. Sprague–Dawley rats received genistein (0, 5, 100, or 500 ppm) or EE2 (0, 2, 10, or 50 ppb) in a low phytoestrogen diet. Nonneoplastic effects in females are summarized here. Genistein at 500 ppm and EE2 at 50 ppb produced similar effects in continuously exposed rats, including decreased body weights, accelerated vaginal opening, and altered estrous cycles in young animals. At the high dose, anogenital distance was subtly affected by both compounds, and a reduction in litter size was evident in genistein-treated animals. Genistein at 500 ppm induced an early onset of aberrant cycles relative to controls in the chronic studies. EE2 significantly increased the incidence of uterine lesions (atypical focal hyperplasia and squamous metaplasia). These compound-specific effects appeared to be enhanced in the offspring of prior exposed generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号