首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abdominal aortic banding in mice induces upregulation of angiotensin II (Ang II) type 2 (AT2) receptors in the pressure-overloaded thoracic aorta. To clarify mechanisms underlying the vascular AT2 receptor-dependent NO production, we measured aortic levels of endothelial NO synthase (eNOS), eNOS phosphorylated at Ser633 and Ser1177, protein kinase B (Akt), and Akt phosphorylated at Ser473 in thoracic aortas of mice after banding. Total eNOS, both forms of phosphorylated eNOS, Akt, and phosphorylated Akt levels, as well as cGMP contents, were significantly increased 4 days after banding. The administration of PD123319 (an AT2 receptor antagonist) or icatibant (a bradykinin B2 receptor antagonist) abolished the banding-induced upregulation of both forms of phosphorylated eNOS, as well as elevation of cGMP, but did not affect the upregulation of eNOS, Akt, and phosphorylated Akt. In the in vitro experiments using aortic rings prepared from banded mice, Ang II produced significant increases in both forms of phosphorylated eNOS, as well as cGMP, and these effects were blocked by PD123319 and icatibant. Ang II-induced eNOS phosphorylation and cGMP elevation in aortic rings were inhibited by protein kinase A (PKA) inhibitors H89 and KT5720 but not by phosphatidylinositol 3-kinase inhibitors wortmannin and LY24002. The contractile response to Ang II was attenuated in aortic rings from banded mice via AT2 receptor, and this attenuation was blocked by PKA inhibitors. These results suggest that the activation of AT2 receptor by Ang II induces phosphorylation of eNOS at Ser633 and Ser1177 via a PKA-mediated signaling pathway, resulting in sustained activation of eNOS.  相似文献   

2.
Endothelial dysfunction is one of the earliest pathological effects of cigarette smoking. Vascular endothelial growth factor (VEGF) has been shown to be an important regulator of endothelial healing and growth. Accordingly, we tested the hypothesis that cigarette smoke exposure impairs VEGF actions in endothelial cells. In human umbilical vein endothelial cells (HUVECs), cigarette smoke extracts (CSE) inhibited VEGF-induced tube formation in the matrigel assay. CSE did not affect HUVECs proliferation, but significantly reduced cellular migration in response to VEGF. This impaired migratory activity was associated with a reduced expression of alpha(v)beta(3), alpha(v)beta(5), alpha(5)beta(1) and alpha(2)beta(1) integrins. The Akt/eNOS/NO pathway has been shown to be important for VEGF-induced endothelial cell migration. We found that CSE inhibited Akt/eNOS phosphorylation and NO release in VEGF-stimulated HUVECs. This was associated with an increased generation of reactive oxygen species (ROS). Importantly, in HUVECs exposed to CSE, treatment with antioxidants (NAC, vitamin C) reduced ROS formation and rescued VEGF-induced NO release, cellular migration and tube formation. Moreover, treatment with NO donors (SNAP, SNP) or a cGMP analog (8-Br-cGMP) rescued integrin expression, cellular migration and tube formation in endothelial cells exposed to CSE. (1) Cigarette smoke exposure impairs VEGF-induced endothelial cell migration and tube formation. (2) The mechanism involves increased generation of ROS, decreased expression of surface integrins together with a blockade of the Akt/eNOS/NO pathway. (3) These findings could contribute to explain the negative effect of cigarette smoking on endothelial function and vessel growth.  相似文献   

3.
This study investigates the mechanisms whereby angiotensin II (Ang II) signaling contributes to cell growth and glucose metabolism in cultured vascular smooth muscle cells (VSMCs) from male Wistar fatty rats (WF) and their littermates (Wistar lean rats, WL). The levels of the medial outgrowth rate of VSMCs and Ang II type-1 receptors (AT1R) in aortae from WF were more enhanced than those in aortae from WL, but the level of Ang II type-2 receptors (AT2R) was not different. A mixture of insulin and Ang II additively increased the values of [(3)H]-thymidine incorporation in WF and WL, which was inhibited by olmesartan, an AT1 receptor blockade (ARB), but not by PD123,319, an AT2 receptor blockade. Similarly, insulin and Ang II phosphorylated extracellular-regulated protein kinase 1/2, retinoblastoma tumor suppressor protein, and cyclic AMP response element binding protein, and these levels were higher in WF than in WL. In contrast, the phosphorylation was suppressed by olmesartan but not PD123,319. Insulin-stimulated Akt phosphorylation and 2-deoxy-d-glucose uptake in WF were significantly reduced by Ang II, and the reduction was ameliorated by olmesartan but not PD123,319. Differently from the result of Akt, the phosphorylation of the insulin-stimulated insulin receptor beta-subunit was not affected by Ang II, olmesartan, or PD123,319. However, the phosphorylation of insulin-stimulated insulin-related substrate (IRS)-1 was suppressed by Ang II, and the suppression was ameliorated by olmesartan, but not PD123,319, in both WF and WL. In contrast, the phosphorylation of IRS-1 on Ser(307) was elevated by the Ang II, and the elevation was suppressed by olmesartan, but not by PD123,319, in both WF and WL. These findings demonstrated that Ang II signaling contributes to cell proliferation and inhibition of the insulin signaling pathways through AT1R, but not trough AT2R, in both non-diabetic and diabetic VSMCs.  相似文献   

4.
BACKGROUND: Oxidized LDL (oxLDL) inhibits endothelial cell (EC) migration. Stimulating ECs with vascular endothelial growth factor (VEGF) leads to the activation of Akt/protein kinase B, which in turn activates endothelial nitric oxide synthase (eNOS) by phosphorylation on serine 1177. VEGF-induced cell migration is dependent on the generation of nitric oxide (NO). Therefore, we investigated whether oxLDL affects EC migration by an inhibitory effect on the Akt/eNOS pathway. METHODS AND RESULTS: During an in vitro "scratched wound assay," oxLDL dose-dependently inhibited the VEGF-induced migration of human umbilical vein endothelial cells. Western blot analysis revealed that oxLDL dose- and time-dependently led to dephosphorylation and thus deactivation of Akt. Moreover, oxLDL inhibited the VEGF-induced generation of NO, as detected and quantified using a fluorescent NO indicator, 4,5-diaminofluorescein diacetate. Overexpression of a constitutively active Akt construct (Akt T308D/S473D) or a phosphomimetic eNOS construct (eNOS S1177D) almost completely reversed the inhibitory effect of oxLDL on VEGF-induced EC migration and NO generation. CONCLUSIONS: Our data indicate that oxLDL-induced dephosphorylation of Akt, followed by impaired eNOS activation, reduces the intracellular level of NO and thereby inhibits VEGF-induced EC migration.  相似文献   

5.
Abstract. Autocrine stimulation and paracrine interaction between coronary smooth muscle cells (cSMC) and endothelial cells (EC) act as regulators of the vascular angiogenesis. Basic fibroblast growth factor (bFGF), its receptor FGF-R1, and coreceptor heparansulfate proteoglycan (HSPG) are important components involved in this angiogenic process. We investigated the influence of angiotensin (Ang) II on this trimolecular bFGF complex, the underlying signaling and the proliferative process in human cSMC. Ang II induces an AT1 receptor-dependent expression of bFGF and also upregulates the FGF-R1 and HSPG expression which is suppressed by losartan, the AT1 receptor blocker. AT1 receptor signaling which is characterized by phosphorylation of p42-mitogen-activated protein kinase (MAPK) is involved in Ang II-induced bFGF, FGF-R1 and HSPG upregulation and DNA synthesis in human cSMC. In contrast, inhibition of the AT2 receptor by PD123,319 has no influence on these Ang II-stimulated and via the MAPK cascade-mediated proangiogenic effects. Finally, our data show that the Ang II-induced DNA synthesis in cSMC is mediated via the bFGF expression. In conclusion, our results suggest that the Ang II-induced angiogenic effects in the vessel wall are supported by the AT1 receptor-stimulated and MAPK pathway-mediated upregulation of the autocrine/paracrine trimolecular bFGF complex in cSMC.  相似文献   

6.
7.
8.
The renin-angiotensin system (RAS) is present in the human prostate and may be activated in benign prostatic hyperplasia (BPH), possibly contributing to the pathophysiology of this disorder by enhancing local sympathetic tone and cell growth. The functional role of the RAS in the prostate, however, is unknown. The present study was undertaken to determine whether angiotensin (Ang) II enhances sympathetic transmission in the prostate. The neuronal stores of the rat prostate were labelled with [(3)H]noradrenaline (NA). Ang II and Ang I enhanced [(3)H]NA release in a concentration-dependent manner. The Ang II receptor subtype 1 (AT(1) receptor) antagonist losartan and the AT(2) receptor antagonist PD123319 inhibited this facilitatory effect of Ang II and Ang I, whereas the other AT(2) receptor antagonist, CGP42112, was without effect. Bradykinin also increased [(3)H]NA release, which was inhibited by the B(2) receptor antagonist Hoe140. The angiotensin-converting enzyme inhibitor captopril inhibited the effect of Ang I, but potentiated that of bradykinin. Interestingly, captopril alone produced an increase in [(3)H]NA release which was inhibited by Hoe140. Losartan, but not PD123319 or CGP42112, inhibited [(125)I]-Ang II binding in Chinese hamster ovary cells transfected with the AT(1a) or AT(1b) receptor. In contrast, in cells expressing the AT(2) receptor, PD123319 and CGP42112, but not losartan, inhibited [(125)I]-Ang II binding. In conclusion, Ang II enhances the release of NA from sympathetic nerves of the rat prostate via a novel functional receptor distinct from the cloned AT(1a), AT(1b) or AT(2). These data provide direct evidence in support of a functional role for the local RAS in modulating sympathetic transmission in the prostate, which may have important implications for the pathophysiology of BPH.  相似文献   

9.
Angiopoietin-1 (Ang1) is a strong apoptosis survival factor for endothelial cells. In this study, the receptor/second messenger signal transduction pathway for the antiapoptotic effect of Ang1 on human umbilical vein endothelial cells was examined. Pretreatment with soluble Tie2 receptor, but not Tie1 receptor, blocked the Ang1-induced antiapoptotic effect. Ang1 induced phosphorylation of Tie2 and the p85 subunit of phosphatidylinositol 3'-kinase (PI 3'-kinase) and increased PI 3'-kinase activity in a dose-dependent manner. The PI 3'-kinase-specific inhibitors wortmannin and LY294002 blocked the Ang1-induced antiapoptotic effect. Ang1 induced phosphorylation of the serine-threonine kinase Akt at Ser473 in a PI 3'-kinase-dependent manner. Expression of a dominant-negative form of Akt reversed the Ang1-induced antiapoptotic effect. Ang1 mRNA and protein were present in vascular smooth muscle cells but not in endothelial cells. Cultured vascular smooth muscle cells, but not human umbilical vein endothelial cells, secreted Ang1. These findings indicate that the Tie2 receptor, PI 3'-kinase, and Akt are crucial elements in the signal transduction pathway leading to endothelial cell survival induced by the paracrine activity of Ang1.  相似文献   

10.
11.

Purpose

In this study, we examined the antiangiogenic effect of oroxylin A in vitro and in vivo and explored the potential mechanisms for this effect.

Methods

Transwell assay and tube formation assay were used to evaluate the effects of oroxylin A on vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells (HUVECs). Rat aortic ring assay was also employed to assess the effect of oroxylin A on microvessel outgrowth from rat aorta. Human tumor xenografts model in nude mice was further used to investigate the antiangiogenic activity of oroxylin A in vivo. Western blot analysis was used to investigate the related mechanism.

Results

Oroxylin A remarkably suppressed the VEGF-stimulated migration and tube formation of HUVECs. It also inhibited microvessel sprouting from rat aortic ring in vitro. In addition, it suppressed the angiogenesis of xenograft tumor in nude mice, which concurred with the inhibition of tumor growth. Moreover, oroxylin A blocked VEGF-induced phosphorylation of KDR/Flk-1 and related downstream signaling molecules, including p38 mitogen-activated protein kinase, extracellular signal-regulated kinase and Akt.

Conclusion

Oroxylin A possessed antiangiogenic activities in vitro and in vivo, which could be an underlying mechanism of its anticancer effect.  相似文献   

12.
To evaluate the role of vascular angiotensin II (Ang II) type 2 (AT2) receptor in renovascular hypertension, we investigated expressions of AT2 receptor and endothelial nitric oxide synthase (eNOS) in thoracic aortas of mice with 2-kidney, 1-clip (2K1C) hypertension. The mRNA levels of AT2 receptor in aortas, but not those of AT1 and bradykinin B2 receptors, increased 14 days but not 42 days after clipping. The contractile response to Ang II (>0.1 micromol/L) was attenuated in aortic rings excised 14 days after clipping and was restored to that of rings from sham mice by antagonists of AT2 receptor (PD123319) and B2 receptor (icatibant). The aortic levels of total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), total Akt, and phosphorylated Akt at Ser473 (p-Akt) were increased in 2K1C mice on day 14, whereas only eNOS levels were increased on day 42. The aortic cGMP levels were 20-fold greater in 2K1C mice on day 14 compared with sham mice. Administration of nicardipine for 4 days before the excision of aortas 14 days after clipping not only reduced blood pressure but also decreased the aortic levels of eNOS, p-eNOS, Akt, p-Akt, and cGMP to sham levels, whereas the administration of PD123319 or icatibant to 2K1C mice decreased p-eNOS and cGMP to sham levels without affecting blood pressure and the levels of eNOS, Akt and p-Akt. These results suggest that vascular NO production is enhanced by increased eNOS phosphorylation via the activation of AT2 receptors in the course of 2K1C hypertension.  相似文献   

13.
14.
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.  相似文献   

15.
Liu R  Persson AE 《Hypertension》2004,43(3):649-653
A fluorescent nitric oxide (NO) indicator, 4,5-diaminofluorescein diacetate, and the calcium indicator, indo-1, with 488 nm and 364 nm UV confocal laser scanning microscopy were used to detect NO and calcium concentration in rabbit macula densa (MD) cells challenged by angiotensin II (Ang II). Glomeruli with attached thick ascending limbs with the MD plaque were isolated and perfused. Ang II concentration from 10(-9) to 10(-5) progressively increased MD cell calcium and NO to peak values at 10(-6) and 10(-7), respectively. Ang II (10(-6) M) caused the cytosolic calcium concentration ([Ca(2+)](i)) to increase by 125.8+/-16.3 nM (n=17) from the bath and by 52.3+/-11.5 nM (n=18) from the lumen. AT(1) antagonist CV-11974 (10(-6) M) blocked the Ang II-induced calcium responses from bath and lumen, but AT(2) antagonist PD-123319 (10(-6) M) did not. AT(2) agonist CGP-42112A (10(-6) M) did not affect [Ca(2+)](i) in MD cells from either side. Ang II (10(-6) M) increased the NO production by 16%+/-3.4% (n=26) from the bath and by 18%+/-3.1% (n=24) from the lumen. CV-11974 (10(-6) M) blocked the NO responses from both sides, but PD-123319 (10(-6) M) did not on either side. CGP-42112A (10(-6) M) had no effect on NO in MD cells. In calcium-free experiments there was no difference from the result in normal calcium solutions. In conclusion, we found that Ang II increased [Ca(2+)](i) and stimulated NO production in MD cells from the basolateral and luminal sides through AT(1) receptors.  相似文献   

16.
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2-associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases.  相似文献   

17.
This study was designed to test the hypothesis that increased pressure itself could cause endothelial dysfunction and lead to decreased nitric oxide (NO) release, partly through effects on the tissue renin angiotensin system in hypertension. Cultured endothelial cells (ECs) isolated from the aortas of WKY rats were continuously exposed to a pressure of 150 mmHg in a CO2 incubator for 72 h using a pressure system, and the NOx (NO2 and NO3) and angiotensin II (Ang II) concentrations in the supernatant were measured. An Ang II type 1 receptor (AT1R) antagonist (losartan) and an Ang II type 2 receptor (AT2R) antagonist (PD123319) were added to the medium. The expression of AT1R and AT2R mRNAs was also examined. Pressure loading significantly decreased the NO release from ECs. Concomitant administration of losartan restored NO release to the level before the application of pressure (p<0.001). This effect of losartan was blocked by simultaneous administration of PD123319, bradykinin type 2 receptor antagonist, and NO synthase inhibitor (p<0.05). The Ang II concentration was increased by pressure and was further increased by losartan. The gene expression of AT1R was not changed by pressure, but AT2R mRNA was increased almost 2-fold. These results indicate that high pressure itself attenuates NO release from ECs, and that losartan improves NO release by activating the bradykinin system via AT2R stimulation. In addition, the increase of AT2R gene expression in ECs during exposure to pressure may compensate for the reduction of NO.  相似文献   

18.
OBJECTIVE: To test whether angiotensin II (Ang II) through the Ang II type 2 receptor (AT2R), downregulates RhoA/Rho kinase, which plays a role in AT1 receptor (AT1R)-mediated function. METHODS: In vitro studies were performed in A10 vascular smooth muscle cells (VSMC) and in vivo studies in mesenteric arteries from Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats. VSMC were stimulated with Ang II (10 mol/l), CGP42112A (10 mol/l, a selective AT2R agonist) +/- valsartan (10 mol/l, an AT1R antagonist), or the Rho kinase inhibitor fasudil (10 mol/l). AT1R and AT2R expression and myosin light chain (MLC) phosphorylation were determined by immunoblotting. RhoA activity was assessed by measuring membrane translocation. Functional significance between AT2R, RhoA/Rho kinase and vasodilation was assessed in arteries from valsartan-treated (30 mg/kg per day, 14 days) WKY and SHRSP rats. Vasodilatory responses to Ang II (10-10 mol/l) were performed in norepinephrine pre-contracted vessels +/- valsartan(10 mol/l), PD123319 (10 mol/l, an AT2R antagonist) or fasudil (10 mol/l). RESULTS: A10 VSMC expressed AT1R and AT2R. In valsartan-treated cells, Ang II-induced RhoA translocation was reduced versus controls (42 +/- 6%, P < 0.05). Similar responses were obtained with CGP42112A (45 +/- 6%, P < 0.05). This was associated with decreased MLC activation. Fasudil abrogated Ang II- and CGP42112A-mediated effects. Ang II evoked a significant vasodilatory response only in valsartan-treated SHRSP (max dilation 40 +/- 7%). PD123319 blocked these effects. Fasudil increased AngII-induced relaxation in SHRSP vessels. AT2R expression was increased by valsartan (two- to three-fold) in SHRSP arteries. RhoA translocation was increased two-fold in untreated SHRSP (P < 0.05) and was reduced by valsartan (P < 0.05). These changes were associated with decreased MLC phosphorylation. CONCLUSIONS: Ang II/AT2R negatively regulates vascular RhoA/Rho kinase/MLC phosphorylation. These processes may play a role in Ang II-mediated vasodilation in conditions associated with vascular AT2R upregulation, such as in SHRSP chronically treated with AT1R blockers, which may contribute to blood pressure lowering by these antihypertensive agents.  相似文献   

19.
Although angiotensin (Ang) II is known to regulate renal proximal transport in a biphasic way, the receptor subtype(s) mediating these Ang II effects remained to be established. To clarify this issue, we compared the effects of Ang II in wild-type mice (WT) and Ang II type 1A receptor-deficient mice (AT(1A) KO). The Na+-HCO3- cotransporter (NBC) activity, analyzed in isolated nonperfused tubules with a fluorescent probe, was stimulated by 10(-10) mol/L Ang II but was inhibited by 10(-6) mol/L Ang II in WT. Although valsartan (AT1 antagonist) blocked both stimulation and inhibition by Ang II, PD 123,319 (AT2 antagonist) did not modify these effects of Ang II. In AT1A KO, in contrast, this biphasic regulation was lost, and only stimulation of NBC activity by 10(-6) mol/L Ang II was observed. This stimulation was blocked by valsartan but not by PD 123,319. More than 10(-8) mol/L Ang II induced a transient increase in cell Ca2+ concentrations in WT, which was again blocked by valsartan but not by PD 123,319. However, up to 10(-5) mol/L Ang II did not increase cell Ca2+ concentrations in AT1A KO. Finally, the addition of arachidonic acid inhibited the NBC activity similarly in WT and AT(1A) KO, suggesting that the inhibitory pathway involving P-450 metabolites is preserved in AT(1A) KO. These results indicate that AT(1A) mediates the biphasic regulation of NBC. Although low-level expression of AT(1B) could be responsible for the stimulation by 10(-6) mol/L Ang II in AT1A KO, no evidence was obtained for AT2 involvement.  相似文献   

20.
Hu C  Dandapat A  Mehta JL 《Hypertension》2007,50(5):952-957
Angiotensin II (Ang II) induces angiogenesis by stimulating reactive oxygen species-dependent vascular endothelial growth factor (VEGF) expression. Ang II via type 1 receptor upregulates the expression of LOX-1, a lectin-like receptor for oxidized low-density lipoprotein. LOX-1 activation, in turn, upregulates Ang II type 1 receptor expression. We postulated that interruption of the feedback loop between Ang II and LOX-1 might attenuate Ang II-induced VEGF expression and capillary formation. In vitro experiments showed that Ang II (1 nmol/L) induced the expression of LOX-1 and VEGF and enhanced capillary formation from human coronary endothelial cells in Matrigel assay. Ang II-mediated expression of LOX-1 and VEGF, capillary formation, intracellular reactive oxygen species generation, and phosphorylation of p38 as well as p44/42 mitogen-activated protein kinases, were suppressed by anti-LOX-1 antibody, nicotinamide-adenine dinucleotide phosphate oxidase inhibitor apocynin and the Ang II type 1 receptor blocker losartan, but not by the Ang II type 2 receptor blocker PD123319. Expression of VEGF and capillary formation induced by Ang II were also inhibited by the p44/42 mitogen-activated protein kinase inhibitor U0126 and the p38 mitogen-activated protein kinase inhibitor SB203580. In ex vivo experiments, Ang II stimulated capillary sprouting from aortic rings from wild-type mice, and this phenomenon was significantly attenuated by pretreatment of aortic rings with anti-LOX-1 antibody, apocynin, and losartan, but not by PD123319. Importantly, Ang II-induced capillary sprouting was minimal from aortic rings from LOX-1 null mice compared with wild-type mice. These findings suggest that small concentrations of Ang II promote capillary formation by inducing the expression of VEGF via Ang II type 1 receptor/LOX-1-mediated stimulation of the reactive oxygen species-mitogen-activated protein kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号