首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yun Y  Han S  Park E  Yim D  Lee S  Lee CK  Cho K  Kim K 《Archives of pharmacal research》2003,26(12):1087-1095
Betulinic acid (BA), a pentacyclic triterpene isolated from Lycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two groups of protein mediators of inflammation, interleukin-1beta (IL-1beta) and the tumor necrosis factor-alpha (TNF-alpha) on the basis of the critical role of the monocytes and tissue macrophages in inflammatory and immune responses. TNF-alpha and IL-1beta were produced by BA in a dose dependent manner at concentration of 0.625 and 10 microg/mL. The production of NO associated with iNOS was inhibited when treated with LPS at the concentration of 2.5 to 20 microg/mL of BA whereas COX-2 expression was decreased at 2.5 to 20 microg/mL. These modulations of inflammatory mediators were examined in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The morphology of macrophage was also examined and enhanced surface CD 40 molecule was expressed when treated BA at 0.625 to approximately 5 microg/mL with or without LPS. Furthermore, BA (20 microg/mL) enhanced apoptosis by producing DNA ladder in the RAW 264.7 cells. Our results indicated that BA induced activation of macrophage and pro-inflammatory cytokines. This may provide a molecular basis for the ability of BA to mediate macrophage, suppress inflammation, and modulate the immune response.  相似文献   

2.
Activation of the innate immune system might predispose a host to toxicant-induced inflammation. In vitro macrophage models were employed to investigate the effects of preexposure to Toll-like receptor (TLR) agonists on induction of proinflammatory cytokine gene expression by the trichothecene mycotoxin deoxynivalenol (DON) and other toxicants. Priming of the murine RAW 264.7 macrophage line or peritoneal murine macrophages with the TLR4 agonist lipopolysaccharide (LPS) at 100 ng/ml for 4, 8, and 16 h significantly increased DON-induced IL-1beta, IL-6, and TNF-alpha mRNA expression as compared to LPS or DON alone. The minimum LPS concentration for sensitization of both cell types was 1 ng/ml. LPS priming also potentiated IL-1beta mRNA induction by DON in human whole-blood cultures, suggesting the relevance of the murine findings. As observed for LPS, preexposure to TLR agonists including zymosan (TLR2), poly (I:C) (TLR3), flagellin (TLR5), R848 (TLR7/8), and ODN1826 (TLR9) sensitized RAW 267.4 cells to DON-induced proinflammatory gene expression. Amplified proinflammatory mRNA expression was similarly demonstrated in LPS-sensitized RAW 264.7 cells exposed to the microbial toxins satratoxin G, Shiga toxin, and zearalenone as well as the anthropogenic toxicants nickel chloride, triphenyltin, 2,4-dinitrochlorobenzene, and 2,3,7,8-tetrachlorodibenzodioxin. The results suggest that prior TLR activation might render macrophages highly sensitive to subsequent induction of proinflammatory gene expression by xenobiotics with diverse mechanisms of action.  相似文献   

3.
Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniaceae), was found to inhibit the productions of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6), and the activation of nuclear factor kappaB (NF-kappaB) in RAW 264.7 macrophages activated with lipopolysaccharide (LPS). Catalposide also inhibited the expressions of TNF-alpha, IL-1beta, and IL-6 genes and the nuclear translocation of p65 subunit of NF-kappaB in LPS-activated RAW 264.7 cells. Flow cytometric analysis revealed that catalposide suppressed the binding of FITC-conjugated LPS to CD14 on the surface of cells, probably resulting in the inhibitory effects on TNF-alpha, IL-1beta, and IL-6 productions and NF-kappaB activation. These findings suggest that catalposide could be an attractive candidate for adjunctive therapy in gram-negative bacterial infections.  相似文献   

4.
5.
Hematein, a natural compound, is a known anti-inflammatory and antiatherogenic agent in the rabbit model. The authors investigated the effects of this compound on atherogenesis and possible mechanisms of the actions in the hyperlipidemic mice. Low-density lipoprotein receptor-deficient (Ldlr-/-) mice fed a high-cholesterol diet alone for 8 weeks developed the fatty streak lesion in the aortic sinus, whereas this lesion was significantly reduced by hematein treatment without a change in plasma lipid levels compared with control mice. Hematein treatment reduced plasma levels of lipid peroxide and superoxide generation in LPS-stimulated peritoneal macrophage. Hematein treatment inhibited NF-kappaB-DNA binding activity in peritoneal macrophages from Ldlr-/- mice and the activation of NF-kappaB in RAW264.7 macrophages. This compound suppressed plasma nitrite/nitrate levels in Ldlr-/- mice and NO production and iNOS expression in LPS+IFNgamma-stimulated peritoneal macrophages. Hematein treatment also suppressed the activity of iNOS promoters in RAW264.7 macrophages, and reduced the plasma levels of TNF-alpha and IL-1beta and the production of these cytokines in LPS+IFNgamma-stimulated peritoneal macrophages. These results suggest that hematein inhibits atherosclerotic lesion formation, possibly by reducing proinflammatory mediators through a decrease in reactive oxygen species generation and NF-kappaB activation.  相似文献   

6.
The satratoxins and other macrocyclic trichothecene mycotoxins are produced by Stachybotrys, a mold that is often found in water-damaged dwellings and office buildings. To test the potential immunomodulatory effects of these mycotoxins, RAW 264.7 murine macrophage cells were treated with various concentrations of satratoxin G (SG), isosatratoxin F (iSF), satratoxin H (SH), roridin A (RA), and verrucarin A (VA) for 48 h in the presence or absence of suboptimal concentra-tion of lipopolysaccharide (LPS, 50 ng/ml), and tumor necrosis factor-alpha (TNF-alpha ) and interleukin-6 (IL-6) production were assayed by enzyme-linked immunosorbent assay (ELISA). In LPS-stimulated cultures, TNF-alpha supernatant concentrations were significantly increased in the presence of 2.5, 2.5, and 1 ng/ml of SG, SH, and RA, respectively, whereas IL-6 concentrations were not affected by the same concentrations these macrocyclic trichothecenes. When cells that were treated with LPS and SG (2.5 ng/ml) were evaluated by real-time polymerase chain reaction (PCR),TNF-alpha mRNA was found to increase at 24, 36, and 48 h compared to control cells. At higher concentrations, cytokine production and cell viability were markedly impaired in LPS-stimulated cells. Without LPS stimulation, neither TNF-alpha, nor IL-6 was induced. These results indicate that low concentrations of macrocyclic trichothecenes superinduce expression of TNF-alpha, whereas higher concentrations of these toxins are cytotoxic and concurrently reduce cytokine production. The capacity of satratoxins and other macrocyclic trichothecenes to alter cytokine production may play an etiologic role in outbreaks of Stachybotrys-associated human illnesses.  相似文献   

7.
8.
9.
Some antibacterials have been reported to regulate the host immune and inflammatory responses both in vitro and in vivo. Florfenicol is an antibiotics used in treatment of infection. We investigated the effects of florfenicol on cytokine production by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro, and the results showed that florfenicol reduced tumor necrosis factor (TNF) and interleukin-6 (IL-6) production but had little effect on interleukin-1beta (IL-1beta) and interleukin IL-10 (IL-10) secretion. This inspired us to further study the effects of florfenicol in vivo. Florfenicol significantly attenuated TNF and IL-6 production in serum from mice challenged with LPS, and in consistent with the results in vitro. In murine model of endotoxemia, mice were prophylactically or therapeutically treated with florfenicol prior to or after LPS challenge. The results showed that florfenicol significantly increased mouse survival. Further studies revealed that florfenicol prevented the LPS-induced nuclear factor-kappaB (NF-kappaB) translocation from cytoplasm into nuclear in RAW 264.7 macrophages. These observations indicate that florfenicol modulates early cytokine responses by blocking NF-kappaB pathway, and thus, increases mouse survival. This effect of the drug may be of potential usefulness in treatment of bacterial shock.  相似文献   

10.
11.
Ursolic acid (UA), a pentacyclic triterpene acid, is reported to have inducing activity of hepatic metallothionein (MT) which responsible for the detoxification of heavy metals; however, the mechanism underlying its effects is poorly understood. To further determine the underlying mechanism of UA, this study investigated the effects of UA on the induction of hepatic MT expression in an in vitro model, using murine hepatoma cell line Hepa-1c1c7 and murine macrophage cell line RAW 264.7 cell cultures. The UA added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels were markedly increased when Hepa-1c1c7 cells were cultured with UA-treated conditioned media from RAW 264.7. Concomitant treatment with UA and pentoxifylline, a TNF-alpha synthesis inhibitor, to RAW 264.7 cells decreased the effects of UA on the MT induction. In UA-exposed RAW 264.7 cell cultures, TNF-alpha and IL-6 production and TNF-alpha and IL-6 mRNA levels increased. When antibodies to TNF-alpha or/and IL-6 were added to UA-treated conditioned media from RAW 264.7, the MT induction activity was inhibited. These results demonstrate that UA induces hepatic MT expression through TNF-alpha and IL-6 released from UA-activated macrophages, which may be the mechanism, whereby UA elicits its biological effects.  相似文献   

12.
Activation of murine macrophage cell line RAW 264.7 by Korean propolis   总被引:4,自引:0,他引:4  
Monocytes and macrophages play a major role in defense mechanism of the host response to tumor, in part through the secretion of several potent products and macrophage cytokines. Monocytes and tissue macrophages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1) and tumor necrosis factor (TNF). Recent studies emphasizes that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. In this study, our work is directed toward studying the in vitro effects of Korean propolis on the ability to induce cellular and secretory responses in murine macrophage cell line, RAW 264.7. It was found that Water Extract of Korean Propolis (WEP) could activate macrophages by producing cytokines. The production of the macrophage cytokines, IL-1 and TNF-alpha, by RAW 264.7 treated with WEP was examined from 2.5 microg/ml up to 25 microg/ml with dose dependent manner. Nitric oxide (NO) production was also increased when cells were exposed to combination of LPS and WEP from 2.5 microg/ml up to 25 microg/ml. At high dose of WEP (50 to 100 microg/ml) used to prescribe for anti-inflammatory and analgesic medicine showed inhibition of NO production in LPS-stimulated macrophage. Besides cytokine production, NO release, surface molecule expression and cell morphologic antigen expression were increased in response to the stimulation by WEP. These results suggested WEP may function through macrophage activation.  相似文献   

13.
We demonstrate that glycoprotein isolated from Dioscorea batatas (GDB) has immunostimulatory effects including macrophage activation. Analysis of infiltration of inflammatory cells into peritoneal cavity showed GDB treatment significantly increased the recruitment of macrophages, lymphocytes, neutrophils, and monocytes into the peritoneal cavity. Treatment of spleen cells isolated from C57BL/6 mice with GDB significantly increased the proliferation of B cells and T cells induced by LPS and ConA, respectively. Treatment with GDB significantly increased the cytolytic capacity of NK cells and macrophages against YAC-1 and B16 cells, respectively. In order to further confirm and investigate the mechanism of GDB on macrophage activation, we analyzed the effects of GDB on the cytokine expression including iNOS, IL-1β, and TNF-α in mouse macrophage cell line, RAW 264.7 cells. RT-PCR and ELISA showed that GDB increased the expression of IL-1β, and TNF-α, whereas iNOS was not induced by GDB. Collectively, this series of experiments indicates that GDB stimulates immune system including macrophage activation.  相似文献   

14.
15.
Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.  相似文献   

16.
目的建立脂多糖(LPS)诱导的小鼠单核巨噬细胞(RAW264.7)炎症模型,探究丹参酮II-A(Tan IIA)的抗炎活性及其机制。方法CCK-8法测定Tan IIA对细胞活力的影响;迁移小室测定Tan IIA对LPS诱导细胞迁移能力作用;ELISA法测定细胞上清液中小鼠肿瘤坏死因子α(tumor necrosis factoralpha,TNF-α)、白介素6(interleukin 6,IL-6)、IL^-1β、单核细胞趋化蛋白-1(monocyte chemoattractant protein,MCP-1)的含量;Western blot法检测基质金属蛋白酶2(matrix metalloproteinases,MMP-2)、MMP-9、Toll样受体-4(TLR4)、IκB-α、p-IκB-α、NFκB和p-NFκB蛋白的表达。结果Tan IIA对LPS诱导的RAW264.7细胞培养液中炎症因子TNF-α、IL-6、IL^-1β和MCP-1的分泌有明显的抑制作用;明显下调MMP-2、MMP-9、TLR4、p-IκB-α和p-NFκB的蛋白的表达,抑制IκB-α磷酸化和NFκB的入核和活化。结论Tan IIA可通过抑制MMP-2和MMP-9的表达以及TLR4/κB-α/NF-κB信号通路,调控TNF-α、IL-6、IL^-1β等炎症因子的释放而发挥抗炎活性。  相似文献   

17.
Curcumin, a dietary pigment responsible for the yellow colour of curry, has been used for the treatment of inflammatory diseases and exhibits a variety of pharmacological effects such as anti-inflammatory activity. The mechanism in anti-inflammatory activity of curcumin has been investigated; however, little is known about the effect of curcumin on cytokine production by human peripheral blood monocytes and alveolar macrophages. In the present study, we shed light on the effect of curcumin on inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. To this end, we determined the concentrations of interleukin-8 (IL-8), monocyte inflammatory protein-1 (MIP-1alpha), monocyte chemotactic protein-1 (MCP-1), interleukin-1beta (IL-1beta), and tumour necrosis factor-alpha (TNF-alpha) in the culture supernatants from phorbor ester, 4beta phorbor 12beta-myristate-13alpha acetate (PMA)- or lipo-polysaccharide (LPS)-stimulated monocytes and alveolar macrophages in the presence or absence of curcumin. Curcumin inhibited the production of IL-8, MIP-1alpha, MCP-1, IL-1beta, and TNF-alpha by PMA- or LPS-stimulated monocytes and alveolar macrophages in a concentration- and a time-dependent manner. These results show that curcumin exhibits an inhibitory effect on the production of IL-8, MIP-1alpha, MCP-1, IL-1beta, and TNF-alpha by PMA- or LPS-stimulated monocytes and alveolar macrophages.  相似文献   

18.
Salidroside (SAL) is an active ingredient isolated from the Rhodiola rosea, has potent anti-inflammatory effect, but the mechanism is still elusive. The purpose of this study is to verify the effects of SAL on LPS-induced inflammatory response and investigate the possible underlying molecular mechanism. RAW264.7 cells were pre-incubated with SAL for 2 h, then stimulated with or without LPS for another 16 h. The levels of TNF-α, MCP-1, IL-6, and PGE2 were detected by ELISA, and the production of NO was determined by nitrite analysis. The expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by Western blotting. In RAW264.7 cells and murine peritoneal macrophages, the activation of signal molecules was also measured by Western blot. The nuclear translocation of STAT3 was determined by Laser confocal and nucleocytoplasmic separation experiments. Our results showed that SAL attenuated the productions of TNF-α, IL-6, MCP-1, PGE2 and NO dose dependently. SAL also suppressed LPS-induced expressions of iNOS and COX-2 significantly. Further studies revealed that SAL down-regulated the phosphorylation of JAK2-STAT3 signaling pathway and reduced the nuclear translocation of STAT3 induced by LPS in RAW264.7 cells and primary peritoneal macrophages. In addition, consistent with the results in vitro, in the model of mice acute lung injury (ALI) induced by LPS, SAL reduced the infiltration of inflammatory cells and decreased the levels of serum TNF-α and IL-6 obviously. Taken together, these data indicated that SAL exerted anti-inflammatory action via down-regulating LPS-induced activation of JAK2-STAT3 pathway and suppressing STAT3 transfer into the nucleus at least in part.  相似文献   

19.
Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria. Binding of LPS to the CD14+ murine macrophage cell line RAW264.7 results in pro-inflammatory cytokine secretion. In extreme cases, it leads to septic shock in vivo. Therefore, the pursuit for molecules with antiendotoxin properties is urgent. In this study, we investigated the efficacy of antibacterial peptide CM4 in binding Escherichia coli LPS in vitro. CM4 avidly bound to E. coli LPS, as proven by the limulus amoebocyte lysate assay. Furthermore, the killing activity of CM4 against E. coli was progressively inhibited by increasing concentrations of LPS added to the medium, further confirming the peptide's affinity for endotoxin. Flow cytometric analysis revealed that CM4 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, the inhibition of peptide to LPS-dependent cytokine induction was analyzed. CM4 suppressed LPS-induced TNF-alpha and IL-6 mRNA expression and blocked release of TNF-alpha and NO following LPS challenge in RAW264.7 cells. Together these observations indicate that antibacterial peptide CM4 probably exerts protective actions against endotoxin shock by blocking the binding of LPS to CD14+ cells.  相似文献   

20.
Solid lipid nanoparticles (SLN) based on Dynasan 114 (D114) were tested using RAW 264.7 cells. The influence of different surfactants on the cytotoxicity of this type of SLN was examined, expressed as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) viability and the production of cytokines such as interleukin 6 (IL-6), IL-12 and tumour necrosis factor-alpha (TNF-alpha). Results were compared with previously obtained data when peritoneal mouse macrophages were used. SLN produced with stabilizers/surfactants such as poloxamer 188, sodium cholate, Lipoid S75, Tween 80, Poloxamine 908 and sodium dodecylsulfate were shown to be nontoxic towards RAW 264.7 cells. Cytokine production was reduced and stimulation, expressed in elevated cytokine levels, could not be found. Using cetylpyridinium chloride (CPC) as stabilizing surfactant, SLN became cytotoxic in a concentration-dependent manner. Not only were the viabilities reduced but also cytokine production. Cytotoxic effects of CPC stabilized SLN could be antagonized using cytochalasin B to block phagocytosis. D114-SLN produced with pharmaceutically accepted surfactants for intravenous injection (poloxamer 188, Lipoid S75, sodium cholate, Tween 80) were very well tolerated by the cells. Even sodium dodecylsulfate-stabilized D114-SLN did not exert toxic effects. Comparison of the RAW 264.7 data with previously obtained data from toxicity studies of D114-SLN towards peritoneal mouse macrophages showed similar results. This offers the possibility of using the RAW 264.7 cell line for cytotoxicity studies of colloidal drug carrier systems, rather than using laboratory animals as source of macrophages for these kinds of studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号