首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 CD4+-T-cell-mediated immunity is crucial for the resolution of chlamydial infection of the murine female genital tract. Previous studies demonstrating a correlation between CD4+-T-cell-mediated inhibition of chlamydial growth and gamma interferon (IFN-γ)-mediated induction of nitric oxide synthase suggested a potential role for the nitric oxide (NO) effector pathway in the clearance of Chlamydia from genital epithelial cells by the immune system. To clarify the role of this pathway, the growth levels of Chlamydia trachomatis organisms in normal (iNOS+/+) mice and in genetically engineered mice lacking the inducible nitric oxide synthase (iNOS) gene (iNOS−/− mice) were compared. There was no significant difference in the course of genital chlamydial infections in iNOS+/+ and iNOS−/− mice as determined by recovery of Chlamydia organisms shed from genital epithelial cells. Dissemination of Chlamydia to the spleen and lungs occurred to a greater extent in iNOS−/− than in iNOS+/+ mice, which correlated with a marginal increase in the susceptibility of macrophages from iNOS−/− mice to chlamydial infection in vitro. However, infections were rapidly cleared from all affected tissues, with no clinical signs of disease. The finding of minimal dissemination in iNOS−/− mice suggested that activation of the iNOS effector pathway was not the primary target of IFN-γ during CD4+-T-cell-mediated control of chlamydial growth in macrophages because previous reports demonstrated extensive and often fatal dissemination of Chlamydia in mice lacking IFN-γ. In summary, these results indicate that the iNOS effector pathway is not required for elimination of Chlamydia from epithelial cells lining the female genital tract of mice although it may contribute to the control of dissemination of C. trachomatis by infected macrophages.  相似文献   

2.
Despite the widespread use of Mycobacterium bovis BCG, the only licensed vaccine against tuberculosis (TB), TB remains a global epidemic. To assess whether more direct targeting of the lung mucosa by respiratory immunization would enhance the potency and longevity of BCG-induced anti-TB protective immunity, the long-term impact of intranasal (i.n.) BCG vaccination was compared to conventional subcutaneous (s.c.) immunization by using a mouse model of pulmonary tuberculosis. Although significantly improved protection in the lung was seen at early time points (2 and 4 months postvaccination) in i.n. BCG-immunized mice, no differences in pulmonary protection were seen 8 and 10 months postvaccination. In contrast, in all of the study periods, i.n. BCG vaccination induced significantly elevated protective splenic responses relative to s.c. immunization. At five of nine time points, we observed a splenic protective response exceeding 1.9 log10 protection relative to the s.c. route. Furthermore, higher frequencies of CD4 T cells expressing gamma interferon (IFN-γ) and IFN-γ/tumor necrosis factor alpha, as well as CD8 T cells expressing IFN-γ, were detected in the spleens of i.n. vaccinated mice. Using PCR arrays, significantly elevated levels of IFN-γ, interleukin-9 (IL-9), IL-11, and IL-21 expression were also seen in the spleen at 8 months after respiratory BCG immunization. Overall, while i.n. BCG vaccination provided short-term enhancement of protection in the lung relative to s.c. immunization, potent and extremely persistent splenic protective responses were seen for at least 10 months following respiratory immunization.  相似文献   

3.
The cell-mediated immune response has been documented to be the major protective immune mechanism in mice infected genitally with the agent of mouse pneumonitis (MoPn), a biovar of Chlamydia trachomatis. Moreover, there is strong evidence to indicate that gamma interferon (IFN-γ) is a major effector mechanism of the cell-mediated immune response. Previous studies from this laboratory have also reported that the dominant cell population in the genital tract is the CD4 Th1 population. When experiments were performed by the enzyme-linked immunospot assay, high numbers of cells producing IFN-γ were found in the genital tract, concomitant with resolution of the infection; however, in addition, an increase in IFN-γ-producing cells which were CD4 was seen early in the infection. Since natural killer (NK) cells produce IFN-γ and have been found to participate in the early responses in other infections, we hypothesized that NK cells are responsible for early IFN-γ production in the murine chlamydial model. NK cells were quantified by the standard YAC-1 cytotoxicity assay and were found to appear in the genital tract as early as 12 h after intravaginal infection with MoPn. The cells were confirmed to be NK cells by abrogation of YAC-1 cell cytotoxicity by treatment in vitro and in vivo with anti-asialo-GM1. The early IFN-γ response could also be depleted by treatment with anti-asialo-GM1, indicating that NK cells were responsible for the production of this cytokine. Of interest was our observation that depletion of NK cells also exacerbated the course of infection in the mice and elicited a Th2 response, as indicated by a marked increase in immunoglobulin G1 antibody. Thus, these data demonstrate that NK cells are not only responsible for the production of IFN-γ early in the course of chlamydial genital tract infection but are also, via IFN-γ, a significant factor in the development of the Th1 CD4 response and in the control of the infection.  相似文献   

4.
The essential role of T cells in the resolution of primary murine Chlamydia trachomatis genital tract infection is inarguable; however, much less is known about the mechanisms that confer resistance to reinfection. We previously established that CD4+ T cells and B cells contribute importantly to resistance to reinfection. In our current studies, we demonstrate that immune mice concurrently depleted of both CD4+ T cells and CD8+ T cells resisted reinfection as well as immunocompetent wild-type mice. The in vivo depletion of CD4+ and CD8+ T cells resulted in diminished chlamydia-specific delayed-type hypersensitivity responses, but antichlamydial antibody responses were unaffected. Our data indicate that immunity to chlamydial genital tract reinfection does not rely solely upon immune CD4+ or CD8+ T cells and further substantiate a predominant role for additional effector immune responses, such as B cells, in resistance to chlamydial genital tract reinfection.  相似文献   

5.
Intravaginal (ivag) or intranasal (i.n.) immunization of C57BL/6J (B6) mice with a thymidine kinase-deficient strain (tk-) of herpes simplex virus type 2 (HSV-2) resulted in comparable protection of the genital epithelium and sensory ganglia against HSV-2 challenge. In contrast, protection of these sites was much reduced in i.n.-immunized compared to ivag-immunized B cell-deficient microMT mice. Fewer HSV-specific T cells were detected in the genital epithelium of i.n.-immunized compared to ivag-immunized microMT mice after HSV-2 challenge. Passive transfer of HSV-specific serum to immune microMT mice restored protection of these sites against HSV-2 challenge. These results suggest that protection of genital and neuronal sites may be conferred by i.n. immunization but may be more dependent on antibody-dependent mechanisms than the protection resulting from genital immunization. These results have implications for immunization strategies to elicit high levels of cell-mediated protection of the genital tract and sensory ganglia.  相似文献   

6.
7.
A mouse model of ascending infection following intravaginal inoculation with a strain of Chlamydia trachomatis isolated from humans has been used to identify immune mechanisms associated with protection against genital infection. BALB/c and C3H mice differed in their susceptibilities to infection and inflammatory disease. In both mouse strains, ascension of the organism and recruitment of bone marrow-derived mononuclear leukocytes were evident in uterine tissue 1 week postinfection. By 3 weeks the organism had been cleared and inflammation had been resolved in the BALB/c mice, but both persisted in the C3H animals. In athymic nude BALB/c mice both the organism and inflammation persisted, indicating the influence of the hosts’ immune response on the outcome of infection. Both BALB/c and C3H mice had a Th1 response in draining lymph nodes, with predominant production of gamma interferon and tumor necrosis factor alpha, low levels of interleukin-10, and no detectable levels of interleukin-4. However, the composition of the early uterine infiltrate differed in these two mouse strains. Cell surface labeling and analysis of light scatter properties by flow cytometry identified a population of large, CD45+ major histocompatibility complex class II mononuclear cells, which were a prominent feature of the infiltrates in BALB/c mice but were present in significantly lower numbers in C3H mice. These cells expressed the costimulatory molecules CD86 and CD40 and stimulated allogeneic T cells, suggesting that these mononuclear cells are a population of antigen-presenting cells and that they may play a role in clearing antigen and protecting against inflammatory disease in BALB/c mice. An additional level of immunological control may thus exist in genital chlamydial infection.Chlamydia trachomatis is an obligate intracellular gram-negative bacterium which selectively colonizes epithelial cells in the human host. Infection of the genital tract with C. trachomatis serovars D through K is a major cause of sexually transmitted disease worldwide. Infection is insidious and, though often asymptomatic, can have serious consequences particularly for women. In some cases of cervical infection the organism ascends into the upper genital tract; this is a major cause of pelvic inflammatory disease with sequelae that include infertility and ectopic pregnancy (21).Left untreated, genital chlamydial infections are chronic, and repeated infections are common, indicating that the natural immune response is poorly protective. However, the incidence of genital chlamydial infection falls with increasing age; this might be due to cumulative serovar-specific immunity mediated by a local antibody (3). Antibodies can neutralize infectivity in vitro and in vivo (40) but have not been identified as the dominant protective mechanism in animal studies; antibodies play little part in protection against primary infections (12, 26, 31), although they can protect against severe pathology (7) and can play a subsidiary role in defense against reinfection (31).A predominant role for Th1 CD4+ T cells and the production of gamma interferon (IFN-γ) in controlling primary genital infection and preventing spread to other tissues has been implicated in cell transfer studies, antibody-mediated depletion experiments, and infections in gene knockout mice (8, 12, 15, 19, 30). However, in the absence of a functioning IFN-γ system a poorly defined compensatory mechanism can operate (12, 37) and a mechanism dependent on interleukin-12 (IL-12) but independent of IFN-γ may thus be important in the early stages of infection (25). IFN-γ is less important in protection against reinfection than against a primary challenge (8, 37). Thus, a successful immune response against chlamydial infection is flexible and complex, with different mechanisms involved as the infection progresses.Studies of infection in mouse strains with different susceptibilities to disease have proved useful in identifying protective immune mechanisms. We have identified mouse strain differences in disease susceptibility following intrauterine (i.u.) injection with a serovar-F strain of C. trachomatis from humans; C3H mice developed severe disease with prolonged salpingitis resulting in infertility, whereas BALB/c suffered less-severe inflammatory changes and remained fertile (32). Because direct injection of the organism into the upper genital tract did not allow us to distinguish between increased susceptibility to infection and sensitivity to pathological reactions, we developed a model of ascending infection following intravaginal (i.vag.) inoculation of this strain of C. trachomatis. Ascension of the organism into the uterus and oviducts of C3H mice was detected in association with inflammatory changes in genital tract tissue (29).In the present study we compare ascending infections in C3H and BALB/c mice and report increased susceptibility in C3H mice despite the development of a predominantly Th1 response and the production of IFN-γ in the lymph nodes of both mouse strains. Instead, clearance of the organism and protection against inflammatory disease appeared to be associated with recruitment of major histocompatibility complex (MHC) class II antigen-presenting cells (APC) into uterine tissue early in infection. These cells may possibly play a role in the defense against genital chlamydial infection.  相似文献   

8.
Sublingual (SL) immunization has been described as an effective novel way to induce mucosal immune responses in the respiratory and genital tracts. We examined the potential of SL immunization against Helicobacter pylori to stimulate immune responses in the gastrointestinal mucosa and protect against H. pylori infection. Mice received two SL immunizations with H. pylori lysate antigens and cholera toxin as an adjuvant, and after challenge with live H. pylori bacteria, their immune responses and protection were evaluated, as were immune responses prior to challenge. SL immunization induced enhanced proliferative responses to H. pylori antigens in cervicomandibular lymph nodes and provided at least the same level of immune responses and protection as corresponding intragastric immunization. Protection in SL-immunized mice was associated with strong H. pylori-specific serum IgG and IgA antibody responses in the stomach and intestine, with strong proliferation and gamma interferon (IFN-γ) and interleukin-17 (IL-17) production by spleen and mesenteric lymph node T cells stimulated with H. pylori antigens in vitro, and with increased IFN-γ and IL-17 gene expression in the stomach compared to levels in infected unimmunized mice. Immunohistochemical studies showed enhanced infiltration of CD4+ T cells and CD19+ B cells into the H. pylori-infected stomach mucosa of SL-immunized but not unimmunized H. pylori-infected mice, which coincided with increased expression of the mucosal addressin cell adhesion molecule (MAdCAM-1) and T and B cell-attracting chemokines CXCL10 and CCL28. We conclude that, in mice, SL immunization can effectively induce protection against H. pylori infection in association with strong T and B cell infiltration into the stomach.At least half of the world''s population is infected with Helicobacter pylori, one of the few microorganisms known to be able to colonize the human stomach. In 10 to 15% of infected individuals, chronic H. pylori infection causes duodenal ulcers, and infection with H. pylori has been shown to be a strong risk factor for the development of gastric adenocarcinoma and malignant mucosa-associated lymphomas (3, 17, 20). Although treatment with a combination of antibiotics and a proton pump inhibitor is usually effective in individual cases, limited treatment compliance, rapidly emerging antibiotic resistance, and frequent reinfection with H. pylori in countries where it is highly endemic make vaccination an increasingly attractive alternative or complement to standard therapy.Vaccination, given either preventively or therapeutically, is especially needed in countries with a high incidence of gastric cancer (20), reinfection (22), or antibiotic resistance. However, clinical trials of various oral or parenteral H. pylori vaccine candidates have not shown much promise to date, pointing to the need for identifying improved antigen-adjuvant formulations and/or alternative routes of immunization in the quest for an effective vaccine against H. pylori (33).The importance of cell-mediated mucosal immunity in protection against experimental H. pylori infection after vaccination is well established (1, 9, 10, 23, 35). In most studies, intragastric (IG) immunization has been used to achieve efficient stimulation of the gastrointestinal immune response. However, this route usually requires large amounts of antigen for efficient immunization, and the environment in the stomach and intestine may have adverse effects on the antigens and adjuvants used. Intranasal immunization against H. pylori has also been used in mice, but studies in humans have indicated that the nasal route of immunization is ineffective in stimulating immune responses in the intestine or stomach (12). In addition, intranasal immunization is associated with a risk of translocation of some types of antigens or adjuvants to the olfactory bulb of the brain, restricting its applicability in humans (31, 34).Sublingual (SL) immunization has recently emerged as an attractive novel approach for mucosal vaccination against pathogens (7, 8, 31). In a model of influenza virus infection, SL immunization with live or adjuvanted killed virus induced immune responses and protection against aerosol challenge with live virus. In contrast to intranasal immunization, SL immunization had no evidence of vaccine or adjuvant entering the brain (31). In another study, SL immunization was found to induce vaccine-specific antibody and T cell responses in the genital tract and, after SL immunization with human papillomavirus (HPV)-like particles, protection against genital HPV infection, indicating the potential of SL immunization to stimulate immune responses also in nonrespiratory mucosal tissues (7).In the present study, we examined whether SL immunization in mice can induce a mucosal immune response in the gastrointestinal tract. More specifically, we addressed the potential of SL immunization with H. pylori antigen and cholera toxin (CT) adjuvant to stimulate T and B cell responses in the stomach and protect against H. pylori infection. Our findings demonstrate that SL immunization induces strong systemic and stomach mucosal antibody and T cell responses and a high level of protection against H. pylori challenge. After SL immunization and H. pylori challenge, the stomach mucosa showed infiltration of both CD4+ T cells and CD19+ B cells and increased expression of gamma interferon (IFN-γ) and interleukin-17 (IL-17) compared to unimmunized infected mice. This was associated with increased expression of both the mucosal addressin cell adhesion molecule (MAdCAM-1) integrin and chemokines CXCL10 (10-kDa IFN-γ-induced protein) and CCL28 (mucosa-associated epithelial chemokine) in the immunized mice, which probably facilitated the migration of immunization-induced CD4+ T cells and CD19+ B cells into the stomach mucosa. Our results indicate that SL immunization against H. pylori effectively induces a strong immune response in the gastrointestinal tract mucosa and protects against infection, providing an attractive novel way of vaccinating against H. pylori infection.  相似文献   

9.
Cell-mediated immune (CMI) responses play a major role in protection as well as pathogenesis of many intracellular bacterial infections. In this study, we evaluated the infection kinetics and assessed histologically the lymphoid reactions and local, in vitro-restimulated CMI responses in lungs of BALB/c mice, during both primary infection and reinfection with Chlamydia pneumoniae. The primary challenge resulted in a self-restricted infection with elimination of culturable bacteria by day 27 after challenge. A mild lymphoid reaction characterized the pathology in the lungs. In vitro CMI responses consisted of a weak proliferative response and no secretion of gamma interferon (IFN-γ). The number of lung-derived mononuclear cells increased substantially during the primary infection; the largest relative increase was observed in B cells (B220+). After reinfection, the number of lung-derived mononuclear cells increased further, and the response consisted mainly of T cells. The reinfection was characterized in vivo by significant protection from infection (fewer cultivable bacteria in the lungs for a shorter period of time) but increased local lymphoid reaction at the infection site. In vitro, as opposed to the response in naive mice, acquired immunity was characterized by a strongly Th1-biased (IFN-γ) CMI response. These results suggest that repeated infections with C. pneumoniae may induce Th1-type responses with similar associated tissue reactions, as shown in C. trachomatis infection models.  相似文献   

10.
In this study, we used mice in which the gene for gamma interferon (IFN-γ) has been disrupted (IFN-γ−/− mice) to study the role of this cytokine in the resolution of Chlamydia trachomatis infection. We show that IFN-γ−/− mice are impaired in the ability to clear infection with C. trachomatis compared to IFN-γ+/+ control mice. Activated CD8+ cytotoxic T lymphocytes (CTL) secrete IFN-γ in response to intracellular infection, and we have shown previously that a Chlamydia-specific CTL line can reduce C. trachomatis infection when adoptively transferred into infected mice. In the present study, we found that when these IFN-γ+/+ CTL lines are transferred into Chlamydia-infected IFN-γ−/− mice, the transferred CTL cannot overcome the immune defect seen in the IFN-γ−/− mice. We also show that Chlamydia-specific CTL can be cultured from IFN-γ-deficient mice infected with C. trachomatis; however, the adoptive transfer of IFN-γ−/− CTL into infected IFN-γ+/+ mice does not reduce the level of infection. These results suggest that IFN-γ production by CTL is not sufficient to overcome the defect that IFN-γ−/− mice have in the resolution of Chlamydia infection, yet IFN-γ production by CTL is required for the protective effect seen upon adoptive transfer of CTL into IFN-γ+/+ mice.  相似文献   

11.
Intravaginal infection with Chlamydia muridarum in mice can ascend to the upper genital tract, resulting in hydrosalpinx, a pathological hallmark for tubal infertility in women infected with C. trachomatis. Here, we utilized in vivo imaging of C. muridarum infection in mice following an intravaginal inoculation and confirmed the rapid ascent of the chlamydial organisms from the lower to upper genital tracts. Unexpectedly, the C. muridarum-derived signal was still detectable in the abdominal area 100 days after inoculation. Ex vivo imaging of the mouse organs revealed that the long-lasting presence of the chlamydial signal was restricted to the gastrointestinal (GI) tract, which was validated by directly measuring the chlamydial live organisms and genomes in the same organs. The C. muridarum organisms spreading from the genital to the GI tracts were detected in different mouse strains and appeared to be independent of oral or rectal routes. Mice prevented from orally taking up excretions also developed the long-lasting GI tract infection. Inoculation of C. muridarum directly into the upper genital tract, which resulted in a delayed vaginal shedding of live organisms, accelerated the chlamydial spreading to the GI tract. Thus, we have demonstrated that the genital tract chlamydial organisms may use a systemic route to spread to and establish a long-lasting infection in the GI tract. The significance of the chlamydial spreading from the genital to GI tracts is discussed.  相似文献   

12.
Endogenous interleukin-12 (IL-12) mediates protection against Yersinia enterocolitica in C57BL/6 mice by triggering gamma interferon (IFN-γ) production in NK and CD4+ T cells. Administration of exogenous IL-12 confers protection against yersiniae in Yersinia-susceptible BALB/c mice but exacerbates yersiniosis in resistant C57BL/6 mice. Therefore, we wanted to dissect the different mechanisms exerted by IL-12 during Yersinia infections by using different models of Yersinia-resistant and -susceptible mice, including resistant C57BL/6 mice, susceptible BALB/c mice, intermediate-susceptible wild-type 129/Sv mice, 129/Sv IFN-γ-receptor-deficient (IFN-γR−/−) mice and C57BL/6 tumor necrosis factor (TNF) receptor p55 chain-deficient (TNFR p55−/−) mice. IFN-γR−/− mice turned out to be highly susceptible to infection by Y. enterocolitica compared with IFN-γR+/+ mice. Administration of IL-12 was protective in IFN-γR+/+ mice but not in IFN-γR−/− mice, suggesting that IFN-γR-induced mechanisms are essential for IL-12-induced resistance against yersiniae. BALB/c mice could be rendered Yersinia resistant by administration of anti-CD4 antibodies or by administration of IL-12. In contrast, C57BL/6 mice could be rendered more resistant by administration of transforming growth factor β (TGF-β). Furthermore, IL-12-triggered toxic effects in C57BL/6 mice were abrogated by coadministration of TGF-β. While administration of IL-12 alone increased TNF-α levels, administration of TGF-β or TGF-β plus IL-12 decreased both TNF-α and IFN-γ levels in Yersinia-infected C57BL/6 mice. Moreover, IL-12 did not induce toxicity in Yersinia-infected TNFR p55−/− mice, suggesting that TNF-α accounts for IL-12-induced toxicity. Taken together, IL-12 may induce different effector mechanisms in BALB/c and C57BL/6 mice resulting either in protection or exacerbation. These results are important for understanding the critical balance of proinflammatory and regulatory cytokines in bacterial infections which is decisive for beneficial effects of cytokine therapy.  相似文献   

13.
Chlamydia trachomatis infection induces inflammatory pathologies in the upper genital tract, potentially leading to ectopic pregnancy and infertility in the affected women. Caspase-1 is required for processing and release of the inflammatory cytokines interleukin-1β (IL-1β), IL-18, and possibly IL-33. In the present study, we evaluated the role of caspase-1 in chlamydial infection and pathogenesis. Although chlamydial infection induced caspase-1 activation and processing of IL-1β, mice competent and mice deficient in caspase-1 experienced similar courses of chlamydial infection in their urogenital tracts, suggesting that Chlamydia-activated caspase-1 did not play a significant role in resolution of chlamydial infection. However, when genital tract tissue pathologies were examined, the caspase-1-deficient mice displayed much reduced inflammatory damage. The reduction in inflammation was most obvious in the fallopian tube tissue. These observations demonstrated that although caspase-1 is not required for controlling chlamydial infection, caspase-1-mediated responses can exacerbate the Chlamydia-induced inflammatory pathologies in the upper genital tract, suggesting that the host caspase-1 may be targeted for selectively attenuating chlamydial pathogenicity without affecting the host defense against chlamydial infection.  相似文献   

14.
J Thatte  S Rath    V Bal 《Infection and immunity》1995,63(1):99-103
In examinations of the factors regulating the quality and quantity of the immune response to Salmonella typhimurium, we have shown previously that live and heat-killed preparations of S. typhimurium can induce gamma interferon-dominant and interleukin-4-dominant immune responses, respectively, upon intraperitoneal (i.p.) immunization of BALB/c mice. Using this system to investigate the role of the route of immunization in the immune response, we show in the present study that i.p. immunization with heat-killed S. typhimurium generates a quantitatively better immune response than does intradermal (i.d.) immunization. The quantitative differences observed between the i.p. and i.d. routes are apparent in the amount of S. typhimurium-specific antibodies produced, the extent of responses in T-cell proliferation assays, and the quantities of lymphokines generated. However, the ratios of immunoglobulin (Ig) isotypes [IgG1/IgG2a] are comparable and the relative dominance of interleukin-4 over gamma interferon is seen in both i.p.- and i.d.-immunized mice, suggesting that the predominant T-cell effector pathways triggered are not qualitatively dependent on the route of immunization. An examination of the antigenic profile recognised by the B-cell and T-cell responses in i.p.- versus i.d.-immunized mice shows that while the Western immunoblot patterns recognized by serum antibodies from the two groups of mice were not significantly different, T cells from i.p.-immunized mice recognized a broader spectrum of antigens in an immunoblot assay than did those from i.d.-immunized mice. These data suggest that there may be a significant difference in the antigen-processing ability of peritoneal and dermal antigen-presenting cells for complex antigenic formulations such as bacterial vaccines.  相似文献   

15.
The effects of gamma interferon (IFN-γ) on Chlamydia trachomatis growth in polarized epithelial cells were examined. The range of IFN-γ concentrations causing aberrant chlamydial growth was wider in polarized than in nonpolarized cultures. Results indicate that chlamydial growth modulation in polarized cells readily leads to persistence and better reflects in vivo conditions.  相似文献   

16.
To determine the optimal inductive sites for immunization against Helicobacter pylori infection, the protective efficacy of recombinant urease (rUre) was assessed for mice given the vaccine by either the oral (p.o.), intranasal (i.n.), or rectal route. When mice were immunized with rUre (25 μg p.o. or rectally or 10 μg i.n.) plus heat-labile toxin from Escherichia coli as the mucosal adjuvant, all routes afforded protection against challenge with H. pylori, as indicated by a significant reduction in gastric urease activity (P < 0.0005) compared to that of sham-immunized controls. Quantitative H. pylori culture of stomach tissue demonstrated a >97% reduction in bacterial burden in mice immunized by all routes (P < 0.05). Induction of antiurease immunoglobulin A (IgA) levels in gastric luminal secretions after p.o. immunization was greater than after i.n. administration (means, 6.0 and 1.02 ng/ml, respectively) and was dependent upon challenge with H. pylori. However, immunization by the rectal route resulted in the generation of the highest levels of gastric antiurease IgA (mean, 40.89 ng/ml), which was detectable prior to challenge with H. pylori. Immunohistochemical staining of stomach tissue for cells secreting urease-specific antibody and CD4+ T cells showed levels of recruitment to be dependent upon challenge with H. pylori and equivalent for all routes. These results identify both the rectum and nasal passages as suitable inductive sites for urease immunization.  相似文献   

17.
The resolution of primary and secondary chlamydial genital infection in immunoglobulin A (IgA)-deficient (IgA(-/-)) mice was not different from that in IgA(+/+) mice. Furthermore, depletion of either CD4(+) or CD8(+) T cells prior to reinfection of IgA(+/+) or (-/-) mice had limited impact on immunity to reinfection. Thus, although antibody contributes importantly to immunity to chlamydial genital tract reinfection, IgA antibodies are not an absolute requirement of that protective response.  相似文献   

18.
The significance of delivery systems in modern vaccine design strategies is underscored by the fact that a promising vaccine formulation may fail in vivo due to an inappropriate delivery method. We evaluated the immunogenicity and efficacy of a candidate vaccine comprising the major outer membrane protein (MOMP) of Chlamydia trachomatis delivered with the lipophilic immune response-stimulating complexes (ISCOMs) as a vehicle with adjuvant properties, in a murine model of chlamydial genital infection. Immunocompetent BALB/c mice were immunized intranasally (IN) or intramuscularly (IM) with MOMP, MOMP-ISCOMs, and live or heat-inactivated C. trachomatis serovar D. The level of local genital mucosal Th1 response was measured by assaying for antigen-specific Th1 cell induction and recruitment into the genital mucosa at different times after immunization. Immunization with MOMP-ISCOMs by the IM route induced the greatest and fastest local genital mucosal Th1 response, first detectable 2 weeks after exposure. Among the other routes and regimens tested, only IN immunization with MOMP-ISCOMs induced detectable and statistically significant levels of local genital mucosal Th1 response during the 8-week test period (P < 0.001). In addition, when T cells from immunized mice were adoptively transferred into syngeneic naive animals and challenged intravaginally with Chlamydia, recipients of IM immunization of MOMP-ISCOMs cleared their infection within 1 week and were resistant to reinfection. Animals that received IN immunization of MOMP-ISCOMs were partially protected, shedding fewer chlamydiae than did control mice. Altogether, the results suggested that IM delivery of MOMP-ISCOMs may be a suitable vaccine regimen potentially capable of inducing protective mucosal immunity against C. trachomatis infection.  相似文献   

19.
The p35 molecule is unique to interleukin-12 (IL-12), while p40 is shared by both IL-12 and IL-23. IL-12 promotes Th1 T cell responses, while IL-23 promotes Th17 T cell responses. The roles of IL-12p35- and IL-12p40-mediated responses in chlamydial infection were compared in mice following an intravaginal infection with Chlamydia muridarum. Mice deficient in either IL-12p35 or p40 both developed similar but prolonged infection time courses, confirming the roles of IL-12-mediated immune responses in clearing primary infection. However, all mice, regardless of genotype, cleared reinfection within 2 weeks, suggesting that an IL-12- or IL-23-independent adaptive immunity is protective against chlamydial infection. All infected mice developed severe oviduct hydrosalpinx despite the increased Th2 responses in IL-12p35- or IL-12p40-deficient mice, suggesting that Th2-dominant responses can contribute to Chlamydia-induced inflammatory pathology. Compared to IL-12p35 knockout mice, the IL-12p40-deficient mice exhibited more extensive spreading of chlamydial organisms into kidney tissues, leading to significantly increased incidence of pyelonephritis, which both confirms the role of IL-12 or IL-23-independent host responses in Chlamydia-induced pathologies and suggests that in the absence of IL-12/IFN-γ-mediated Th1 immunity, an IL-23-mediated response may play an important role in restricting chlamydial organisms from spreading into distal organs. These observations together provide important information for both understanding chlamydial pathogenesis and developing anti-Chlamydia vaccines.  相似文献   

20.
We have previously demonstrated the efficacy of recombinant chlamydial protease-like activity factor (rCPAF; a secreted chlamydial protein) in inducing antigen-specific CD4+ T cell/gamma interferon (IFN-γ)-mediated but not antibody-mediated chlamydial clearance and reduction of upper genital tract (UGT) pathological sequelae. Since chlamydial integral antigens may induce neutralizing antibody protection, we further evaluated induction of protective immunity using a combination of rCPAF and UV-inactivated chlamydial elementary bodies (UV-EB) against vaginal chlamydial challenge in comparison to immunization with the individual components or live EB. The rCPAF-UV-EB immunization induced a significantly enhanced anti-UV-EB cellular and antibody response and a reduced anti-CPAF cellular and antibody response, compared to immunization with the respective individual components. Moreover, vaccination with UV-EB and rCPAF-UV-EB induced serum antibodies that neutralized chlamydial infectivity. The rCPAF-UV-EB immunization resulted in a significant reduction of vaginal chlamydial shedding and induced earlier bacterial clearance than vaccination of mice with the individual components. Importantly, the UGT sequelae were significantly reduced in mice immunized with rCPAF or rCPAF-UV-EB, but not in those immunized with UV-EB alone, and approached the levels of protection induced by live EB. These results collectively suggest that a combination of neutralizing antibodies induced by integral chlamydial antigens and cell-mediated responses induced by secreted proteins such as CPAF induces optimal protective immunity against genital chlamydial infections.There is currently no licensed vaccine against Chlamydia trachomatis, the leading cause of bacterial sexually transmitted disease worldwide (2, 16). We have previously demonstrated the efficacy of recombinant chlamydial protease-like activity factor (rCPAF) in inducing protective immunity against genital chlamydial challenge (23). Immunization using rCPAF with a T helper 1 (Th1)-type adjuvant induces significantly enhanced bacterial clearance and robust protection against upper genital tract (UGT) pathology following vaginal challenge with homologous or heterologous serovars/species of Chlamydia (5, 6, 23). The high degree of cross-serovar/species protection against UGT sequelae highlights the importance of further characterizing the potential of rCPAF as a component of an antichlamydial vaccine for humans (25). rCPAF-vaccinated mice display significant protection against UGT chlamydial sequelae and clear the bacteria with significantly accelerated kinetics, achieving complete clearance by day 18 (day 30 in mock-vaccinated mice) after challenge. However, vaginal bacterial shedding in rCPAF-vaccinated mice is comparable to the level for mock-vaccinated controls during the initial week after challenge (6, 23). Such enhanced clearance kinetics, in the absence of resistance to infection, may be attributed to the dependence of the protective response on gamma interferon (IFN-γ)-producing CPAF-specific CD4+ T cells (15), a limited role for anti-CPAF antibody (22), and the restriction of CPAF to replicating reticulate bodies.Chlamydia muridarum infection in mice induces a high level of protective immune responses, including a certain degree of resistance to reinfection, mediated by robust IFN-γ-producing CD4+ T cell responses (4, 11-13, 16, 17, 20, 28-31, 34) and antibodies (16,18-20). A single immunogenic subunit that induces protective immunity comparable to that induced by live, replicating chlamydial organisms has yet to be identified (2, 16, 25). The immunogenic proteins that serve as targets for antibody and T cell responses may be broadly categorized, albeit with some overlap, as proteins that are integral to the chlamydial organism and those that are secreted from the organism, respectively. Specifically, proteins integral to the chlamydial organism would likely serve as targets for neutralizing infectivity extracellularly but may not be candidates of choice for eliciting T cell-mediated killing, due to the sturdy inclusion membrane barrier between the organisms and antigen-presentation pathways during the intracellular developmental cycle (25). On the other hand, secreted proteins such as CPAF are not present on the infectious chlamydial elementary body (EB) and therefore would not be expected to serve as targets for neutralizing chlamydial infectivity (25). However, proteins secreted into the host cytosol, and thereafter into extracellular compartments, may serve as exogenous antigens and a suitable target for CD4+ T cell-mediated effector responses (25, 37). Thus, it would appear that both integral and secreted proteins of Chlamydia may serve as targets for complementary immune responses and that the greatest potential for successful vaccination could be derived by combining them in a multisubunit vaccine.In this study, we compared the protective immunities induced by intranasal (i.n.) immunization with rCPAF, UV-inactivated EBs (UV-EB), rCPAF-UV-EB, or live EB against genital C. muridarum challenge in female BALB/c mice. The combination of integral and secreted proteins enhanced protective immunity compared to the individual components and approached the high level of protection induced by live, replicating chlamydial organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号