首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD28/B7 co-stimulation blockade with belatacept prevents alloreactivity in kidney transplant patients. However, cells lacking CD28 are not susceptible to belatacept treatment. As CD8+CD28 T-cells have cytotoxic and pathogenic properties, we investigated whether mesenchymal stem cells (MSC) are effective in controlling these cells. In mixed lymphocyte reactions (MLR), MSC and belatacept inhibited peripheral blood mononuclear cell (PBMC) proliferation in a dose-dependent manner. MSC at MSC/effector cell ratios of 1:160 and 1:2·5 reduced proliferation by 38·8 and 92·2%, respectively. Belatacept concentrations of 0·1 μg/ml and 10 μg/ml suppressed proliferation by 20·7 and 80·6%, respectively. Both treatments in combination did not inhibit each other''s function. Allostimulated CD8+CD28 T cells were able to proliferate and expressed the cytolytic and cytotoxic effector molecules granzyme B, interferon (IFN)-γ and tumour necrosis factor (TNF)-α. While belatacept did not affect the proliferation of CD8+CD28 T cells, MSC reduced the percentage of CD28 T cells in the proliferating CD8+ T cell fraction by 45·9% (P = 0·009). CD8+CD28 T cells as effector cells in MLR in the presence of CD4+ T cell help gained CD28 expression, an effect independent of MSC. In contrast, allostimulated CD28+ T cells did not lose CD28 expression in MLR–MSC co-culture, suggesting that MSC control pre-existing CD28 T cells and not newly induced CD28 T cells. In conclusion, alloreactive CD8+CD28 T cells that remain unaffected by belatacept treatment are inhibited by MSC. This study indicates the potential of an MSC–belatacept combination therapy to control alloreactivity.  相似文献   

2.
Effector T‐cell responses can be modulated by competing positive or negative signals transduced by NK‐cell receptors (NKR). In the CD4+ T‐cell population, the expression of NKR is primarily found in the CD4+CD28 T‐cell subset, also known as CD28null T cells. These T cells are frequently found in rheumatoid arthritis (RA) and other inflammatory disorders, suggesting that signaling through NKR may play a role in the autoimmune reaction. Here we aimed to dissect the phenotype and function of NKR‐expressing CD4+CD28 T cells in patients with RA. By analyzing a broad array of NKR on CD4+CD28 T cells we found a significant expression of the co‐activating receptors 2B4 (CD244), DNAM‐1 (CD226), and CRACC. Pair‐wise ligations of 2B4 with DNAM‐1 and/or NKG2D lead to increased effector functions of primary CD4+CD28 T cells to suboptimal levels of anti‐CD3 stimulation. Using multi‐parameter flow cytometry, we demonstrate that such co‐ligation led to an increased magnitude in overall responsiveness without changing qualitative aspects of the response. Altogether these results demonstrate a pattern of additive effects in NKR‐mediated functional modulation of CD4+CD28 T cells in RA. This may have consequences for the inflammatory responses imposed by these cells, thus influencing disease manifestations.  相似文献   

3.
We have previously demonstrated that CD4+ CD25+ natural regulatory T cells (Treg cells) induce down-modulation of CD80 and CD86 (B7) molecules on dendritic cells (DCs) in vitro. In this report we show that the extent of down-modulation is functionally significant because Treg-cell conditioned DCs induced poor T-cell proliferation responses. Further, we report that down-modulation was induced rapidly and was inhibited by blocking cytotoxic T lymphocyte antigen-4 (CTLA-4), which is constitutively expressed by the Treg cells. Even though Treg cells have previously been reported to kill antigen-presenting cells, the down-modulation was not due to selective killing of DCs expressing high level of the costimulatory molecules. We propose that Treg cells down-modulate B7-molecules on DCs in a CTLA-4-dependent way, thereby enhancing suppression of T-cell activity.  相似文献   

4.
Cardiomyopathy is the most severe outcome of Chagas disease, causing more than 12 000 deaths/year. Immune cells participate in cardiomyopathy development either by direct tissue destruction, or by driving inflammation. We have shown that CD4CD8 [double‐negative (DN)] T cells are major sources of inflammatory and anti‐inflammatory cytokines, associated with the cardiac (CARD) and indeterminate (IND) forms of Chagas disease, respectively. Here, we sought to identify Trypanosoma cruzi‐derived components that lead to activation of DN T cells in Chagas patients. Glycolipid (GCL), lipid (LIP) and protein‐enriched (PRO) fractions derived from trypomastigote forms of T. cruzi were utilized to stimulate cells from IND and CARD patients to determine DN T cell activation by evaluating CD69 and cytokine expression. We observed that GCL, but not LIP or PRO fractions, induced higher activation of DN T cells, especially T cell receptor (TCR)‐γδ DN T, from IND and CARD. GCL led to an increase in tumour necrosis factor (TNF) and interleukin (IL)‐10 expression by TCR‐γδ DN T cells from IND, while inducing IFN‐γ expression by TCR‐γδ DN T cells from CARD. This led to an increase in the ratio IFN‐γ/IL‐10 in TCR‐γδ DN T cells from CARD, favouring an inflammatory profile. These results identify GCL as the major T. cruzi component responsible for activation of DN T cells in chronic Chagas disease, associated predominantly with an inflammatory profile in CARD, but not IND. These findings may have implications for designing new strategies of control or prevention of Chagas disease cardiomyopathy by modulating the response to GCL.  相似文献   

5.
6.
Intravenous immunoglobulin (IVIg) is successfully used in the treatment of autoimmune diseases involving self‐reactive CD8+ T cells. However, its direct influence on the cytotoxic response remains unknown. Using an antigen cross‐presentation assay and a mouse model of ovalbumin (OVA) immunization, we showed that IVIg decreases the in vitro activation, proliferation and cytokine secretion of OVA‐specific CD8+ T cells (OT‐I), as well as the in vivo generation of OVA‐specific CD8+ T cells. In addition, IVIg significantly decreases the proportion of perforin‐ and CD107a‐expressing CD8+ T cells, and inhibits the cytotoxic activity of OVA‐activated OT‐I cells. The interference of IVIg with the CD8+ T‐cell response is associated with T‐cell receptor blockade, therefore reducing the interaction between effector and target cells. A similar blockade is observed on human CD8+ T cells, suggesting that the observations reported here could apply to the IVIg‐mediated improvement of CD8+ T‐cell‐mediated autoimmune conditions in human patients.  相似文献   

7.
8.
The gut microbiota provides an important stimulus for the induction of regulatory T (Treg) cells in mice, whether this applies to newborn children is unknown. In Swedish children, Staphylococcus aureus has become a common early colonizer of the gut. Here, we sought to study the effects of bacterial stimulation on neonatal CD4+ T cells for the induction of CD25+ CD127low Treg cells in vitro. The proportion of circulating CD25+ CD127low Treg cells and their expression of FOXP3, Helios and CTLA‐4 was examined in newborns and adults. To evaluate if commensal gut bacteria could induce Treg cells, CellTrace violet‐stained non‐Treg cells from cord or peripheral blood from adults were co‐cultured with autologous CD25+ CD127low Treg cells and remaining mononuclear cells and stimulated with S. aureus. Newborns had a significantly lower proportion of CD25+ CD127low Treg cells than adults, but these cells were Helios+ and CTLA‐4+ to a higher extent than in adults. FOXP3+ CD25+ CD127low T cells were induced mainly in neonatal CellTrace‐stained non‐Treg cells after stimulation with S. aureus. In cell cultures from adults, S. aureus induced CD25+ CD127low T cells only if sorted naive CD45RA+ non‐Treg cells were used, but these cells expressed less FOXP3 than those induced from newborns. Sorted neonatal CD25+ CD127low T cells from S. aureus‐stimulated cultures were still suppressive. Finally, blocking PD‐L1 during stimulation reduced the induction of FOXP3+ CD25+ CD127low T cells. These results suggest that newborns have a higher proportion of circulating thymically derived Helios+ Treg cells than adults and that S. aureus possess an ability to convert neonatal conventional CD4+ T cells into FOXP3+ CD25+ CD127low Treg cells via the PD‐1/PD‐L1 axis.  相似文献   

9.
The generation and maintenance of immune responses are controlled by both co‐stimulatory and co‐inhibitory signalling through T cell co‐receptors, many of which belong to the immunoglobulin‐like superfamily or the tumour necrosis factor receptor superfamily. Agonistic or antagonistic monoclonal antibodies targeting these co‐receptors have the potential to enhance immunity. Furthermore, their activity on the immunosuppressive regulatory T cell populations which are prevalent within many tumours provides an additional rationale for their use as anti‐cancer therapies. This review summarizes the interactions between cancer and the immune system, highlighting the ways in which these new classes of immunostimulatory antibodies might enhance anti‐tumour immunity and summarizing early clinical experience with their use.  相似文献   

10.
Ageing is associated with changes in the peripheral T cell immune system, which can be influenced significantly by latent cytomegalovirus (CMV) infection. To what extent changes in circulating T cell populations correlate with T cell composition of the lymph node (LN) is unclear, but is crucial for a comprehensive understanding of the T cell system. T cells from peripheral blood (PB) and LN of end‐stage renal disease patients were analysed for frequency of recent thymic emigrants using CD31 expression and T cell receptor excision circle content, relative telomere length and expression of differentiation markers. Compared with PB, LN contained relatively more CD4+ than CD8+ T cells (P < 0·001). The percentage of naive and central memory CD4+ and CD8+ T cells and thymic output parameters showed a strong linear correlation between PB and LN. Highly differentiated CD28null T cells, being CD27, CD57+ or programmed death 1 (PD‐1+), were found almost exclusively in the circulation but not in LN. An age‐related decline in naive CD4+ and CD8+ T cell frequency was observed (P = 0·035 and P = 0·002, respectively) within LN, concomitant with an increase in central memory CD8+ T cells (P = 0·033). Latent CMV infection increased dramatically the frequency of circulating terminally differentiated T cells, but did not alter T cell composition and ageing parameters of LN significantly. Overall T cell composition and measures of thymic function in PB and LN are correlated strongly. However, highly differentiated CD28null T cells, which may comprise a large part of circulating T cells in CMV‐seropositive individuals, are found almost exclusively within the circulation.  相似文献   

11.
Regulatory T (Treg) cells act to suppress activation of the immune system and thereby maintain immunological homeostasis and tolerance to self-antigens. The frequency and suppressing activity of Treg cells in general are high in different malignancies. We wanted to identify the role and regulation of CD4+ CD25+ FoxP3+ Treg cells in B-cell acute lymphoblastic leukaemia (B-ALL). We have included patients at diagnosis (= 54), patients in clinical remission (= 32) and normal healthy individuals (= 35). These diagnosed patients demonstrated a lower number of CD4+ CD25+ cells co-expressing a higher level of FoxP3, interleukin-10, transforming growth factor-β and CD152/CTLA-4 than the normal population. Treg cells from patients showed a higher suppressive capability on CD4+ CD25 responder T (Tresp) cells than normal. The frequency and immunosuppressive potential of CD4+ CD25+ FoxP3+ Treg cells became high with the progression of malignancy in B-ALL. Relative distribution of Tresp and Treg cells was only ˜5 : 1 in B-ALL but ˜35 : 1 in normal healthy individuals, further confirming the elevated immunosuppression in patients. A co-culture study at these definite ex vivo ratios, indicated that Treg cells from B-ALL patients exhibited higher immunosuppression than Treg cells from normal healthy individuals. After chemotherapy using the MCP841 protocol, the frequency of CD4+ CD25+ cells was gradually enhanced with the reduction of FoxP3, interleukin-10 positivity corresponded with disease presentation, indicating reduced immunosuppression. Taken together, our study indicated that the CD4+ CD25+ FoxP3+ Treg cells played an important role in immunosuppression, resulting in a positive disease-correlation in these patients. To the best of our knowledge, this is the first detailed report on the frequency, regulation and functionality of Treg cells in B-ALL.  相似文献   

12.
《Immunology》2017,152(1):52-64
Dendritic cells (DCs) in mesenteric lymph nodes (MLNs) induce Foxp3+ regulatory T cells to regulate immune responses to beneficial or non‐harmful agents in the intestine, such as commensal bacteria and foods. Several studies in MLN DCs have revealed that the CD103+ DC subset highly induces regulatory T cells, and another study has reported that MLN DCs from programmed death ligand 1 (PD‐L1) ‐deficient mice could not induce regulatory T cells. Hence, the present study investigated the expression of these molecules on MLN CD11c+ cells. Four distinct subsets expressing CD103 and/or PD‐L1 were identified, namely CD11b+ CD103+ PD‐L1High, CD11b CD103+ PD‐L1High, CD11b CD103+ PD‐L1Low and CD11b+ CD103 PD‐L1Int. Among them, the CD11b CD103+ PD‐L1High DC subset highly induced Foxp3+ T cells. This subset expressed Aldh1a2 and Itgb8 genes, which are involved in retinoic acid metabolism and transforming growth factor‐β (TGF‐β) activation, respectively. Exogenous TGF‐β supplementation equalized the level of Foxp3+ T‐cell induction by the four subsets whereas retinoic acid did not, which suggests that high ability to activate TGF‐β is determinant for the high Foxp3+ T‐cell induction by CD11b CD103+ PD‐L1High DC subset. Finally, this subset exhibited a migratory DC phenotype and could take up and present orally administered antigens. Collectively, the MLN CD11b CD103+ PD‐L1High DC subset probably takes up luminal antigens in the intestine, migrates to MLNs, and highly induces regulatory T cells through TGF‐β activation.  相似文献   

13.
For many years, tonsillectomy has been used routinely in children to treat chronic or recurrent acute tonsillitis. Palatine tonsils are secondary lymphoid organs and the major barrier protecting the digestive and respiratory tracts from potential invasive microorganisms. They have been used as sources of lymphoid tissue; however, despite the hundreds of papers published on tonsillectomy, no studies addressing the functionality of the CD4(+) and CD8(+) T cells from chronically infected tonsils have yet been published. The aim of this study was to analyse the functionality of the CD4(+) and CD8(+) T cells with respect to tonsillar tissue. We used an affordable approach to measure the frequency of antigen-specific CD4(+) T cells, the direct ex-vivo cytotoxicity of CD8(+) T cells, memory T cell phenotype, cytokine profile and DC phenotype. Our results demonstrate that CD4(+) and CD8(+) T cells from tonsillar tissue are totally functional, as shown by their ability to produce cytokines, to degranulate and to differentiate into effector-memory T cells.  相似文献   

14.
Double negative (DN) T cells are CD3+, CD4?, CD8? cells with either T‐cell receptors (TCR) αβ or TCR γδ whose importance on protection against HIV infection is unknown. Since HIV‐exposed seronegative individuals correspond to an ideal group in whom correlates of protection are expected, the role of these cells was studied in 13 HIV‐serodiscordant couples in a stable relationship and reporting unprotected sexual intercourses. HIV‐specific immune responses mediated by DN T‐cells were evaluated by measuring intracellular IFNγ and MIP1β (CCL4) production in response to HIV‐Gag peptides. Thirty‐five healthy controls not exposed to HIV were tested similarly and used to define a threshold for positive responses. Interestingly, Gag‐specific DN T‐cell responses were found in 3/13 (23%) HIV‐exposed seronegative individuals (Group A), involving both DN/αβ+ and DN/γδ+ T‐cells through MIP1β and IFNγ production. 4/13 (30%) of partners infected with HIV (Group B) also showed Gag‐specific responses but were mediated exclusively by DN/γδ+ T‐cells, mainly through IFNγ production. DN T‐cells in Group A individuals can display differential HIV‐specific immune responses, which might contribute to the low susceptibility to infection with HIV shown by individuals in Group A. J. Med. Virol. 85:200–209, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
In contrast to thymic epithelial cells, which induce the positive selection of conventional CD8+ T cells, hematopoietic cells (HCs) select innate CD8+ T cells whose Ag specificity is not fully understood. Here we show that CD8+ T cells expressing an H‐Y Ag‐specific Tg TCR were able to develop in mice in which only HCs expressed MHC class I, when HCs also expressed the H‐Y Ag. These HC‐selected self‐specific CD8+ T cells resemble innate CD8+ T cells in WT mice in terms of the expression of memory markers and effector functions, but are phenotypically distinct from the thymus‐independent CD8+ T‐cell population. The peripheral maintenance of H‐Y‐specific CD8+ T cells required presentation of the self‐Ag and IL‐15 on HCs. HC‐selected CD8+ T cells in mice lacking the Tg TCR also showed these features. Furthermore, by using MHC class I tetramers with a male Ag peptide, we found that self‐Ag‐specific CD8+ T cells in TCR non‐Tg mice could develop via HC‐induced positive selection, supporting results obtained from H‐Y TCR Tg mice. These findings indicate the presence of self‐specific CD8+ T cells that are positively selected by HCs in the peripheral T‐cell repertoire.  相似文献   

16.
《Immunology》2017,151(3):324-339
Cancer immunity is mediated through the effective priming and activation of tumour‐specific class I MHC molecule‐restricted CD8+ cytotoxic T lymphocytes (CTLs). DEC‐205+ dendritic cells (DCs) can cross‐present the epitope(s) of captured tumour antigens associated with class I MHC molecules alongside co‐stimulatory molecules to prime and activate tumour‐specific CD8+ CTLs. Immunosuppressive tolerogenic DCs with reduced co‐stimulatory molecules may be a cause of impaired CTL induction. Hepa1‐6‐1 cells were established from the mouse hepatoma cell line Hepa1‐6; these cells grow continuously after subcutaneous implantation into syngeneic C57BL/6 (B6) mice and do not prime CD8+ CTLs. In this study, we show that the growth of ongoing tumours was suppressed by activated CD8+ CTLs with tumour‐specific cytotoxicity through the administration of the glycolipid α‐galactosylceramide (α‐GalCer), which is a compound known to stimulate invariant natural killer T (iNKT) cells and selectively activate DEC‐205+ DCs. Moreover, we demonstrated that sequential repetitive intraperitoneal inoculation with α‐GalCer every 48 hr appeared to convert tolerogenic DEC‐205+ DCs into immunogenic DCs with a higher expression of co‐stimulatory molecules and a stronger cross‐presentation capacity, which primed CTL precursors and induced tumour‐specific CD8+ CTLs within the tumour environment without activating iNKT cells. These findings provide a new basis for cancer immunotherapy to convert tolerogenic DEC‐205+ DCs within tumours into immunogenic DCs through the sequential administration of an immuno‐potent lipid/glycolipid, and then activated immunogenic DCs with sufficient expression of co‐stimulatory molecules prime and activate tumour‐specific CD8+ CTLs within the tumour to control tumour growth.  相似文献   

17.
Interleukin‐15 (IL‐15) is an inflammatory cytokine whose role in autoimmune diseases has not been fully elucidated. Th17 cells have been shown to play critical roles in experimental autoimmune encephalomyelitis (EAE) models. In this study, we demonstrate that blockade of IL‐15 signaling by TMβ‐1 mAb treatment aggravated EAE severity. The key mechanism was not NK‐cell depletion but depletion of CD8+CD122+ T cells. Adoptive transfer of exogenous CD8+CD122+ T cells to TMβ‐1‐treated mice rescued animals from severe disease. Moreover, transfer of preactivated CD8+CD122+ T cells prevented EAE development and significantly reduced IL‐17 secretion. Naïve effector CD4+CD25? T cells cultured with either CD8+CD122+ T cells from wild‐type mice or IL‐15 transgenic mice displayed lower frequencies of IL‐17A production with lower amounts of IL‐17 in the supernatants when compared with production by effector CD4+CD25? T cells cultured alone. Addition of a neutralizing antibody to IL‐10 led to recovery of IL‐17A production in Th17 cultures. Furthermore, coculture of CD8+CD122+ T cells with effector CD4+ T cells inhibited their proliferation significantly, suggesting a regulatory function for IL‐15 dependent CD8+CD122+ T cells. Taken together, these observations suggest that IL‐15, acting through CD8+CD122+ T cells, has a negative regulatory role in reducing IL‐17 production and Th17‐mediated EAE inflammation.  相似文献   

18.
Inflammation contributes to the development and perpetuation of several disorders and T lymphocytes orchestrate the inflammatory immune response. Although the role of T cells in inflammation is widely recognized, specific therapies that tackle inflammatory networks in disease are yet to be developed. CD4+CD28null T cells are a unique subset of helper T lymphocytes that recently shot back into the limelight as potential catalysts of inflammation in several inflammatory disorders such as autoimmunity, atherosclerosis and chronic viral infections. In contrast to conventional helper T cells, CD4+CD28null T cells have an inbuilt ability to release inflammatory cytokines and cytotoxic molecules that can damage tissues and amplify inflammatory pathways. It comes as no surprise that patients who have high numbers of these cells have more severe disease and poor prognosis. In this review, I provide an overview on the latest advances in the biology of CD4+CD28null T cells. Understanding the complex functions and dynamics of CD4+CD28null T cells may open new avenues for therapeutic intervention to prevent progression of inflammatory diseases.  相似文献   

19.
Chronic antigenic stimulation leads to gradual accumulation of late-differentiated, antigen-specific, oligoclonal T cells, particularly within the CD8(+) T-cell compartment. They are characterized by critically shortened telomeres, loss of CD28 and/or gain of CD57 expression and are defined as either CD8(+) CD28(-) or CD8(+) CD57(+) T lymphocytes. There is growing evidence that the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population plays a significant role in various diseases or conditions, associated with chronic immune activation such as cancer, chronic intracellular infections, chronic alcoholism, some chronic pulmonary diseases, autoimmune diseases, allogeneic transplantation, as well as has a great influence on age-related changes in the immune system status. CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population is heterogeneous and composed of various functionally competing (cytotoxic and immunosuppressive) subsets thus the overall effect of CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell-mediated immunity depends on the predominance of a particular subset. Many articles claim that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells have lost their proliferative capacity during process of replicative senescence triggered by repeated antigenic stimulation. However recent data indicate that CD8(+) CD28(-) (CD8(+) CD57(+)) T cells can transiently up-regulate telomerase activity and proliferate under certain stimulation conditions. Similarly, conflicting data is provided regarding CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell sensitivity to apoptosis, finally leading to the conclusion that this T-cell population is also heterogeneous in terms of its apoptotic potential. This review provides a comprehensive approach to the CD8(+) CD28(-) (CD8(+) CD57(+)) T-cell population: we describe in detail its origins, molecular and functional characteristics, subsets, role in various diseases or conditions, associated with persistent antigenic stimulation.  相似文献   

20.
We identified CD8+ CD122+ regulatory T cells (CD8+ CD122+ Treg cells) and reported their importance in maintaining immune homeostasis. The absence of CD8+ CD122+ Treg cells has been shown to lead to severe systemic autoimmunity in several mouse models, including inflammatory bowel diseases and experimental autoimmune encephalomyelitis. The T‐cell receptors (TCRs) expressed on CD8+ CD122+ Treg cells recognize the target cells to be regulated. To aid in the identification of the target antigen(s) recognized by TCRs of CD8+ CD122+ Treg cells, we compared the TCR diversity of CD8+ CD122+ T cells with that of conventional, naive T cells in mice. We analysed the use of TCR‐Vβ in the interleukin 10‐producing population of CD8+ CD122+ T cells marked by high levels of CD49d expression, and found the significantly increased use of Vβ13 in these cells. Immunoscope analysis of the complementarity‐determining region 3 (CDR3) of the TCR β‐chain revealed remarkable skewing in a pair of Vβ regions, suggesting the existence of clonally expanded cells in CD8+ CD122+ T cells. Clonal expansion in Vβ13+ cells was confirmed by determining the DNA sequences of the CDR3s. The characteristic TCR found in this study is an important building block for further studies to identify the target antigen recognized by CD8+ CD122+ Treg cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号