首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. INTRODUCTION: During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. MATERIALS AND METHODS: Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. RESULTS: mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents as deduced from membrane capacitance; thus, current densities were comparable. Addition of the L-type Ca2+ channel blocker nifedipine to the culture media did not influence alkaline phosphatase activity and the extent of mineralization. CONCLUSION: These results suggest that, in the majority of hMSCs, Ca2+ entry through the plasma membrane is mediated by some channels other than VOCCs, and blockade of the L-type Ca2+ channels does not affect early osteogenic differentiation of hMSCs.  相似文献   

2.
3.
The defects identified in the mechanical activity of the hearts from type 1 diabetic animals include alteration of Ca2+ signaling via changes in critical processes that regulate intracellular Ca2+ concentration. These defects result partially from a dysfunction of cardiac ryanodine receptor calcium release channel (RyR2). The present study was designed to determine whether the properties of the Ca2+ sparks might provide insight into the role of RyR2 in the altered Ca2+ signaling in cardiomyocytes from diabetic animals when they were analyzed together with Ca2+ transients. Basal Ca2+ level as well as Ca2+-spark frequency of cardiomyoctes isolated from 5-week streptozotocin (STZ)-induced diabetic rats significantly increased with respect to aged-matched control rats. Ca2+ transients exhibited significantly reduced amplitude and prolonged time courses as well as depressed Ca2+ loading of sarcoplasmic reticulum in diabetic rats. Spatio-temporal properties of the Ca2+ sparks in cardiomyocytes isolated from diabetic rats were also significantly altered to being almost parallel to the changes of Ca2+ transients. In addition, RyR2 from diabetic rat hearts were hyperphosphorylated and protein levels of both RyR2 and FKBP12.6 depleted. These data show that STZ-induced diabetic rat hearts exhibit altered local Ca2+ signaling with increased basal Ca2+ level.  相似文献   

4.
PURPOSE: Cavernous smooth muscle cells have a key role in the control of penile erection and detumescence. In this study the types of smooth muscle cells and currents present in isolated rabbit corpus cavernosum myocytes were characterized. MATERIALS AND METHODS: Immunohistochemical methods were used to identify cavernous smooth muscle cells. Currents were recorded from freshly dissociated myocytes using the whole cell and amphotericin perforated patch clamp techniques. RESULTS: Cavernous myocytes were identified by alpha-smooth muscle actin and smooth muscle myosin immunoreactivity. Based on electrical properties at least 2 types of myocytes were present. Type I cells showed more depolarized membrane potentials, lower capacitance, higher input resistance and increased current densities at positive potentials than type II cells. In types I and II cells at voltages positive to 30 mV, maxi K+ channel (Ca2+ activated large conductance K+ channel or BK) blockade with iberiotoxin or charybdotoxin reduced outward currents by approximately 40% to 80% at 80 mV. Maxi K+ channel blocking did not affect cell membrane potential. Type II cells showed delayed rectifier K+ channel-type outward currents that were not detected in type I cells. Delayed rectifier K+ channel-type currents were resistant to iberiotoxin or charybdotoxin, activated at approximately -50 to -40 mV. and inactivated weakly. CONCLUSIONS: The data suggest that cavernous smooth muscle cells are heterogeneous with at least 2 subtypes identified based on membrane potential, capacitance, input resistance, current density and delayed rectifier K+ channel expression. The activation threshold suggests that delayed rectifier K+ channels are open at the resting membrane potential and, therefore, contribute to control and regulation of the cavernous myocyte excitability.  相似文献   

5.
S Wu  C Chen  H Li  Y Lo  S Chen    H Chiang 《Thorax》2002,57(1):67-74
BACKGROUND: Magnolol, a compound isolated from the cortex of Magnolia officinalis, has been found to possess anti-allergic and anti-asthmatic activity. METHODS: The effect of magnolol on ionic currents was studied in cultured smooth muscle cells of human trachea with the aid of the patch clamp technique. RESULTS: In whole cell current recordings magnolol reversibly increased the amplitude of K+ outward currents. The increase in outward current caused by magnolol was sensitive to inhibition by iberiotoxin (200 nM) or paxilline (1 microM) but not by glibenclamide (10 microM). In inside out patches, magnolol added to the bath did not modify single channel conductance but effectively enhanced the activity of large conductance Ca2+ activated K+ (BK(Ca)) channels. Magnolol increased the probability of these channel openings in a concentration dependent manner with an EC50 value of 1.5 microM. The magnolol stimulated increase in the probability of channels opening was independent of internal Ca2+. The application of magnolol also shifted the activation curve of BK(Ca) channels to less positive membrane potentials. The change in the kinetic behaviour of BK(Ca) channels caused by magnolol in these cells is the result of an increase in dissociation and gating constants. CONCLUSIONS: These results provide evidence that, in addition to the presence of antioxidative activity, magnolol is potent in stimulating BK(Ca) channel activity in tracheal smooth muscle cells. The direct stimulation of these BK(Ca) channels by magnolol may contribute to the underlying mechanism by which it acts as an anti-asthmatic compound.  相似文献   

6.
Synaptotagmin is involved in Ca2+-regulated secretion and has been suggested to serve as a general Ca2+ sensor on the membrane of secretory vesicles in neuronal cells. Insulin exocytosis from the pancreatic beta-cell is an example of a Ca2+-dependent secretory process. Previous studies of pancreatic beta-cells were unable to show presence of synaptotagmin I. We now present biochemical and immunohistochemical data showing that synaptotagmin III is present in pancreatic beta-cells as well as in the insulin-secreting cell line HIT-T15 and in rat insulinoma. By subcellular fractionation, we found synaptotagmin III in high-density fractions together with insulin and secretogranin I, indicating colocalization of synaptotagmin III and insulin in secretory granules. We could also show that blockade of synaptotagmin III by a specific antibody inhibited Ca2+-induced changes in beta-cell membrane capacitance, suggesting that synaptotagmin III is part of the functional protein complex regulating beta-cell exocytosis. The synaptotagmin III antibody did not affect the activity of the voltage-gated L-type Ca2+-channel. These findings are compatible with the view that synaptotagmin III, because of its distinct localization in the pancreatic beta-cell, functionally modulates insulin exocytosis. This indicates that synaptotagmin may have a general role in the regulation of exocytosis not only in neuronal cells but also in endocrine cells.  相似文献   

7.
Cardiovascular disease is the leading cause of death in the diabetic population. However, molecular mechanisms underlying diabetic cardiomyopathy remain unclear. We analyzed Ca2+-induced Ca2+ release and excitation-contraction coupling in db/db obese type 2 diabetic mice and their control littermates. Echocardiography showed a systolic dysfunction in db/db mice. Two-photon microscopy identified intracellular calcium concentration ([Ca2+]i) transient decrease in cardiomyocytes within the whole heart, which was also found in isolated myocytes by confocal microscopy. Global [Ca2+]i transients are constituted of individual Ca2+ sparks. Ca2+ sparks in db/db cardiomyocytes were less frequent than in +/+ myocytes, partly because of a depression in sarcoplasmic reticulum Ca2+ load but also because of a reduced expression of ryanodine receptor Ca2+ channels (RyRs), revealed by [3H]ryanodine binding assay. Ca2+ efflux through Na+/Ca2+ exchanger was increased in db/db myocytes. Calcium current, I(Ca), triggers sarcoplasmic reticulum Ca2+ release and is also involved in sarcoplasmic reticulum Ca2+ refilling. Macroscopic I(Ca) was reduced in db/db cells, but single Ca2+ channel activity was similar, suggesting that diabetic myocytes express fewer functional Ca2+ channels, which was confirmed by Western blots. These results demonstrate that db/db mice show depressed cardiac function, at least in part, because of a general reduction in the membrane permeability to Ca2+. As less Ca2+ enters the cell through I(Ca), less Ca2+ is released through RyRs.  相似文献   

8.
The effects of halothane (0.45 and 0.9 mM, equivalent to 0.7 and 1.5%, respectively), isoflurane (0.54 and 1.23 mM, equivalent to 0.9 and 2.0%, respectively) and enflurane (0.65 and 1.48 mM, equivalent to 1.2 and 2.5%, respectively) on macroscopic L- and T-type Ca2+ channel currents were compared in single canine cardiac Purkinje cells using the whole-cell voltage-clamp technique. Cells were dialyzed with pipette solution containing CsCl and superfused with an external solution containing 10 mM BaCl2 and tetraethylammonium chloride. The long-lasting (L) and transient (T)-type Ca2+ channel currents were measured by depolarizing the membrane from different holding potentials (HPs). Voltage steps from an HP of either -80 or -70 mV elicited a low threshold, rapidly inactivating inward current at -40 to -30 mV, which maximally activated at -14 +/- 0.9 mV. This current was reduced by Ni2+ (100 microM) but not by nifedipine (1 microM), therefore resembling T-type Ca2+ channel current. In contrast, depolarizing steps from an HP of -40 mV elicited a sustained inward current that maximally activated at +4.1 +/- 0.8 mV and was nifedipine-sensitive, showing the characteristics of an L-type Ca2+ channel current. Halothane, isoflurane, and enflurane produced a concentration-dependent suppression of total Ca2+ channel current in every cell studied. Separation of Ca2+ channel types showed that both L- and T-type Ca2+ channel currents were depressed to a similar extent by anesthetic administration. These agents reduced peak L- and T-type current elicited at each pulse potential but did not shift the current-voltage (I-V) relationship for either T- or L-type current activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein syntaxin-1A (STX-1A) plays a role not only in exocytosis, but also binds and regulates Ca(2+) and K(+) (voltage-gated K(+) and ATP-sensitive K(+) channels) to influence the sequence of events leading to secretion. Islet levels of STX-1A and cognate SNARE proteins are reduced in type 2 diabetic rodents, suggesting their role in dysregulated insulin secretion contributing to the abnormal glucose homeostasis. We investigated the specific role of STX-1A in pancreatic beta-cells by generating transgenic mice, which express a moderately increased level ( approximately 30% higher) of STX-1A in pancreatic islets (hereafter called STX-1A mice). The STX-1A mice displayed fasting hyperglycemia and a more sustained elevation of plasma glucose levels after an intraperitoneal glucose tolerance test, with correspondingly reduced plasma insulin levels. Surprisingly, beta-cells from the STX-1A male mice also exhibited abnormal insulin tolerance. To unequivocally determine the beta-cell secretory defects, we used single-cell analyses of exocytosis by patch clamp membrane capacitance measurements and ion channel recordings. Depolarization-evoked membrane capacitance increases were reduced in the STX-1A mouse islet beta-cells. The STX-1A mouse also exhibited reduced currents through the Ca(2+) channels but little change in the voltage-gated K(+) channel or ATP-sensitive K(+) channel. These results suggest that fluctuation of islet STX-1A levels in diabetes could influence the pathological and differential regulation of beta-cell ion channels and the exocytotic machinery, collectively contributing to the impaired insulin secretion.  相似文献   

11.
Background: Although barbiturates activate [Greek small letter alpha]-aminobutyric acid type A receptors as part of their hypnotic effect, these drugs also inhibit voltage-gated calcium channels. The authors determined if barbiturates could decrease neuronal intracellular Ca2+ transients and the resulting glutamate release.

Methods: Neonatal rat cerebellar granule neurons were isolated and cultured on coverslips and studied at 37 [degree sign]C. Spectrofluorometric assays were used during identical conditions to monitor intracellular Ca2+ with the Ca2+-sensitive fluorophore fura-2 and glutamate release by a glutamate dehydrogenase-coupled assay, which produced the reduced form of nicotinamide-adenine dinucleotide phosphate in proportion to the amount of glutamate released. Neurons were depolarized by a rapid increase in external [K+] from 5 to 55 mM. Control responses were compared with those in the presence of 10, 30, and 100 [micro sign]M thiopental; 3, 10, and 30 [micro sign]M methohexital; decreased external [Ca2+]; or voltage-gated calcium channel blockers.

Results: Thiopental and methohexital depressed the intracellular Ca2+ transient peak and plateau in a dose-dependent manner, as did decreased Ca (2+). The intermediate dose of either drug caused [almost equal to] 50% decrease in peak intracellular Ca2+ and 60% decrease in glutamate release. In the presence of specific L-and/or N-type voltage-gated calcium channel blockade by nicardipine or [Greek small letter omega]-conotoxin-GVIA, respectively, 30 [micro sign]M thiopental further decreased the intracellular Ca2+ transient. Thiopental caused a dose-dependent decrease in glutamate release, which was proportional to the decreased peak intracellular Ca2+.  相似文献   


12.
Rabbit cortical collecting tubule (RCCT) primary cultures, were grown on permeable, collagen supports with 1.5 microM aldosterone. Single K+ permeable channels in principal cell apical membranes were examined. At applied patch pipette potential (Vapp) from -60 to +60 mV (cell interior with respect to pipette interior), outward currents (cell to pipette) with a unitary conductance of 8 to 10 pS were seen in cell-attached (N = 31) and excised inside-out (N = 15) patches. At resting membrane potential (Vapp = 0 mV), mean open probability (Po = 0.85 +/- 0.16) decreased by 50% with 0.75 mM luminal BaCl2 exposure. In cell-attached patches, a second type of outward current was seen only at extreme depolarization, Vapp greater than +80 mV (N = 9). Usually in the closed state (Po less than 0.0005) at no applied potential, Po for this 150 pS channel increased dramatically with depolarization and/or raising cytoplasmic Ca2+. With a calculated K+ equilibrium potential of -84 mV, excised patch reversal potentials were less than -50 mV for both the above channel types, indicating high selectivity for K+ over Na+. In cultures grown without aldosterone low conductance K+ channels were rarely observed, while mineralocorticoid status did not appear to affect high conductance K+ channel frequency. Finally, a 30 pS cation channel was found to be nonselective for K+ over Na+, and insensitive to voltage, intracellular Ca2+ or luminal Ba2+. We conclude that: 1) Principal cell apical membranes from aldosterone-stimulated, RCCT primary cultures contain (a) low conductance, Ba(2+)-inhibitable and (b) high conductance, Ca2+/voltage-dependent K+ channels; and c) nonselective cation channels. 2) The low conductance K+ channel may play an important physiologic role in native RCCT mineralocorticoid-controlled K+ secretion, while the latter two channels' functions are unknown, although similar channels have been suggested to play a role in cell volume regulation.  相似文献   

13.
Zanello LP  Norman AW 《BONE》2003,33(1):71-79
Rapid nongenomic responses to steroids include modulation of ion channel activities on the cell membrane of target cells, but little is known about the molecular mechanisms involved. In this paper we investigate the mechanisms underlying the combined action of the secosteroid hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)(2)D3] on three different ion channel types in rat osteoblasts, which include a voltage-gated L-type Ca(2+) channel, a mechanosensitive Cl(-) channel, and a stretch-activated cation (SA-Cat) channel. We found that physiological nanomolar concentrations of 1alpha,25(OH)(2)D3 rapidly modify the overall electrical activity of the membrane in ROS 17/2.8 cells. 1alpha,25(OH)(2)D3 increases the osteoblast L-type Ca(2+) channel activity at low depolarizing voltages in a fashion similar to the 1,4-dihydropyridine (DHP) agonist Bay K8644. At highly depolarizing potentials 1alpha,25(OH)(2)D3 potentiates volume-sensitive Cl(-) currents through mechanisms that may involve a putative membrane receptor. We show for the first time that 1alpha,25(OH)(2)D3 also increases inward currents through SA-Cat channels at positive membrane voltages in a dose-dependent manner. Contrary to our expectations, the stereoisomer 1beta,25(OH)(2)D3, which suppresses 1alpha,25(OH)(2)D3 activation of osteoblast Cl(-) currents, mimicked 1alpha,25(OH)(2)D3 agonist effects on Ca(2+) and SA-Cat channel activities. Cyclic AMP is involved in 1alpha,25(OH)(2)D3 effects on both Ca(2+) and SA-Cat channels, but not in Cl(-) channels. We conclude that 1alpha,25(OH)(2)D3 rapid effects on ion channel activities in ROS 17/2.8 cells occur through multiple mechanisms that, on the one hand, involve a possible direct interaction with the L-type Ca(2+) channel molecule and, on the other hand, molecular pathways that may include a putative membrane receptor.  相似文献   

14.
BACKGROUND: Despite their key role in the generation and propagation of action potentials in excitable cells, voltage-gated sodium (Na+) channels have been considered to be insensitive to general anesthetics. The authors tested the sensitivity of neuronal Na+ channels to structurally similar anesthetic (1-chloro-1,2,2-trifluorocyclobutane; F3) and nonanesthetic (1,2-dichlorohexafluorocyclobutane; F6) polyhalogenated cyclobutanes by neurochemical and electrophysiologic methods. METHODS: Synaptosomes (pinched-off nerve terminals) from adult rat cerebral cortex were used to determine the effects of F3 and F6 on 4-aminopyridine- or veratridine-evoked (Na+ channel-dependent) glutamate release (using an enzyme-coupled spectrofluorimetric assay) and increases in intracellular Ca2+ ([Ca2+]i) (using ion-specific spectrofluorimetry). Effects of F3 and F6 on Na+ currents were evaluated directly in rat lumbar dorsal root ganglion neurons by whole-cell patch-clamp recording. RESULTS: F3 inhibited glutamate release evoked by 4-aminopyridine (inhibitory concentration of 50% [IC50] = 0.77 mM [approximately 0.8 minimum alveolar concentration (MAC)] or veratridine (IC50 = 0.42 mM [approximately 0.4 MAC]), and veratridine-evoked increases in [Ca2+]i (IC50 = 0.5 mM [approximately 0.5 MAC]) in synaptosomes; F6 had no significant effects up to 0.05 mM (approximately twice the predicted MAC). F3 caused reversible membrane potential-independent inhibition of peak Na+ currents (70+/-9% block at 0.6 mM [approximately 0.6 MAC]), and a hyperpolarizing shift in the voltage-dependence of steady state inactivation in dorsal root ganglion neurons (-21+/-9.3 mV at 0.6 mM). F6 inhibited peak Na+ currents to a lesser extent (16+/-2% block at 0.018 mM [predicted MAC]) and had minimal effects on steady state inactivation. CONCLUSIONS: The anesthetic cyclobutane F3 significantly inhibited Na+ channel-mediated glutamate release and increases in [Ca2+]i. In contrast, the nonanesthetic cyclobutane F6 had no significant effects at predicted anesthetic concentrations. F3 inhibited dorsal root ganglion neuron Na+ channels with a potency and by mechanisms similar to those of conventional volatile anesthetics; F6 was less effective and did not produce voltage-dependent block. This concordance between anesthetic activity and Na+ channel inhibition supports a role for presynaptic Na+ channels as targets for general anesthetic effects and suggests that shifting the voltage-dependence of Na+ channel inactivation is an important property of volatile anesthetic compounds.  相似文献   

15.
BACKGROUND: Anesthetics may cause cardiac side effects by their action on L-type Ca2+ channels. Direct effects on the channels have not yet been discriminated from an interference with the beta-adrenergic channel regulation. The authors therefore studied the effects of halothane, sevoflurane, and xenon on human cardiac Ca2+ currents during stimulation with isoproterenol. METHODS: Currents through L-type Ca2+ channels were measured with the patch clamp technique in atrial cardiomyocytes obtained from patients undergoing cardiac surgery. Cells were superfused with solutions equilibrated with anesthetics at the desired concentrations. Ca2+ currents during pulses to 10 mV were evaluated with respect to their peak value (I(max)) and to the total moved charge (Q). RESULTS: In the absence and in the presence of isoproterenol (1 microm), sevoflurane (0.29 mm, 1 minimum alveolar concentration [MAC]) significantly depressed Q by 37.8 +/- 7.2% (mean +/- SD) and 40.8 +/- 10.3%, respectively. I(max) was not significantly affected in comparison with control cells never exposed to an anesthetic. Xenon (65%, 1 MAC) did not evoke significant effects. Exposure to halothane (0.39 mm, 1 MAC) during stimulation with isoproterenol significantly reduced Q by 31.3 +/- 23.3% (but not I(max)). After washout of halothane, Q was increased above the level prior to the application of halothane. Moreover, whereas Q promptly declined to baseline levels after washout of isoproterenol in controls, the previous exposure to halothane markedly delayed this decline, leaving Q significantly elevated for several minutes. CONCLUSIONS: Halothane exerts a dual effect on Ca2+ currents. The long-lasting stimulatory effect may contribute to the proarrhythmic potency of the drug that exceeds that of sevoflurane, which only depressed Ca2+ currents.  相似文献   

16.
BACKGROUND: Renal failure has been viewed as a state of cellular calcium toxicity due to the retention of small fast-acting molecules. We have tested this hypothesis and identified potentially neuroexcitatory compounds among a number of putative uremic neurotoxins by examining the acute in vitro effects of these compounds on cultured central neurons. The in vitro neuroexcitatory and synergistic effects of guanidinosuccinate and spermine were also examined in vivo. METHODS: The acute effects of 17 candidate uremic neurotoxins on murine spinal cord neurons in primary dissociated cell culture were investigated using the tight-seal whole-cell recording technique. The compounds studied comprised low-molecular-weight solutes like urea, indoles, guanidino compounds, polyamines, purines and phenoles, homocysteine, orotate, and myoinositol. Currents evoked by these compounds were further examined using various ligand- and voltage-gated ion channel blockers. The acute in vivo effects of guanidinosuccinate and spermine were behaviorally assessed following their injection in mice. RESULTS: It was shown that 3-indoxyl sulfate, guanidinosuccinate, spermine, and phenol evoked significant whole-cell currents. Inward whole-cell current evoked by 3-indoxyl sulfate was not blocked by any of the applied ligand- or voltage-gated ion channel blockers, and the compound appeared to influence miscellaneous membrane ionic conductances, probably involving voltage-gated Ca2+ channels as well. Phenol-evoked outward whole-cell currents were at least partly due to the activation of voltage-gated K+ channels, but may also involve a variety of other ionic conductances. On the other hand, inward whole-cell currents evoked by guanidinosuccinate and spermine were shown to be due to specific interaction with voltage- and ligand-gated Ca2+ channels. Guanidinosuccinate-evoked current was caused by activation of N-methyl-d-aspartate (NMDA) receptor-associated ion channels. Low (micromol/L) concentrations of spermine potentiated guanidinosuccinate-evoked current through the action of spermine on the polyamine binding site of the NMDA receptor complex, whereas current evoked by high (mmol/L) concentrations of spermine alone involved direct activation of voltage-gated Ca2+ channels. Finally, intracerebroventricular administration of 0.25 micromol/L spermine potentiated clonic convulsions induced by guanidinosuccinate. These neuroexcitatory and synergistic effects of guanidinosuccinate and spermine could take place at pathophysiologic concentrations. CONCLUSION: The observed in vitro and in vivo effects of uremic retention solutes suggest that the identified compounds could play a significant role in uremic pathophysiology. Some of the compounds tested displayed in vitro and in vivo neuroexcitatory effects that were mediated by ligand- and voltage-gated Ca2+ channels. The findings suggest a mechanism for the involvement of calcium toxicity in the central nervous system complications in renal failure with particular reference to guanidinosuccinate and spermine.  相似文献   

17.
Patch clamp techniques in freshly isolated myocytes from human corpora have documented that the large conductance calcium-sensitive K channel (K(Ca)) subtype represents an important convergence point for the modulation of corporal smooth muscle tone, and therefore, erectile capacity. Other recent studies indicate a similar role for the K(Ca) channel in the modulation of smooth muscle tone in the rat penis. Therefore, the explicit aim of this investigation was to evaluate and compare the characteristics of the K(Ca) channel subtype present in freshly isolated myocytes from rat and human corpora. In short, myocytes isolated from rat and human corpora retain their characteristic morphology and contractility in vitro, as evidenced by light microscopic studies of their respective responses to activation of the alpha1-adrenergic receptor subtype by phenylephrine (PE). Large conductance K+ currents commensurate with the presence of the K(Ca) channel were readily apparent in myocytes from both preparations. I-V curves constructed from cell-attached patches utilizing symmetric KCl solutions revealed the presence of a single channel slope conductance of approximately 200 pS for both rat and human myocytes. 1 mM TEA applied in the bath solution reversibly diminished whole cell outward K+ currents by approximately 50%, and also blocked the unitary K(Ca) channel activity observed in the outside-out patch mode. Addition of 2 mM 8-bromo-cAMP elicited a TEA-sensitive (1 mM) approximately 2-3 fold increase in the magnitude of the whole cell outward K+ currents in rat myocytes. Taken together, these data confirm and extend previous observations and provide strong evidence that the rat corporal smooth muscle K(Ca) channel has many similarities to its counterpart in the human penis.  相似文献   

18.
Ionic currents in single smooth muscle cells of the human vas deferens   总被引:1,自引:0,他引:1  
PURPOSE: Smooth muscle cells of the vas deferens have an important role in carrying sperms to the exterior but little is known of their electrophysiological properties. We characterized the voltage-gated ion channel currents in single smooth muscle cells of the human vas deferens (HVSMCs). MATERIALS AND METHODS: We observed contractile responses of 8 circular smooth muscle strips of the human vas deferens to a high concentration (10 mM) of tetraethylammonium. HVSMCs were isolated using proteolytic enzymes (collagenase and papain), and were used for an electro-physiological study using whole cell and inside-out patch clamp configurations. RESULTS: The application of 10 mM tetraethylammonium induced rhythmic contractions of the strips. When HVSMCs were dialyzed with a KCl solution, step depolarizations of membrane potential evoked oscillatory outward K currents that were not inactivated. The large conductance Ca activated K (BKCa) and delayed rectifier components of the outward current were identified. The BKCa channel showed a large single channel conductance (162.7 +/- 13.2 pS with 5 mM K in the patch pipette). Two types of Ca currents were identified in the whole cell configuration. With a cell held at -50 mV an L-type Ca current was present during a depolarizing step pulse. From a holding potential of -90mV L-type and T-type Ca currents were elicited by depolarizing step pulses. CONCLUSIONS: HVSMCs have 2 (L and T) types of Ca channels and 2 types of K (BKCa and delayed rectifier) channels. Voltage dependent changes of these ion channels and their interactions may be important in regulating vas contractility.  相似文献   

19.
Alteration of [Ca2+]i by hyperglycemia is implicated in the pathogenesis of diabetic nephropathy. However, the effect of high glucose on Ca2+ regulation in proximal tubule cells is not known. Thus, we examined the mechanisms by which high glucose regulates Ca2+ uptake in primary cultured rabbit renal proximal tubule cells. Glucose increased the Ca2+ uptake in a time- and dose-dependent manner. A stimulatory effect of high glucose on Ca2+ uptake is predominantly observed using 25 mM glucose (high glucose) after 1 h, while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. However, 25 mM mannitol and L-glucose did not affect Ca2+ uptake as compared with controls. Nifedipine and methoxyverapamil (L-type Ca2+ channel blockers) blocked high-glucose-induced stimulation of Ca2+ uptake. High-glucose-induced stimulation of Ca2+ uptake was blocked by pertussis toxin, SQ-22536 (adenylate cyclase inhibitor), myristoylated amide 14-22 (protein kinase A inhibitor), neomycin and U-73122 (phospholipase C inhibitors), and staurosporine and bisindolylmaleimide I (protein kinase C inhibitors). In addition, KN-62 (a Ca2+/calmodulin-dependent protein kinase II inhibitor) and W-7 (a Ca2+/calmodulin antagonist) blocked high-glucose-induced stimulation of Ca2+ uptake. In conclusion, high glucose stimulates the Ca2+ uptake through L-type Ca2+ channels via G-protein-coupled adenylate cyclase/cAMP and phospholipase C/protein kinase C pathways.  相似文献   

20.
Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. BACKGROUND: Knowledge about biological functions of podocytes in the glomerulus is limited because of its unique anatomical location. Here we introduce a new method for measuring the intracellular calcium activity ([Ca2+]i) in the podocyte in the intact glomerulus. METHODS: With the help of fluorescence high-resolution digital imaging and a recently developed ultraviolet laser-scanning microscope, [Ca2+]i was measured in fura-2-loaded glomeruli and single podocytes of intact microdissected rat glomeruli. RESULTS: Angiotensin II (Ang II) increased [Ca2+]i reversibly in a biphasic and concentration-dependent manner. In contrast to Ang II, bradykinin, thrombin, arginine vasopressin, and serotonin did not change [Ca2+]i in the glomerulus. At reduced extracellular Ca2+ activity, Ang II released [Ca2+]i from intracellular stores, but the second phase, corresponding to a Ca2+ influx from the extracellular space, was absent. The L-type Ca2+ channel blocker nicardipine did not influence the Ang II-mediated [Ca2+]i increase, and an increase of the extracellular K+ concentration did not change [Ca2+]i in the glomerulus. The angrotensin II type I (AT1) receptor antagonist losartan inhibited the Ang II-mediated [Ca2+]i increase. Confocal [Ca2+]i measurements using fura-2 or fluo-3 or fluo-4 on the single cell level show that some of the Ang II-mediated [Ca2+]i response originated from podocytes. Costaining with calcein allowed the identification of podocytes because of the characteristic morphology and location in relationship to the capillary network. CONCLUSIONS: These data suggest that podocytes in the intact glomerulus respond to Ang II with an increase of [Ca2+]i via an AT1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号