首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The enabler circulatory support system is a catheter pump which expels blood from the left or right ventricular cavity and provides pulsatile flow in the ascending aorta or pulmonary artery. It is driven by a bedside installed pulsatile driving console. The device can easily be implanted by a minimal invasive approach, similar to the Hemopump. PURPOSE: To demonstrate the hemodynamic performance of this new intracardiac support system. METHODS: In a series of 9 sheep, hemodynamic evolutions were recorded in various conditions of myocardial contractility (the non-failing, the moderately failing and the severely failing heart). Heart failure was induced by injection of microspheres in the coronary arteries. RESULTS: Introduction of the cannula through the aortic valve was feasible in all cases. Pump flow by the enabler was gradually increased to a maximum of 3.5 L/min. Diastolic (and mean) aortic blood pressure is significantly increased in the non-failing and moderately failing condition (counterpulsation mode). In heart failure, cardiac output is significantly increased by the pump (p < 0.0001). A drop in left atrial pressure (indicating unloading) is achieved in all conditions but reaches significant levels only during heart failure (p=0.0068). CONCLUSIONS: This new circulatory support system contributes to stabilization of the circulation in the presence of cardiac unloading. In heart failure it actually supports the circulation by increasing cardiac output and perfusion pressure.  相似文献   

2.
The effect of rotary left ventricular assist devices (LVADs) on myocardial perfusion has yet to be clearly elucidated, and several studies have shown decreased coronary flow under rotary LVAD support. We have developed a novel pump controller that can change its rotational speed (RS) in synchronization with the native cardiac cycle. The aim of our study was to evaluate the effect of counterpulse mode, which increases the RS in diastole, during coronary perfusion. Experiments were performed on ten adult goats. The EVAHEART LVAD was installed by the left ventricular uptake and the descending aortic return. Ascending aortic flow, pump flow, and coronary flow of the left main trunk were monitored. Coronary flow was compared under four conditions: circuit-clamp, continuous mode (constant pump speed), counterpulse mode (increased pump speed in diastole), and copulse mode (increased pump speed in systole). There were no significant baseline changes between these groups. In counterpulse mode, coronary flow increased significantly compared with that in continuous mode. The waveform analysis clearly revealed that counterpulse mode mainly resulted in increased diastolic coronary flow. In conclusion, counterpulse mode of rotary LVADs can enhance myocardial perfusion. This novel drive mode can provide great benefits to the patients with end-stage heart failure, especially those with ischemic etiology.  相似文献   

3.
We proposed and developed a practical and effective servo control system for rotary blood pumps. A rotary blood pump for assisting the failing natural heart should be operated only in physiologically acceptable conditions. The operation of a rotary blood pump is based on the rotational speed of the impeller and pressure head. If the pump flow and the pressure head are set within an acceptable range, the driving condition is deemed normal condition, and this control system maintains the preset operating point by applying proportional and detective control (PD control). If the pump flow or pressure head is outside the acceptable range, the driving condition is determined to be abnormal condition, and this system operates the pump in a recovery fashion. If the driving condition is kept under abnormal conditions of sudden decrease of the flow, the condition is termed a suction condition. The controller releases the pump from the suction condition and later returns it to the normal condition. In this study, we evaluated these servo control modes of the centrifugal pump and confirmed whether the performance of this proposed operating point control system was practical.  相似文献   

4.
Control of the ventricular assist device (VAD) for native heart preservation should be attempted, and the VAD could be one strategy for dealing with the shortage of donors in the future. In the application of nonpulsatile blood pumps for ventricular assistance from the ventricular apex to the aorta, bypass flow and hence the motor current of the pumps change in response to the ventricular pressure change. Utilizing these intrinsic characteristics of the continuous-flow pumps, in this study we investigated whether motor current could be used as an index for continuous monitoring of native cardiac function. In study 1, a centrifugal blood pump (CFP) VAD was installed between the apex and descending aorta of a mock circulatory loop. In this model, a baseline with a preload of 10 mmHg, afterload of 40 mmHg, and LV systolic pressure of 40 mmHg was used. The pump speed was fixed at 1300, 1500, and 1700 rpm, and LV systolic pressure was increased up to 140 mmHg by steps of 20 mmHg while the changes in LV pressure, motor current, pump flow, and aortic pressure were observed. In study 2, an in vivo experiment was performed using three sheep. A left heart bypass model was created using a centrifugal pump from the ventricular apex to the descending aorta. The LVP was varied through administration of dopamine while the changes in LV pressure, pump flow, and motor current at 1500 and 1700 rpm were observed. An excellent correlation was observed in both in vitro and in vivo studies in the relationship between motor current and LV pressure. In study 1, the correlation coefficients were 0.77, 0.92, and 0.99 for 1300, 1500, and 1700 rpm, respectively. In study 2, they were 0.88 (animal no. 1), 0.83 (animal no. 2), and 0.88 (animal no. 3) for 1500 rpm, and 0.95 (animal no. 2) and 0.93 (animal no. 3) for 1700 rpm. These results suggest that motor current amplitude monitoring could be useful as an index for the control of VAD for native heart preservation.  相似文献   

5.
This study aims to compare the Jostra HL-20 roller pump to the Medos DeltaStream DP1 rotary pump in terms of pressure and flow waveforms, as well as calculated energies based on pressure/flow relationships, in a simulated pediatric cardiopulmonary perfusion system. The flow rate was set at 1,000 ml/min for each pump, under both pulsatile and nonpulsatile perfusion modes. Mean arterial pressure (MAP) was maintained at 40 mm Hg. Pressure and flow measurements and waveforms were recorded at precannula site in the bypass circuit. Blood analog test fluid was used to simulate blood properties. A total of 24 experiments were performed (n = 12 nonpulsatile and n = 12 pulsatile). A significant increase in surplus hemodynamic energy (SHE) was observed in both pumps under pulsatile perfusion. In contrast, nonpulsatile perfusion generated very little SHE in the Jostra roller pump, whereas no SHE was generated in the Medos rotary pump. However, under pulsatile perfusion, the Medos rotary pump generated more than twice the amount of SHE or "extra" energy than the Jostra roller pump. The total hemodynamic energy was also significantly higher in the Medos rotary pump than the Jostra roller pump, under pulsatile perfusion. This pilot study suggests that the Medos DeltaStream DP1 rotary pump may produce greater hemodynamic energy levels and higher quality physiologic pressure/flow waveforms than the Jostra roller pump. Further investigation of the Medos DeltaStream DP1 rotary pump is necessary to evaluate hemodynamic energy generation under various pump settings, in contrast to different flow rates.  相似文献   

6.
叶轮泵式全人工心脏的结构设计及流体力学特性   总被引:1,自引:1,他引:1  
目的通过模型样机研制和流体力学特性测试.探索以叶轮式血泵为结构基础的新型可完全植入的全人工心脏。方法全人工心脏模型样机分为左心泵和右心泵2个基本单位。2血泵均采用叶轮泵.共同设置在球形外壳中。2半球形外壳由高分子材料经激光快速成型制成.球形腔内设置固定左右心泵后对合为球形外壳.表面由医用聚氨酯橡胶涂层,直径55mm,总质量150g左右。在体外模拟循环台上对左心泵和右心泵的流体力学特性进行测试.主要观测指标为泵的转速、输出压力、流量、能耗和效率。模拟循环装置由模拟左右心房、血泵、阻力调节器、流量计串联组成,采用30%甘油水溶液作为循环介质。通过调节阻力测定特定泵转速下压力和流量。结果体外模拟测试表明全人工心脏模型样机可满足血液动力学基本要求,左心泵在9000-13000r/min转速条件下可以达到5-7L/min流量和13.3kPa(100mmHg)的压力输出,右心泵在约1/2左心泵转速和4.00kPa(30mmHg)后负荷下达到相似流量.可分别满足体、肺循环的要求。在该工作负荷条件下,2血泵的总效率约为14%。结论轴流泵作为人工心脏的血泵单位.流体力学特性可达到全人工心脏的基本要求.  相似文献   

7.
Pulsatile operation of rotary blood pumps (RBPs) has received interest due to potential concern with nonphysiological hemodynamics. This study aimed to gain insight to the effects of various RBP modes on the heart-device interaction. A Deltastream diagonal pump (Medos Medizintechnik GmbH) was inserted in a cardiovascular simulator with apical-to-ascending aorta cannulation. The pump was run in continuous mode with incrementally increasing rotating speed (0-5000 rpm). This was repeated for three heart rates (50-100-150 bpm) and three levels of left ventricular (LV) contractility. Subsequently, the Deltastream was run in pulsatile mode to elucidate the effect of (de)synchronization between heart and pump. LV volume and pressure, arterial pressure, flows, and energetic parameters were used to evaluate the interaction. Pump failure (0 rpm) resulted in aortic pressure drops (17-46 mm Hg) from baseline. In continuous mode, pump flow compensated by diminished aortic flow, thus yielding constant total flow. High continuous rotating speed resulted in acute hypertension (mean aortic pressure up to 178 mm Hg). In pulsatile mode, unmatched heart and pulsatile pump rates yielded unphysiologic pressure and flow patterns and LV unloading was found to be highly dependent on synchronization phase. Optimal unloading was achieved when the minimum rotating speed occurred at end-systole. We conclude that, in continuous mode, a perfusion benefit can only be achieved if the continuous pump flow exceeds the preimplant (baseline) cardiac output. Pulsatile mode of support results in complex pressure and volume variations and requires accurate triggering to achieve optimal unloading.  相似文献   

8.
Applications of the pulsatile flow versatile ECLS: in vivo studies   总被引:3,自引:0,他引:3  
INTRODUCTION: T-PLS (Twin-Pulse Life Support) is the first commercial pulsatile ECLS (Extra Corporeal Life Support) device (1). The dual sac structure of T-PLS can effectively reduce high membrane oxygenator inlet pressure and hemolysis. To verify both the use of T-PLS for ECLS and the advantages of T-PLS, we tested various models. METHOD AND RESULTS: In the partial CPB (cardio pulmonary bypass) model (swine), T-PLS (N = 6), and Biopump (N = 2), a single pulsatile pump (N = 2), were compared. In the case of single pulsatile flow, during pump systole, pressure increased to 700 - 800 mmHg at the inlet port of the membrane oxygenator. fHb, a hemolysis measurement value, was about 80 mg/dL at 3 hours. On the contrary, because of T-PLS's dual sac system, the pressure of T-PLS had a maximum value of about 250 mmHg and fHb was similar to that of the commercial centrifugal pumps. In the total CPB model (bovine, N = 6), the heart was stopped via cardioplegia (Kcl). T-PLS flow was maintained at 3.0-4.5 L/min. T-PLS functioned like a natural heart, having a pulse pressure of 26-43 mmHg and a pulse rate of 40-60 bpm (beats per minute). In the emergency case model (canine, N = 6), T-PLS was started 10 minutes after cardiac arrest from electronic shock. In spite of cardiac arrest for a period of 40 minutes, the heart was recovered after defibrillation. In the ARDS (Acute Respiratory Distress Syndrome) model (canine, N = 6), minimal ventilator parameters were set: tidal volume 130 ml, respiration rate = bpm, FiO2 = 10%. Three hours after starting T-PLS, PO2 of the carotid artery blood (after 2 hours: 195 +/- 89.4; after 3 hours: 258 +/- 99.3 mmHg) was above half the value of the femoral artery but was within normal range. CONCLUSION: It is suggested that a portable pulsatile ECLS like T-PLS may be used as a CPB device and as an alternative CPR (cardiopulmonary resuscitation) device in the case of cardiac arrest. Due to the pulsatile flow, oxygenated blood is delivered to the patient without overloading the ARDS patients heart.  相似文献   

9.
Our TransApical to Aorta pump, a simple and minimally invasive left ventricular (LV) assist device, has a flexible, thin-wall conduit connected by six struts to a motor with ball bearings and a turbine extending into the blood path. Pulsatile flow is inherent in the design as the native heart contraction preloads the turbine. In six healthy sheep, the LV apex was exposed by a fifth intercostal left thoracotomy. The pump was inserted from the cardiac apex through the LV cavity into the ascending aorta. Aortic and LV pressure waveforms, pump flow, motor current, and pressure were directly measured. All six cannula pumps were smoothly advanced on the first attempt. Pump implantation was <15 minutes (13.6 +/- 1.8 minutes). Blood flow was 2.8 l/min to 4.4 l/min against 86 +/- 8.9 mm Hg mean arterial blood pressure at maximum flow. LV systemic pressure decreased significantly from 102.5 +/- 5.55 mm Hg to 58.8 +/- 15.5 mm Hg at the fourth hour of pumping (p = 0.042), and diastolic LV pressure decreased from 8.4 +/- 3.7 to 6.1 +/- 2.3 mm Hg (p > 0.05). The pump operated with a current of 0.4 to 0.7 amps and rotation speed of 28,000 to 33,000 rpm. Plasma free hemoglobin was 4 +/- 1.41 mg/dl (range, 2 to 5 mg/dl) at termination. No thrombosis was observed at necropsy.A left ventricular assist device using the transapical to aorta approach is quick, reliable, minimally invasive, and achieves significant LV unloading with minimal blood trauma.  相似文献   

10.
报道了对一种用于急性心肌梗塞过渡治疗的心脏支持系统。设计用于代替心脏功能、简便易用的智能化体外循环装置。包括两个独立的机械泵和泵室、感应和控制系统、膜肺、单向活瓣等主要结构。采用血压和心电图反馈控制机制维持动脉血压和协调心脏收缩与泵输出。在体外测试了搏动泵的工作状况,并对整个系统的运行进行了模拟实验。动物实验证实可获得搏动性动脉波,在心跳停止时可给予心脏足够的血供。  相似文献   

11.
In totally implantable ventricular assist device systems, measuring flow rate of the pump is necessary to ensure proper operation of the pump in response to the recipient's condition or pump malfunction. To avoid problems associated with the use of flow probes, several methods for estimating flow rate of a rotary blood pump used as a ventricular assist device have been studied. In the present study, we have performed a chronic animal experiment with two NEDO PI gyro pumps as the biventricular assist device for 63 days to evaluate our estimation method by comparing the estimated flow rate with the measured one every 2 days. Up to 15 days after identification of the parameters, our estimations were accurate. Errors increased during postoperation days 20 to 30. Meanwhile, their correlation coefficient r was higher than 0.9 in all the acquired data, and estimated flow rate could simulate the profile of the measured one.  相似文献   

12.
背景:心室辅助装置已广泛应用于心力衰竭患者的治疗。虽然有不同的血泵在国外应用于临床,却很少在国内应用,主要原因是其价格太高。因此在国内研制相对价格较低的能应用于临床的自主血泵迫在眉睫。 目的:测试置入式磁悬浮离心心室辅助装置主体血泵的溶血性能。 方法:通过计算流体力学方法,对磁悬浮离心式心室辅助装置主体血泵内部流场做初步分析。血泵在后负荷100 mm Hg     (1 mm Hg=0.133 kPa)、流量5 L/min 情况下,通过体外模拟血循环系统驱动羊血测试血泵体外溶血性能,计算血泵实际标准溶血指数NIH。 结果与结论:在设计工况下计算流体力学结果显示血泵内部流线平稳,整个流道内部壁面剪切力均在68.5 Pa以下,内部静压力分布均匀,过渡平稳,没有不良区域出现。体外溶血实验测得标准溶血指数NIH值为(0.075±0.017) mg/L。提示血泵驱动叶片及内部流道设计合理,同第3代血泵相比有较好溶血性能。血泵实验期间无不良状况发生,可以进行下一步长期的动物体内实验,进而评估血泵体内血流动力学性能和血泵置入对实验动物脏器的影响。  相似文献   

13.
Veno-venous bypass (VVBP) is increasingly used to avoid acute venous hypertension and low cardiac output after clamping the vena cava. Air embolism upon accidental decannulation of the inflow line and endothelial damage due to suction of the blood collecting cannula to the vessel wall are known complications specific to the currently used roller and centrifugal pumps, because they generate negative pressure at the inflow site of the pump. The Affinity pump has a unique chamber design with an occlusive segment, that collapses in low filling states preventing negative pressure at the inflow site of the pump chamber. This device was tested for VVBP in three pigs (each weighing 52.3 +/- 5.1 kg) with hepatic vascular exclusion. Blood was pumped from the femoral and portal veins to the external jugular vein and perfusion was maintained for 6 hours. The hemodynamic state of the animals was assessed by recording heart rate; systolic, mean arterial, and diastolic pressure; as well as central venous pressure. Mean pump flow during the experiment was 1,629.3 +/- 372.2 ml/min. After clamping, the inflow line of the pump mean arterial pressure significantly decreased (from 69.5 +/- 4.4 to 43.1 +/- 3.5 mm Hg), and mean pressure in the femoral vein increased significantly (from 16.1 +/- 2.6 to 26.8 +/- 5.9 mm Hg), whereas the mean pressure in the internal jugular vein did not significantly change (from 6.0 +/- 1.7 to 5.0 +/- 2.1 mm Hg). There was no suction by the blood collecting cannula on the vessel wall, and neither bubbles nor air emboli were detected and no operator intervention was needed. In conclusion, the Affinity pump eliminates device related complications due to negative pressure generated at the inlet, and guarantees stable hemodynamics. Its application is simple and safe and minimal operator intervention is needed, making the Affinity pump particularly suited for veno-venous bypass.  相似文献   

14.
Bridge to recovery has become a major goal after left-ventricular-assist-device (LVAD) implantation thanks to recent development in adjunctive therapies. Precise assessment of native heart function under minimum LVAD support is the key for successful LVAD explantation. However, weaning of centrifugal LVADs normally generates diastolic intracircuit backward flow. This retrograde flow may become excessive load for the native heart during off-pump test. The flow itself is an inevitable characteristic of centrifugal pumps. Therefore, evaluating this retrograde flow in vitro is of considerable significance, even if its amount is different from that in clinical settings. The purpose of this study was to assess diastolic backflow of continuous-flow centrifugal LVADs in a mock circulation model. A centrifugal LVAD (EVAHEART, Sun Medical Technology) was installed in a mock circulation model by the left ventricle uptake and the ascending aortic return. Pump flow was measured at the pump rotational speed of 1000, 1500, 2000, and 2500 rpm, and pulse rate of the virtual native heart was varied to 60, 90, and 120 beats/min. After data collection, pump flow was integrated, and forward and backward intracircuit flow were calculated. As a result, nonphysiological reverse flow of approximately 2.0 L/min exists at the rotational speed, providing 0 L/min mean pump flow. An ideal off-test trial condition should be realizing both ±0 L/min pump flow and no intracircuit backward flow at the same time. We are developing a novel EVAHEART drive mode that can change its rotational speed in synchronization with cardiac cycle with the aim of controlling this retrograde flow with the new drive mode and creating an ideal off-test condition.  相似文献   

15.
Continuous flow left ventricular assist devices (CF-LVADs) reduce arterial pulsatility, which may cause long-term complications in the cardiovascular system. The aim of this study is to improve the pulsatility by driving a CF-LVAD at a varying speed, synchronous with the cardiac cycle in an ex-vivo experiment. A Micromed DeBakey pump was used as CF-LVAD. The heart was paced at 140 bpm to obtain a constant cardiac cycle for each heartbeat. First, the CF-LVAD was operated at a constant speed. At varying-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. For synchronization purposes, an algorithm was developed to trigger the CF-LVAD each heartbeat. The pump flow rate was selected as the control variable and a reference model was used for regulating the CF-LVAD speed. Continuous and varying-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility doubled in both arterial pressure and pump flow rate signals under pulsatile pump speed support. This study shows the possibility of improving the pulsatility in CF-LVAD support by regulating pump speed over a cardiac cycle without compromising the overall level of support.  相似文献   

16.
We have developed various axial flow blood pumps to realize the concept of the Valvo pump, and we have studied hemodynamic changes under cardiac assistance using an axial flow blood pump in series with the natural heart. In this study, we measured hemodynamic changes of not only systemic circulation but also cerebral circulation and coronary circulation under cardiac support using our latest axial flow blood pump placed in the descending aorta in an acute animal experiment. The axial flow blood pump was installed at the thoracic descending aorta through a left thoracotomy of a goat (43.8 kg, female). When the pump was on, the aortic pressure and aortic flow downstream of the pump increased with preservation of pulsatilities. The pressure drop upstream of the pump caused reduction of afterload pressure, and it may lead to reduction of left ventricular wall stress. However, cerebral blood flow and coronary blood flow were decreased when the pump was on. The axial flow blood pump enables more effective blood perfusion into systemic circulation, but it has the potential risk of blood perfusion disturbance into cerebral circulation and coronary circulation. The results indicate that the position before the coronary ostia might be suitable for implantation of the axial flow blood pump in series with the natural heart to avoid blood perfusion disturbances.  相似文献   

17.
Cardiac intervention, myocardial infarction, or postoperative heart failure will sometimes create a need for circulatory support. For this purpose, a new, minimally invasive intra-aortic cardiac support system with a foldable propeller has been developed. In animals, the pump has been shown to have a positive hemodynamic influence, and the present study evaluates the hydraulic properties of the pump in a bench test. The axial flow pump is a catheter system with a distal motor driven foldable propeller (0-15,000 revolutions per minute). To protect the aortic wall, filaments forming a cage surround the propeller. In the present study, tests were done with two different pumps, one with and one without the cage. Two different models were used, one for testing pressure generation and one for obtaining flow-pressure characteristics. Propellers and tubes with different diameters were studied, and pressure and flow characteristics were measured. The mathematical relationships between pressure and rotational speed, pressure, and diameter of propeller and tube were determined. There was a positive relationship between the revolutions per minute and the generated pressure, a positive relationship between the diameter of the propeller and pressure, and a negative relationship between the diameter of the tube and the generated pressure. Within the physiologic range of cardiac output, there was a small drop in pressure with increasing flow in the tubes with a small diameter. With an increasing diameter of the tube, a smaller pressure drop was seen with increasing flow. The present cardiac support system has hydraulic properties, which may be of clinical relevance for patients with left ventricular heart failure.  相似文献   

18.
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.  相似文献   

19.
可植入旋转式血泵主要包括离心泵及轴流泵;前利用离心力驱动血流时,泵转速2000~6000r/min,以非搏动血流为主,少数为搏动血流。动物实验最长存活23周。轴流泵利用高速旋转叶轮驱动血液。叶轮转速6000~20000r/min,以非搏动血流为主,最长动物实验存活6个月,近期可能应用于临床研究。同时介绍了血管内搏动性轴流泵一动力性主动脉瓣。另外还介绍了其它类型的旋转泵。并对可植入式旋转泵的研制提出了一些看法。  相似文献   

20.
Nonpulsatile left heart bypass (NPLHB) represents a new era in cardiac support. We examined the impact of circuit resistance on ventricular loading with NPLHB. Pressure head-flow (H-Q) curves of NPLHB were measured with four grades of circuit resistance in a mock circulation. Lower resistance result, in a shallower H-Q relationship. Based on this results, NPLHB (ventricular apex to descending aorta) with ratios of 75% and 100% was evaluated for its hemodynamic effect in seven anesthetized sheep. Two grades of circuit resistance were generated with each bypass flow. A shallower H-Q relationship was noted at the lower circuit resistance when increased bypass flow fluctuations occurred during a single cardiac cycle (75%:0.9 ±0.4 to 12.2±2.8,P<0.0001; and 100%: 0.6±0.1 to 2.3 ±1.2l/min,P=0.011, with higher and lower resistance, respectively). Improved left ventricular peak pressure also resulted (75%:112±9 to 104±8,P=0.0002; and 100%: 59±26 to 13±5 mmHg,P=0.0045). In conclusion, NPLHB with lower circuit resistance improves the bypass flow response to change in pressure head during the cardiac cycle. This results in increased systolic bypass flow and improved systolic pressure unloading. Therefore, circuit resistance needs to be taken into account when designing NPLHB systems and when assessing their pump effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号