首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aggregation of human washed platelets with collagen is accompanied by a concentration-dependent increase in cyclic GMP but not cyclic AMP. NG-Monomethyl-L-arginine (L-MeArg), a selective inhibitor of nitric oxide (NO) synthesis from L-arginine, reduces this increase and enhances aggregation. L-Arginine, which has no effect on the basal levels of cyclic GMP, augments the increase in this nucleotide induced by collagen and also inhibits aggregation. Both of these effects of L-arginine are attenuated by L-MeArg. The anti-aggregatory action of L-arginine is potentiated by prostacyclin and by M&B22948, a selective inhibitor of the cyclic GMP phosphodiesterase, but not by HL725, a selective inhibitor of the cyclic AMP phosphodiesterase. L-Arginine also inhibits platelet aggregation in whole blood in a similar manner, although the concentrations required are considerably higher. L-Arginine stimulates the soluble guanylate cyclase and increases cyclic GMP in platelet cytosol. This stimulation is dependent on NADPH and Ca2+ and is associated with the formation of NO. Both the formation of NO and the stimulation of the soluble guanylate cyclase induced by L-arginine are enantiomer specific and abolished by L-MeArg. Thus, human platelets contain an NO synthase which is activated when platelets are stimulated. The consequent generation of NO modulates platelet reactivity by increasing cyclic GMP. Changes in the activity of this pathway in platelets may have physiological, pathophysiological, and therapeutic significance.  相似文献   

2.
S Moncada 《Blood vessels》1990,27(2-5):208-217
Nitric oxide (NO) is released from vascular endothelial cells and fresh vascular tissue in amounts sufficient to account for the biological actions of endothelium-derived relaxing factor. It is synthesized from the terminal guanidino nitrogen atom(s) of L-arginine, a process that is inhibited by NG-monomethyl-L-arginine (L-NMMA). Studies using L-NMMA have shown that NO is constantly generated by the vessel wall to maintain vasodilator tone. The L-arginine:NO pathway has now been identified in a number of other cells and tissues, in many of which it acts as the transduction mechanism for stimulation of the soluble guanylate cyclase.  相似文献   

3.
Here we show that the relaxation induced by stimulation of the vagus nerve in the presence of cholinergic (muscarinic) and adrenergic blockade in the isolated stomach of the guinea pig is mediated by nitric oxide (NO). This is substantiated by inhibition of vagal relaxation by NG-monomethyl-L-arginine, an inhibitor of NO synthesis. The effect of NG-monomethyl-L-arginine was partially reversed by coincubation with L-arginine but not with D-arginine. NO activates soluble guanylate cyclase, and relaxation of the stomach induced by vagal stimulation was prevented by an inhibitor of soluble guanylate cyclase, methylene blue, further supporting our conclusions. The relaxant effect of vagal stimulation was also ablated by hexamethonium, an inhibitor of ganglionic nicotinic receptors, thereby showing that ganglionic transmission did not rely on NO, through its release from preganglionic neurons. However, hexamethonium did not inhibit the gastric relaxation brought about by increasing the intragastric pressure, which is also mediated by NO as previously described by us. The selective inhibition by hexamethonium of only the vagally mediated relaxation but not of the pressure-induced relaxation of the stomach indicates the existence of at least two separate neuronal pathways able to generate NO and bring about gastric accommodation of food or fluid.  相似文献   

4.
The present study was designed to investigate the hypothesis that, during acetylcholine-induced endothelium-dependent relaxation, a factor(s) is released from endothelial cells which directly activates soluble guanylate cyclase. We attempted to determine what similarities or differences existed between this factor and endothelium-derived relaxing factor. The study was performed on segments of rabbit aorta and canine femoral artery. Purified soluble guanylate cyclase was injected into the lumen of these vascular segments, together with its substrate, for intraluminal incubation of the enzyme. In endothelium-intact vascular segments, the activity of guanylate cyclase was enhanced over control values obtained by incubation in test tubes. The stimulation was further increased by acetylcholine in concentrations which caused relaxation of the vascular segments. The stimulating principle could not be transferred from the vessel lumen to an external solution of guanylate cyclase, indicating a short life-time. Removal of the endothelium prevented formation and release of the guanylate cyclase stimulating factor(s). Atropine, mepacrine, or nordihydroguaiaretic acid, which inhibit acetylcholine-induced endothelium-dependent relaxations, also inhibited acetylcholine-induced endothelium-mediated activation of guanylate cyclase. The results support the hypothesis that acetylcholine-induced endothelium-derived relaxing factor increases cyclic guanosine monophosphate levels of vascular smooth muscle by a stimulation of soluble guanylate cyclase.  相似文献   

5.
P Nambi  R K Sharma 《Endocrinology》1981,108(5):2025-2027
Low concentrations of ACTH, 7 x 10(-12) M, caused a marked stimulation of the 100,000 x g particulate guanylate cyclase without any detectable change in the adenylate cyclase activity. The lowest concentration of the hormone that elicited adenylate cyclase stimulation was 7 x 10(-10) M, a concentration 100--fold higher than that required to stimulate the guanylate cyclase. Although calcium was found to be obligatory in the hormonally--dependent guanylate cyclase activity, calcium alone could not duplicate the ACTH effect. Sodium nitroprusside and ascorbic acid inhibited the particulate guanylate cyclase activity. While ACTH was unable to stimulate the soluble guanylate cyclase, sodium nitroprusside markedly stimulated this enzyme. From these data, we conclude that the adrenal guanylate cyclase exists in two forms, particulate and soluble. The particulate form is specifically responsive to ACTH, and calcium is one of the essential coupling factors of this hormonally--responsive guanylate cyclase.  相似文献   

6.
According to our present understanding organic nitrates like glycerine trinitrate mediate their pharmacological effect by an intracellular stimulation of the enzyme guanylate cyclase (E.C. 4.6.1.2.) [1, 10]. The exact molecular mechanism underlying the process of enzyme activation is still a matter of controversial discussion. But there is general agreement in literature about the fact that organic nitrate compounds are able to activate the enzyme guanylate cyclase only in the presence or by the interaction of the amino acid cysteine [3, 5]. The stimulatory activity of nitric oxide-containing compounds may be due, at least in part, to the formation of active, unstable intermediate S-nitrosothiols, i.e. S-nitrosocysteine in case of the organic nitrates [7]. According to Craven and DeRubertis [2], the active intermediates of guanylate cyclase stimulation are represented by nitric oxide-heme complexes. There is, however, substantial evidence that the organic nitrates have to be cleaved before they become biologically active. During the transformation which takes place in the presence of cysteine or by means of enzymatic catalysis, nitric oxide radicals are reductively split off the molecule from which (via the intermediate formation of salpetric acid) the nitric oxide is liberated as the essential stimulatory agent. In this study we examined the transformation of glycerine trinitrate and other organic nitrates under the influence of different thiols and a purified soluble rat liver guanylate cyclase preparation. At the same time the stimulation of guanylate cyclase in the presence of the thiols mentioned was quantitatively estimated. Only in case of cysteine did we find a strict correlation between the liberation of nitric oxide from different organic nitrates and the degree of enzyme activation. Several other thiols were also able to liberate nitric oxide, but surprisingly enough, there was no equivalent stimulation of guanylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The discovery of nitric oxide as the endogenous nitrovasodilator   总被引:26,自引:0,他引:26  
Endothelium-derived relaxing factor (EDRF) is a labile humoral agent released by vascular endothelium that mediates the relaxation induced by some vasodilators, including acetylcholine and bradykinin. EDRF also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to vascular endothelium. These actions of EDRF are mediated through stimulation of the soluble guanylate cyclase and the consequent elevation of cyclic guanosine 3',5'-monophosphate. EDRF has been identified as nitric oxide (NO). The pharmacology of NO and EDRF is indistinguishable; furthermore, sufficient NO is released from endothelial cells to account for the biological activities of EDRF. Organic nitrates exert their vasodilator activity following conversion to NO in vascular smooth muscle cells. Thus, NO may be considered the endogenous nitrovasodilator. NO is synthesized by vascular endothelium from the terminal guanido nitrogen atom(s) of the amino acid L-arginine. This indicates the existence of an enzymic pathway in which L-arginine is the endogenous precursor for the synthesis of NO. The discovery of the release of NO by vascular endothelial cells, the biosynthetic pathway leading to its generation, and its interaction with other vasoactive substances opens up new avenues for research into the physiology and pathophysiology of the vessel wall.  相似文献   

8.
The glutamate–nitric oxide–cGMP pathway is impaired in brain in vivo in animal models of chronic moderate hyperammonemia either with or without liver failure. The impairment occurs at the level of activation of soluble guanylate cyclase by nitric oxide (NO). It has been suggested that the impairment of this pathway may be responsible for some of the neurological alterations found in hyperammonemia and hepatic encephalopathy. Soluble guanylate cyclase is also present in lymphocytes. Activation of guanylate cyclase by NO is also altered in lymphocytes from hyperammonemic rats or from rats with portacaval anastomosis. We assessed whether soluble guanylate cyclase activation was also altered in human patients with liver disease. We studied activation of soluble guanylate cyclase in lymphocytes from 77 patients with liver disease and 17 controls. The basal content of cGMP in lymphocytes was decreased both in patients with liver cirrhosis and in patients with chronic hepatitis. In contrast, cGMP concentration was increased in plasma from patients with liver disease. Activation of guanylate cyclase by NO was also altered in liver disease and was higher in lymphocytes from patients with cirrhosis or hepatitis than that in lymphocytes from controls. Successful treatment with interferon of patients with hepatitis C reversed all the above alterations. Altered modulation of soluble guanylate cyclase by NO in liver disease may play a role in the neurological and hemodynamic alterations in these patients.  相似文献   

9.
Inhibition of chemotaxis Ng-monomethyl-L-arginine: a role for cyclic GMP   总被引:8,自引:0,他引:8  
The metabolism of L-arginine to nitric oxide (NO) has been shown to be important for the effector functions of many cell types, including polymorphonuclear (PMN) leukocytes. Its effect appears to be mediated at least in part by NO stimulation of soluble guanylate cyclase. We evaluated the role of this pathway in two PMN effector functions: cell movement and microbial killing, using the competitive inhibitor of L- arginine conversion to NO, NG-monomethyl-L-arginine (NMA). We also evaluated the effect of additional L-arginine and dibutyryl cyclic guanosine monophosphate (cGMP) on any NMA-associated changes. Human peripheral blood neutrophils were used and the cells were incubated with and without NMA. Chemotaxis was evaluated using a 48-well micro- Boyden chamber. Microbial killing was evaluated using S aureus strains D2C and 502A. These studies demonstrated that chemotaxis to formyl- methionyl-leucyl-phenylalanine was markedly inhibited in NMA-treated cells. This inhibition could be overcome if L-arginine or dibutyryl cGMP were added with the NMA. In contrast, microbial killing of S aureus was unaffected by NMA. These observations support the hypothesis that the L-arginine metabolism to NO and its effect on the cGMP level may be important for the dynamic changes required for neutrophil chemotaxis.  相似文献   

10.
Although nitric oxide (NO) appears to be one of the oxidation products of L-arginine catalyzed by NO synthase (NOS; EC 1.14.13.39), past studies on the measurement of NO in cell-free enzymatic assays have not been based on the direct detection of the free NO molecule. Instead, assays have relied on indirect measurements of the stable NO oxidation products nitrite and nitrate and on indirect actions of NO such as guanylate cyclase activation and oxyhemoglobin oxidation. Utilizing a specific chemiluminescence assay, we report here that the gaseous product of L-arginine oxidation, catalyzed by both inducible macrophage and constitutive neuronal NOS, is indistinguishable from authentic NO on the basis of their physicochemical properties. NO gas formation by NOS was dependent on L-arginine, NADPH, and oxygen and inhibited by NG-methyl-L-arginine and cyanide anion. Superoxide dismutase (SOD) caused a marked, concentration-dependent increase in the production of free NO by mechanisms that were unrelated to the dismutation of superoxide anion or activation of NOS. These observations indicate that free NO is formed as a result of NOS-catalyzed L-arginine oxidation and that SOD enhances the generation of NO without directly affecting NO itself. SOD appears to elicit a novel biological action, perhaps accelerating the conversion of an intermediate in the L-arginine-NO pathway such as nitroxyl (HNO) to NO.  相似文献   

11.
Guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] activity of human platelet homogenates was stimulated by the addition of phospholipase A2 or unsaturated fatty acids such as oleic, vaccenic, linoleic, linolenic, eicosenoic, eicosadienoic, and arachidonic acids. The addition of lipoxidase potentiated the fatty acid-induced stimulation of guanylate cyclase purified by DEAE-cellulose column chromatography. The extent of the stimulation was dependent on the concentration of the oxidized form of these fatty acids (peroxides). Saturated fatty acids such as stearic and arachidic acids had no effect on the guanylate cyclase activity in the presence or absence of lipoxidase, indicating that human plateletguanylate cyclase is stimulated by unsaturated fatty acid peroxides rather than by fatty acids.Hemoglobin prevented the enzyme stimulation produced by low concentrations of fatty acid peroxides, but enhanced stimulation of the enzyme activity with high concentrations of fatty acid peroxides. 2-Mercaptoethanol, dithiothreitol, and N-ethylmaleimide inhibited the guanylate cyclase activities both in the presence and absence of unsaturated fatty acidperoxide. The stimulation of guanylate cyclase activity by unsaturated fatty acid peroxidesis attributed to oxidation of sulfhydryl residues of the enzyme protein.  相似文献   

12.
Nitric oxide as a signal in thyroid.   总被引:4,自引:0,他引:4  
It is now well established that agonist activation of the PIP2/calcium cascade in the thyroid results in the enhancement of cGMP accumulation presumably by activation of the soluble guanylate cyclase. In many tissues the physiological signal controlling soluble guanylate cyclase is nitric oxide (NO) and its synthesis from arginine is controlled by the intracellular Ca2+. In this report we show results that suggest that NO may be the intermediate of the cGMP response to the activation of the PIP2/calcium cascade. In dog thyroid slices, incubation with carbamylcholine or A23187 increases significantly free intracellular Ca2+ levels and the cGMP content of the slices. NG-Monomethyl-L-arginine (NMMA), a competitive inhibitor of arginine for nitric oxide synthase, inhibited these cGMP responses but not the action of sodium nitroprusside which activates soluble guanylate cyclase directly. The inhibition was relieved by arginine. Methylene blue, which blocks the activation of soluble guanylate cyclase by NO, also decreased the three stimulatory effects. NMMA and methylene blue also decreased the basal levels of cGMP. NO may therefore be an important autocrine and paracrine factor in thyroid.  相似文献   

13.
Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guérin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.  相似文献   

14.
Acetylcholine evokes the simultaneous release of endothelium-derived relaxing and contracting factors in aortas from spontaneously hypertensive rats. Only relaxing factors are released in aortas from normotensive controls. Experiments were designed to determine whether inhibitors of endothelium-dependent relaxations modify endothelium-dependent contractions. Rings of thoracic aortas of normotensive and spontaneously hypertensive rats, with and without endothelium, were suspended in organ chambers for isometric tension recording. Oxyhemoglobin (a scavenger of endothelium-derived relaxing factor) and NG-monomethyl L-arginine (an inhibitor of nitric oxide formation) augmented the contractions to acetylcholine. Methylene blue (an inhibitor of soluble guanylate cyclase) and superoxide dismutase (a scavenger of superoxide anions) did not modify these contractions. The contractions in the presence of oxyhemoglobin or NG-monomethyl L-arginine, like those in untreated rings, were endothelium-dependent; they only occurred in aortas from spontaneously hypertensive rats and were abolished by indomethacin. The contractions to acetylcholine in the presence of oxyhemoglobin were not affected by superoxide dismutase or deferoxamine. These data suggest that endothelium-derived relaxing factor inhibits endothelium-dependent contractions to acetylcholine in the spontaneously hypertensive rat aorta, probably by chemical inactivation of the endothelium-derived contracting factor rather than by stimulation of guanylate cyclase or scavenging of oxygen-derived free radicals.  相似文献   

15.
Epidermal growth factor (EGF) increases DNA synthesis and cell division both in vivo and in vitro. The mechanism by which EGF increases growth and DNA synthesis is unknown. Since the intracellular messenger cGMP stimulates DNA synthesis, the present investigation was designed to determine if EGF might have part of its mechanism of action through activating guanylate cyclase [EC 4.6.1.2], the enzyme that catalyzes the formation of cGMP. EGF enhanced soluble and particulate guanylate cyclase activities as well as cGMP levels 2- to 3-fold in hypophysectomized and nonhypophysectomized tissues both in vivo and in vitro. EGF increased guanylate cyclase activity 0.5 h after ip injection in mice, and this increased activity was still present 12 h later. Guanylate cyclase activity was increased to a greater extent secondary to EGF in hypophysectomized cecum compared to nonhypophysectomized cecum. Dose-response curves revealed that maximal stimulation of guanylate cyclase by EGF occurred at 1 nM. There was no augmented guanylate cyclase activity when the concentration of EGF was decreased to 0.01 nM. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of EGF.  相似文献   

16.
Nitric oxide (NO) affects many physiological systems by activating cGMP signaling cascades through soluble guanylate cyclase (sGC). In the accepted model, NO binds to the sGC heme, activating the enzyme. Here, we report that in the presence of physiological concentrations of ATP and GTP, NO dissociation from the sGC heme is approximately 160 times slower than the rate of enzyme deactivation in vitro. Deactivated sGC still has NO bound to the heme, and full activation requires additional NO. We propose an activation model where, in the presence of both ATP and GTP, tonic NO forms a stable heme complex with low sGC activity; acute production of NO transiently and fully activates this NO-bound sGC.  相似文献   

17.
OBJECTIVE: Carbon monoxide (CO) modulates several physiological functions through activation of a cGMP-dependent pathway similar to that of nitric oxide (NO). Here we investigated the possible involvement of soluble guanylate cyclase in the anti-aggregatory effect of micromolar concentrations of CO released by a novel, water-soluble, CO releasing molecule (CORM) in human platelets. METHODS: Human platelet aggregation was induced by collagen or thrombin, and the effects of CO releasing molecule (CORM-3) and an NO donor on platelet aggregation were compared. RESULTS: CORM-3 liberated CO in a time- and concentration-dependent manner as evidenced by the formation of carbon monoxy myoglobin (MbCO) using a spectrophotometric assay. When added to washed platelets, CORM-3 (10-300 microM) inhibited collagen- and thrombin-induced aggregation in a concentration-dependent manner. The anti-aggregatory effect of CORM-3 was reversed by deoxy-Mb (50 microM). Interestingly, in the presence of an inhibitor of guanylate cyclase (ODQ, 5 microM), inhibition of collagen-induced aggregation by CORM-3 was not blocked but potentiated. Under the same experimental conditions, inhibition of platelet aggregation by an NO donor (SNAP, 1 microM) was prevented by ODQ. In collagen-induced or thrombin-induced platelet aggregation, a stimulator of guanylate cyclase (YC-1, 0.3 microM) did not alter the effect of CORM-3, whereas it markedly potentiated the inhibition of platelet aggregation mediated by SNAP. Notably, CORM-3-induced inhibition of platelet aggregation was of similar degree when platelets were activated by a low (20 mU/ml) or by high concentration of thrombin (100-200 mU/ml), whereas NO donors (SNP and SNAP)- or carbaprostacylin (cPGI(2))-induced effects were considerably attenuated when platelets were activated by high concentrations of thrombin. CONCLUSIONS: Inhibition of platelet aggregation by CO released by a novel, water-soluble CORM is not mediated by activation of soluble guanylate cyclase. In contrast to NO and PGI(2), CO effectively inhibits platelets even when cells are activated excessively. We suggest that despite the fact that CO is not a potent inhibitor of platelet activation, it may gain importance when NO and PGI(2) alone are insufficient to overcome excessive platelet activation.  相似文献   

18.
Nitrovasodilators relax vascular smooth muscle by stimulating guanylate cyclase. Ignarro et al. (1981) proposed a mechanistic scheme according to which organic nitrates release nitrite in the presence of thiols. The corresponding nitrous acid would decay leading to nitric oxide, which then would react with another thiol to nitrosothiol. Dose-response relations with regard to guanylate cyclase stimulation of organic nitrates and sodium nitrite were compared in the presence of cysteine and its closely related methylester. Nitrite formation from ED95 concentrations of organic nitrates was also measured and compared with that present under an equi-effective concentration of sodium nitrite. In addition, the proposed formation of nitrosothiol from nitric oxide was re-examined. In the presence of cysteine, organic nitrates as well as sodium nitrite stimulated guanylate cyclase, but nitrite formation under ED95 concentrations of organic nitrates was 1000-fold smaller than that present under an equi-effective concentration of sodium nitrite. In the presence of cysteinemethylester, liberation of nitrite from organic nitrates was similar but no stimulation of guanylate cyclase was obtained. Sodium nitrite, however, showed a stimulating activity similar to that in the presence of cysteine. These results clearly demonstrate that guanylate cyclase stimulation by organic nitrates is not mediated by nitrite and subsequent formation of nitrosothiol. Since nitrous acid did not decay to nitric oxide in the pH range studied, the formation of nitrosothiol is apparently due to a direct reaction of nitrous acid with thiol.  相似文献   

19.
Four monoclonal antibodies to rat lung soluble guanylate cyclase [GTP pyrophosphate-lyase (cyclizing) EC 4.6.1.2] have been produced by fusing spleen cells from immunized BALB/c mice with SP-2/0 myeloma cells. The antibodies were detected by their ability to bind immobilized guanylate cyclase and by immunoprecipitation of purified enzyme in the presence of second (rabbit anti-mouse) antibody. After subcloning by limiting dilution, hybridomas were injected intraperitoneally into mice to produce ascitic fluid containing 2-5 mg of antibody per ml. The four antibodies obtained had titers of between 1:1580 and 1:3160 but were detectable at dilutions greater than 1:20,000. Soluble guanylate cyclase from several rat tissues were crossreactive with the four monoclonal antibodies, suggesting that the soluble enzyme from different rat tissues is antigenically similar. The antibodies also recognized soluble lung enzyme from rat, beef, and pig, while enzyme from rabbit was not crossreactive and mouse enzyme was recognized by only one of the antibodies. Particulate guanylate cyclase from a number of tissues had only minimal crossreactivity with the antibodies. Immunoprecipitated guanylate cyclase retained catalytic activity, could be activated with sodium nitroprusside, and was inhibited by cystamine. None of the antibodies were inhibitory under the conditions examined. These antibodies will be useful probes for the study of guanylate cyclase regulation and function under a variety of physiological conditions.  相似文献   

20.
Partially purified soluble rat liver guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] was activated by superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1). This activation was prevented with KCN or glutathione, inhibitors of superoxide dismutase. Guanylate cyclase preparations formed superoxide ion. Activation by superoxide dismutase was further enhanced by the addition of nitrate reductase. Although guanylate cyclase activity was much greater with Mn2+ than with Mg2+ as sole cation cofactor, activation with superoxide dismutase was not observed when Mn2+ was included in incubations. Catalase also decreased the activation induced with superoxide dismutase. Thus, activation required the formation of both superoxide ion and H2O2 in incubations. Activation of guanylate cyclase could not be achieved by the addition of H2O2 alone. Scavengers of hydroxyl radicals prevented the activation. It is proposed that superoxide ion and hydrogen peroxide can lead to the formation of hydroxyl radicals that activate guanylate cyclase. This mechanism of activation can explain numerous observations of altered guanylate cyclase activity and cyclic GMP accumulation in tissues with oxidizing and reducing agents. This mechanism will also permit physiological regulation of guanylate cyclase and cyclic GMP formation when there is altered redox or free radical formation in tissues in response to hormones, other agents, and processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号