首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wang QF  Chen JC  Hsieh SJ  Cheng CC  Hsu SL 《Cancer letters》2002,183(2):169-178
Herbal medicines are increasingly being utilized to treat a wide variety of disease processes. Gypenosides (Gyp) are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis in human hepatoma cells. However, the molecular mechanism underlying the Gyp-induced apoptotic process is unclear. In this study, we found that Gyp induced apoptosis in human hepatoma Huh-7, Hep3B and HA22T cell lines as evidenced by morphological changes, 4',6'-diamidino-2-phenylindole staining and in situ terminal transferase-mediated dUTP-fluorescensin nick end-labeling assay. Our data demonstrated that Gyp-induced apoptotic cell death was accompanied by up-regulation of Bax, Bak and Bcl-X(L), and down-regulation of Bcl-2 and Bad, while it had no effect on the level of Bag-1 protein. Moreover, Gyp treatment caused the release of mitochondrial cytochrome c to cytosol and sequential activation of caspases, including caspase-1, -9 and -3, then leading to cleavage of poly-ADP-ribose polymerase. Furthermore, the Gyp-induced apoptosis was markedly blocked by the broad-spectrum caspase inhibitor, z-VAD-fmk. Taken together, these results suggest that treatment of human hepatoma cells with Gyp induced apoptosis through the up-regulation of Bax and Bak, and down-regulation of Bcl-2, release of mitochondrial cytochrome c and activation of caspase cascade.  相似文献   

2.
Curcumin, an active ingredient of turmeric (Curcuma longa), inhibits proliferation and induces apoptosis in cancer cells, but the sequence of events leading to cell death is poorly defined. The objective of this study was to examine the molecular mechanisms by which multidomain pro-apoptotic Bcl-2 family members Bax and Bak regulate curcumin-induced apoptosis using mouse embryonic fibroblasts (MEFs) deficient in Bax, Bak or both genes. Curcumin treatment resulted an increase in the protein levels of both Bax and Bak, and mitochondrial translocation and activation of Bax in MEFs to trigger drop in mitochondrial membrane potential, cytosolic release of apoptogenic molecules [cytochrome c and second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis protein-binding protein with low isoelectric point], activation of caspase-9 and caspase-3 and ultimately apoptosis. Furthermore, MEFs derived from Bax and Bak double-knockout (DKO) mice exhibited even greater protection against curcumin-induced release of cytochrome c and Smac, activation of caspase-3 and caspase-9 and induction of apoptosis compared with wild-type MEFs or single-knockout Bax(-/-) or Bak(-/-) MEFs. Interestingly, curcumin treatment also caused an increase in the protein level of apoptosis protease-activating factor-1 in wild-type MEFs. Smac N7 peptide enhanced curcumin-induced apoptosis, whereas Smac siRNA inhibited the effects of curcumin on apoptosis. Mature form of Smac sensitized Bax and Bak DKO MEFs to undergo apoptosis by acting downstream of mitochondria. The present study demonstrates the role of Bax and Bak as a critical regulator of curcumin-induced apoptosis and over-expression of Smac as interventional approaches to deal with Bax- and/or Bak-deficient chemoresistant cancers for curcumin-based therapy.  相似文献   

3.
Zhang M  Guo R  Zhai Y  Yang D 《Cancer letters》2003,195(2):201-210
LIGHT is a new member of the tumor necrosis factor superfamily, which binds to lymphotoxin beta receptor, herpes virus entry mediator, or TR6. This work was carried out to elucidate the molecular mechanism of LIGHT-sensitized, interferon gamma (IFNgamma)-mediated apoptosis of MDA-MB-231 cells. It was revealed that LIGHT treatment resulted in down-regulation of anti-apoptosis Bcl-2 family member: Bcl-2, Bcl-X(L), Bag-1, and Mcl-1; up-regulation of pro-apoptosis Bcl-2 family member: Bak and Ser (112)-phosphor-Bad; down-regulation of pro-apoptosis Bcl-2 member Bax; the other pro-apoptosis member Bid remains unaltered. LIGHT treatment also resulted in activation of caspase-3, caspase-6, caspase-7, caspase-8, caspase-9, DFF45, and PARP. However, caspase activation and caspase activity, especially caspase-3 activity, is not required for LIGHT-induced apoptosis of MDA-MB-231 cells, since caspase-3 inhibitor, benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone, and a broad range caspase inhibitor, benzyloxycarbonyl-val-ala-asp-fluoromethylketone failed to block the apoptosis induced by LIGHT and IFNgamma in MDA-MB-231 cells. In summary, LIGHT-sensitized IFNgamma-mediated apoptosis of MDA-MB-231 cells is probably through down-regulation of anti-apoptosis Bcl-2 family members; it could be caspase (especially caspase-3)-independent, even though extensive caspase activation was observed.  相似文献   

4.
Among the members of the Bcl-2 family, the multidomain proteins Bax and Bak are crucial for the activation of mitochondria. However, it is still unclear whether they act in a unique and distinct manner or whether they exhibit redundant functions. To systematically investigate their activation on a single-cell level, we established MCF-7 cell lines stably expressing GFP-fusion variants of these proteins. We found that MCF-7/GFP-Bak cells showed an increased sensitivity to apoptosis induction by staurosporine, actinomycin D, TRAIL and overexpression of Puma compared to GFP-Bax-expressing cells. Independently of the death stimulus used, oligomerization of endogenous and exogenous Bak was mostly detected prior to an activation of Bax, whereas cells displaying oligomerized Bax in the absence of Bak clusters were not observed. In addition, activation of Bax but not Bak was attenuated by a caspase inhibitor. Consistent with this, caspase-3-deficient MCF-7 cells displayed a significantly reduced activation of endogenous Bax than caspase-3-proficient MCF-7 cells. Thus, our data strongly suggest that diverse apoptotic stimuli preferentially engage the Bak pathway, whereas the triggering of Bax occurs, at least partially, downstream of mitochondrial caspase activation, most likely constituting a positive feedback loop for the amplification of the death signal.  相似文献   

5.
Apoptosis is an important phenomenon in cytotoxicity induced by anticancer drugs. Here, we review the current status of the molecular mechanisms of anticancer drug-induced apoptosis in order to assess the contribution of molecular-level analysis to cancer chemotherapy. It is apparent that the molecular mechanisms by which anticancer drugs induce apoptosis are mediated by death receptor-dependent and -independent pathways, which are related to the release of cytochrome c through voltage-dependent anion channels in the mitochondrial inner membrane. The release of cytochrome c is the central gate in turning on/off apoptosis, and is regulated by the interaction of proapoptotic proteins, including Bid, Bax and Bak, and antiapoptotic proteins including Bcl-2 and Bcl-X(L), and a specific class of inhibitors of apoptosis proteins (IAPs) including Akt, survivin, and heat-shock proteins. The caspase cascade is activated by the release of cytochrome c, which is initiated by the formation of apoptosomes consisting of procaspase-9, Apaf-1 and cytochrome c in the presence of dATP, and results in the activation of caspase-9 and caspase-3, thereby leading to apoptosis. Drug sensitivity can be enhanced by the introduction of proapoptotic genes and the inhibition of antiapoptotic proteins. The latter process is mediated by antisense oligonucleotides and is associated with apoptosis. The signal transduction pathways that are triggered by the central gate in mitochondria play a critical role in anticancer drug-induced apoptosis. The modulation of signal transduction pathways targeting the proteins involved in these signal transduction pathways using antisense IAPs, and growth factor antibodies may be a good strategy for enhancing therapeutic efficacy of anticancer drugs in cancer chemotherapy.  相似文献   

6.
Henry H  Thomas A  Shen Y  White E 《Oncogene》2002,21(5):748-760
The p53 tumor suppressor protein inhibits tumor formation, in part by inducing apoptosis, which is inhibited by anti-apoptotic Bcl-2 family members Bcl-2 and adenovirus E1B 19K. We have identified p53-apoptotic signaling events which are targeted for inhibition by E1B 19K. Apoptotic signaling by p53 induced a Bid-independent conformational change in Bax, a Bax-Bak interaction, release of cytochrome c and Smac/DIABLO from mitochondria, caspase-9 and -3 activation, cleavage of known caspase substrates, and apoptosis. When p53-dependent apoptosis was blocked by E1B 19K expression, E1B 19K bound Bak, and the Bax-Bak interaction was inhibited. Cytochrome c and Smac/DIABLO release from mitochondria was also inhibited in E1B 19K expressing cells and cells remained viable. After a prolonged p53 death stimulus, the inhibition of the mitochondrial death checkpoint by E1B 19K failed, and cytochrome c and Smac/DIABLO were released from mitochondria, and became degraded. Despite this eventual failure to inhibit the mitochondrial checkpoint, caspase-9 and -3 were not activated, and cells remained viable even upon treatment with an exogenous death stimulus. Thus, p53 induces apoptosis in part through Bax and Bak, and even an incomplete inhibition of this mitochondrial checkpoint may be sufficient to confer resistance to cell death.  相似文献   

7.
PURPOSE: Our studies have shown variable sensitivity of cultured melanoma cells to docetaxel. To better understand this response, we studied the role of signal transduction pathways in modulating docetaxel-induced melanoma killing. EXPERIMENTAL DESIGN: Involvement of c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase, and Akt signaling was studied by evaluating their extent of activation in melanoma cells after treatment with docetaxel. The effect of their activation on docetaxel-induced apoptosis was assessed using biochemical inhibitors of the pathways and Western blot analysis of proteins involved. RESULTS: Docetaxel induced activation of both JNK and ERK1/2 but not p38 mitogen-activated protein kinase or Akt kinases. Apoptosis was dependent on activation of JNK and mediated through activation of caspase-2 and caspase-dependent changes in Bax and Bak. The levels of activated JNK in individual lines showed a close correlation with the levels of apoptosis. In contrast, activation of ERK1/2 by docetaxel inhibited apoptosis and the levels of activation in individual lines were inversely correlated to the degree of apoptosis. Studies on the Bcl-2 family proteins seemed to reflect changes induced by activation of JNK and ERK1/2 pathways. Docetaxel-induced JNK activation was required for Bcl-2 phosphorylation as well as caspase-2-dependent activation of Bax and Bak and subsequent mitochondrial release of apoptosis-inducing factor and cytochrome c. In contrast, activation of ERK1/2 resulted in degradation of BH3-only protein Bim and phosphorylation of Bad. CONCLUSIONS: These studies provide further insights into sensitivity of melanoma cells to taxanes and provide a basis for the current rationale of combining taxanes with inhibitors of the Raf-ERK1/2 pathway.  相似文献   

8.
Choi S  Singh SV 《Cancer research》2005,65(5):2035-2043
Sulforaphane, a constituent of many edible cruciferous vegetables, including broccoli, effectively suppresses proliferation of cancer cells in culture and in vivo by causing apoptosis induction, but the sequence of events leading to cell death is poorly defined. Here, we show that multidomain proapoptotic Bcl-2 family members Bax and Bak play a critical role in apoptosis induction by sulforaphane. This conclusion is based on the following observations: (a) sulforaphane treatment caused a dose- and time-dependent increase in the protein levels of both Bax and Bak and conformational change and mitochondrial translocation of Bax in SV40-transformed mouse embryonic fibroblasts (MEF) derived from wild-type mice to trigger cytosolic release of apoptogenic molecules (cytochrome c and Smac/DIABLO), activation of caspase-9 and caspase-3, and ultimately cell death; (b) MEFs derived from Bax or Bak knockout mice resisted cell death by sulforaphane, and (c) MEFs derived from Bax and Bak double knockout mice exhibited even greater protection against sulforaphane-induced cytochrome c release, caspase activation, and apoptosis compared with wild-type or single knockout cells. Interestingly, sulforaphane treatment also caused a dose- and time-dependent increase in the protein level of Apaf-1 in wild-type, Bax-/-, and Bak-/- MEFs but not in double knockout, suggesting that Bax and Bak might regulate sulforaphane-mediated induction of Apaf-1 protein. A marked decline in the protein level of X-linked inhibitor of apoptosis on treatment with sulforaphane was also observed. Thus, it is reasonable to postulate that sulforaphane-induced apoptosis is amplified by a decrease in X-linked inhibitor of apoptosis level, which functions to block cell death by inhibiting activities of caspases. In conclusion, the results of the present study indicate that Bax and Bak proteins play a critical role in initiation of cell death by sulforaphane.  相似文献   

9.
Ren G  Zhao YP  Yang L  Fu CX 《Cancer letters》2008,262(2):190-200
Clitocine, a natural biologically active substance isolated from the mushroom Leucopaxillus giganteus, possesses several bioactivities including antitumor. Here, for the first time, we studied the molecular mechanism of clitocine-induced apoptosis in human cervical cancer cells (HeLa). Clitocine-induced cell death was characterized with the changes in cell morphology, DNA fragmentation, activation of caspase-3, -8, and -9 (like) activities, poly(ADP-ribose) polymerase (PARP) cleavage, release of cytochrome c (cyt c) into cytosol, and increase of Bax:Bcl-2 ratio. These results indicated that the induction of apoptosis by clitocine involved the multiple pathway including death receptor and mitochondrial pathways, and strongly suggested that the mitochondrial pathways were mediated by down-regulation of Bcl-2 and up-regulation of Bax, release of cytochrome c and subsequent activation of caspase-3 followed by down stream events leading to apoptotic mode of cell death.  相似文献   

10.
4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a wellknownanticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in humanA549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantlyincreased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced byMTBITC was investigated by testing the change of mitochondrial membrane potential (ΔΨm), the expressionof mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetricassay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene familycould be involved in the mechanisms of A549 cell apoptosis induced by MTBITC.  相似文献   

11.
Dunkern TR  Fritz G  Kaina B 《Oncogene》2001,20(42):6026-6038
Ultraviolet (UV) light is a potent mutagenic and genotoxic agent. Whereas DNA damage induced by UV light is known to be responsible for UV-induced genotoxicity, its role in triggering apoptosis is still unclear. We addressed this issue by comparing nucleotide excision repair (NER) deficient 27-1 and 43-3B Chinese hamster (CHO) cells with the corresponding wild-type and ERCC-1 complemented cells. It is shown that NER deficient cells are dramatically hypersensitive to UV-C induced apoptosis, indicating that DNA damage is the major stimulus for the apoptotic response. Apoptosis triggered by UV-C induced DNA damage is related to caspase- and proteosome-dependent degradation of Bcl-2 protein. The expression of other members of the Bcl-2 family such as Bax, Bcl-x(L) and Bak were not affected. Bcl-2 decline is causally involved in UV-C induced apoptosis since overexpression of Bcl-2 protected NER deficient cells against apoptosis. We also demonstrate that caspase-8, caspase-9 and caspase-3 are activated and PARP is cleaved in response to unrepaired UV-C induced DNA damage. Caspase-8 activation occurred independently of CD95 receptor activation since CD95R/FasR and CD95L/FasL were not altered in expression, and transfection of transdominant negative FADD failed to block apoptosis. Overall, the data demonstrate that UV-C induced non-repaired DNA damage triggers apoptosis in NER deficient fibroblasts involving components of the intrinsic mitochondrial damage pathway.  相似文献   

12.
Hydroxychloroquine (HCQ) is a lysosomotropic amine with cytotoxic properties. Here, we show that HCQ induces signs of lysosomal membrane permeabilization (LMP), such as the decrease in the lysosomal pH gradient and the release of cathepsin B from the lysosomal lumen, followed by signs of apoptosis including caspase activation, phosphatidylserine exposure, and chromatin condensation with DNA loss. HCQ also induces mitochondrial membrane permeabilization (MMP), as indicated by the insertion of Bax into mitochondrial membranes, the conformational activation of Bax within mitochondria, the release of cytochrome c from mitochondria, and the loss of the mitochondrial transmembrane potential. To determine the molecular order among these events, we introduced inhibitors of LMP (bafilomycin A(1)), MMP (Bcl-X(L), wild-type Bcl-2, mitochondrion-targeted Bcl-2, or viral mitochondrial inhibitor of apoptosis from cytomegalovirus), and caspases (Z-VAD.fmk) into the system. Our data indicate that caspase-independent MMP is rate-limiting for LMP-mediated caspase activation. Mouse embryonic fibroblasts lacking the expression of both Bax and Bak are resistant against hydroxychloroquine-induced apoptosis. Such Bax(-/-) Bak(-/-) cells manifest normal LMP, yet fail to undergo MMP and subsequent cell death. The data reported herein indicate that LMP does not suffice to trigger caspase activation and that Bax/Bak-dependent MMP is a critical step of LMP-induced cell death.  相似文献   

13.
Interferon alpha (IFNalpha) is used to treat patients with advanced renal cell carcinoma (RCC) despite limited clinical benefit. IFNalpha can induce Fas receptor-mediated apoptosis by direct activation of pro-caspase-8 followed by activation of caspase-3. Alternative, indirect activation of caspase-3 via mitochondrial release of cytochrome c can occur and may explain the rescue from Fas-activated cell death by the antiapoptotic members of the Bcl-2 family. In this study, we examined G3139, a novel antisense compound targeting Bcl-2, in combination with IFNalpha. Human RCC lines (SK-RC-44 and SK-RC-07) were treated with IFNalpha, G3139 or a combination of the two. Fas-mediated cytotoxicity was induced by anti-Fas mAb, CH11. An analysis of Bcl-2, Fas and the cleavage of PARP was performed. IFNalpha induced Fas and Bcl-2 in SK-RC-44 and SK-RC-07. IFNalpha sensitised SK-RC-44 to anti-Fas and induced PARP cleavage confirming that IFNalpha has a cytotoxic effect on RCC lines by induction of the Fas antigen. Cytotoxicity was not evident in SK-RC-07 cells treated with IFNalpha. G3139 induced a specific downregulation of Bcl-2 in SK-RC-07 cells, which were then sensitised to anti-Fas after treatment with IFNalpha. Taken together, these results suggest that Fas-dependent pathways as well as alternative pathways, which can be inhibited by Bcl-2, exist in renal cell carcinoma. G3139 in combination with IFNalpha is a potential therapy in patients with metastatic renal cell carcinoma.  相似文献   

14.
15.
Chen S  Dai Y  Harada H  Dent P  Grant S 《Cancer research》2007,67(2):782-791
The Bcl-2 antagonist ABT-737 targets Bcl-2/Bcl-xL but not Mcl-1, which may confer resistance to this novel agent. Here, we show that Mcl-1 down-regulation by the cyclin-dependent kinase (CDK) inhibitor roscovitine or Mcl-1-shRNA dramatically increases ABT-737 lethality in human leukemia cells. ABT-737 induces Bax conformational change but fails to activate Bak or trigger Bax translocation. Coadministration of roscovitine and ABT-737 untethers Bak from Mcl-1 and Bcl-xL, respectively, triggering Bak activation and Bax translocation. Studies employing Bax and/or Bak knockout mouse embryonic fibroblasts (MEFs) confirm that Bax is required for ABT-737+/-roscovitine lethality, whereas Bak is primarily involved in potentiation of ABT-737-induced apoptosis by Mcl-1 down-regulation. Ectopic Mcl-1 expression attenuates Bak activation and apoptosis by ABT-737+roscovitine, whereas cells overexpressing Bcl-2 or Bcl-xL remain fully sensitive. Finally, Mcl-1 knockout MEFs are extremely sensitive to Bak conformational change and apoptosis induced by ABT-737, effects that are not potentiated by roscovitine. Collectively, these findings suggest down-regulation of Mcl-1 by either CDK inhibitors or genetic approaches dramatically potentiate ABT-737 lethality through cooperative interactions at two distinct levels: unleashing of Bak from both Bcl-xL and Mcl-1 and simultaneous induction of Bak activation and Bax translocation. These findings provide a mechanistic basis for simultaneously targeting Mcl-1 and Bcl-2/Bcl-xL in leukemia.  相似文献   

16.
Gu Q  Wang JD  Xia HH  Lin MC  He H  Zou B  Tu SP  Yang Y  Liu XG  Lam SK  Wong WM  Chan AO  Yuen MF  Kung HF  Wong BC 《Carcinogenesis》2005,26(3):541-546
Aspirin-induced apoptosis is one of the important mechanisms for its antitumour effect against gastric cancer. We aimed at investigating the involvement of bcl-2 family members in the apoptotic pathway in gastric cancer. Gastric cancer cell line AGS and MKN-45 were observed as to cell growth inhibition and induction of apoptosis in response to treatment with aspirin. Cell proliferation was measured by MTT assay. Apoptosis was determined by 4'-6-diamidino-2-phenylindole staining. Protein expression was determined by western blotting. We showed that aspirin activated caspase-8, caspase-9 and capase-3, cleaved and translocated Bid, induced a conformational change in and translocation of Bax and cytochrome c release. In addition, suppression of caspase-8 with the specific inhibitor z-IETD-fmk, as well as the pan-caspase inhibitor z-VAD-fmk, prevented Bid cleavage and subsequent apoptosis. The caspase inhibitors failed to abolish the effects on Bax activation. In conclusion, our results identify a role of caspase-8/Bid and activation of Bax as a novel mechanism for aspirin-induced apoptosis in gastric cancer.  相似文献   

17.
Zhang S  Ong CN  Shen HM 《Cancer letters》2004,211(2):175-188
Parthenolide is a sesquiterpene lactone responsible for the bioactivities of Feverfew. Besides its potent anti-inflammatory effect, this compound has recently been reported to induce apoptosis in cancer cells, possibly through mitochondrial dysfunction. In the present study, we attempted to examine parthenolide-mediated cell death signaling pathway by focusing on the involvement of Bcl-2 family members. Using a human colorectal cancer cell line COLO205, we first demonstrated that parthenolide acted through the cell death receptor pathway to activate caspase 8. Following caspase 8 activation, Bid, a proapoptotic Bcl-2 member, was cleaved and this cleavage then triggered Bax conformational changes and Bax translocation from cytosol to mitochondrial membrane. Meanwhile, another proapoptotic protein, Bak, was up-regulated and oligomerized on the mitochondrial membrane. All these alterations were found to be prerequisite for the subsequent release of proapopototic mitochondrial proteins, including cytochrome c and Samc, in parthenolide-treated cells. Moreover, selective inhibition of caspase 8 activity by a synthetic caspase inhibitor (IETD-FMK) or overexpression of a viral protein (CrmA) suppressed the cleavage of Bid, conformational changes of Bax, cytochrome c release, and apoptosis. Therefore, the proapoptotic Bcl-2 family members are important mediators relaying the cell death signaling elicited by parthenolide from caspase 8 to downstream effector caspases such as caspase 3, and eventually to cell death.  相似文献   

18.
TRAIL-induced apoptosis has been considered a promising therapeutic approach for tumors that are resistant to chemotherapy, which is usually mediated via mitochondrial apoptotic cascades. Recent studies have shown that in certain cancer cells, TRAIL-mediated apoptosis is also dependent on mitochondrial involvement, suggesting that similar mechanisms of resistance to chemotherapy might be implicated in the resistance of tumor cells to TRAIL. We have used TRAIL-resistant leukemic cells that are deficient in both Bax and Bak to determine the roles of these Bcl-2 members in TRAIL-mediated apoptosis. Exposure of these cells to TRAIL did not have an impact on cell viability, although it induced the processing of caspase-3 to its active p20 subunit. The activity of the p20 caspase-3 appeared to be inhibited as no autoprocessing of this p20 subunit or cleavage of known caspase-3 substrates were detected. Also, in the absence of Bax and Bak, no release of mitochondrial apoptogenic proteins was observed following TRAIL treatment. Adenoviral transduction of the Bax, but not the Bak gene, to the Bax/Bak-deficient leukemic cells rendered them TRAIL-sensitive as assessed by enhanced apoptotic death and caspase-3 processing. These findings demonstrate preferential utilization of Bax over Bak in leukemic cell response to specific apoptotic stimulation.  相似文献   

19.
20.
Apoptin, a chicken anemia virus-derived protein, selectively induces apoptosis in transformed but not in normal cells, thus making it a promising candidate as a novel anticancer therapeutic. The mechanism of apoptin-induced apoptosis is largely unknown. Here, we report that contrary to previous assumptions, Bcl-2 and Bcl-xL inhibit apoptin-induced cell death in several tumor cell lines. In contrast, deficiency of Bax conferred resistance, whereas Bax expression sensitized cells to apoptin-induced death. Cell death induction by apoptin was associated with cytochrome c release from mitochondria as well as with caspase-3 and -7 activation. Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad spectrum caspase inhibitor, was highly protective against apoptin-induced cell death. Apoptosis induced by apoptin required Apaf-1, as immortalized Apaf-1-deficient fibroblasts as well as tumor cells devoid of Apaf-1 were strongly protected. Thus, our data indicate that apoptin-induced apoptosis is not only Bcl-2- and caspase dependent, but also engages an Apaf-1 apoptosome-mediated mitochondrial death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号