首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells.

Methods:

A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster.

Results:

miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells.

Conclusions:

Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression.  相似文献   

2.
microRNA (miRNA) expression profiles varied greatly among current studies due to different technological platforms and small sample size. Systematic and integrative analysis of published datesets that compared the miRNA expression profiles between hepatocellular carcinoma (HCC) tissue and paired adjacent noncancerous liver tissue was performed to determine candidate HCC associated miRNAs. Moreover, we further validated the confirmed miRNAs in a clinical setting using qRT-PCR and Tumor Cancer Genome Atlas (TCGA) dataset. A miRNA integrated-signature of 5 upregulated and 8 downregulated miRNAs was identified from 26 published datesets in HCC using robust rank aggregation method. qRT-PCR demonstrated that miR-93-5p, miR-224-5p, miR-221-3p and miR-21-5p was increased, whereas the expression of miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-5p and miR-145-5p was decreased in the HCC tissues, which was also validated on TCGA dataset. A miRNA based score using LASSO regression model provided a high accuracy for identifying HCC tissue (AUC = 0.982): HCC risk score = 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_miR-130a. E_miR-n = Log 2 (expression of microRNA n). Furthermore, expression of 5 miRNAs (miR-222, miR-221, miR-21 miR-214 and miR-130a) correlated with pathological tumor grade. Cox regression analysis showed that miR-21 was related with 3-year survival (hazard ratio [HR]: 1.509, 95%CI: 1.079–2.112, P = 0.016) and 5-year survival (HR: 1.416, 95%CI: 1.057–1.897, P = 0.020). However, none of the deregulated miRNAs was related with microscopic vascular invasion. This study provides a basis for further clinical application of miRNAs in HCC.  相似文献   

3.
4.
This study aimed to investigate the microRNA (miRNA) profile in prostate carcinoma tissue by microarray analysis and RT‐qPCR, to clarify associations of miRNA expression with clinicopathologic data and to evaluate the potential of miRNAs as diagnostic and prognostic markers. Matched tumor and adjacent normal tissues were obtained from 76 radical prostatectomy specimens. Twenty‐four tissue pairs were analyzed using human miRNA microarrays for 470 human miRNAs. Differentially expressed miRNAs were validated by TaqMan RT‐qPCR using all 76 tissue pairs. The diagnostic potential of miRNAs was calculated by receiver operating characteristics analyses. The prognostic value was assessed in terms of biochemical recurrence using Kaplan–Meier and Cox regression analyses. Fifteen differentially expressed miRNAs were identified with concordant fold‐changes by microarray and RT‐qPCR analyses. Ten microRNAs (hsa‐miR‐16, hsa‐miR‐31, hsa‐miR‐125b, hsa‐miR‐145, hsa‐miR‐149, hsa‐miR‐181b, hsa‐miR‐184, hsa‐miR‐205, hsa‐miR‐221, hsa‐miR‐222) were downregulated and 5 miRNAs (hsa‐miR‐96, hsa‐miR‐182, hsa‐miR‐182*, hsa‐miR‐183, hsa‐375) were upregulated. Expression of 5 miRNAs correlated with Gleason score or pathological tumor stage. Already 2 microRNAs classified up to 84% of malignant and nonmalignant samples correctly. Expression of hsa‐miR‐96 was associated with cancer recurrence after radical prostatectomy and that prognostic information was confirmed by an independent tumor sample set from 79 patients. That was shown with hsa‐miR‐96 and the Gleason score as final variables in the Cox models build in the 2 patient sets investigated. Thus, differential miRNAs in prostate cancer are useful diagnostic and prognostic indicators. This study provides a solid basis for further functional analyses of miRNAs in prostate cancer.  相似文献   

5.
MicroRNAs (miRNA) have tumor suppressive and oncogenic potential in human cancer, but whether and how miRNAs control cell cycle progression is not understood. To address this question, we carried out a comprehensive analysis of miRNA expression during serum stimulation of quiescent human cells. Time course analyses revealed that four miRNAs are up-regulated and >100 miRNAs are down-regulated, as cells progress beyond the G(1)-S phase transition. We analyzed the function of two up-regulated miRNAs (miR-221 and miR-222) that are both predicted to target the cell growth suppressive cyclin-dependent kinase inhibitors p27 and p57. Our results show that miR-221 and miR-222 both directly target the 3' untranslated regions of p27 and p57 mRNAs to reduce reporter gene expression, as well as diminish p27 and p57 protein levels. Functional studies show that miR-221 and miR-222 prevent quiescence when elevated during growth factor deprivation and induce precocious S-phase entry, thereby triggering cell death. Thus, the physiologic up-regulation of miR-221 and miR-222 is tightly linked to a cell cycle checkpoint that ensures cell survival by coordinating competency for initiation of S phase with growth factor signaling pathways that stimulate cell proliferation.  相似文献   

6.
7.
High-throughput methods have been used to explore the mechanisms by which androgen-sensitive prostate cancer (ASPC) develops into castration-resistant prostate cancer (CRPC). However, it is difficult to interpret cryptic results by routine experimental methods. In this study, we performed systematic and integrative analysis to detect key miRNAs that contribute to CRPC development. From three DNA microarray datasets, we retrieved 11 outlier microRNAs (miRNAs) that had expression discrepancies between ASPC and CRPC using a specific algorithm. Two of the miRNAs (miR-125b and miR-124) have previously been shown to be related to CRPC. Seven out of the other nine miRNAs were confirmed by quantitative PCR (Q-PCR) analysis. MiR-210, miR-218, miR-346, miR-197, and miR-149 were found to be over-expressed, while miR-122, miR-145, and let-7b were under-expressed in CRPC cell lines. GO and KEGG pathway analyses revealed that miR-218, miR-197, miR-145, miR-122, and let-7b, along with their target genes, were found to be involved in the PI3K and AKT3 signaling network, which is known to contribute to CRPC development. We then chose five miRNAs to verify the accuracy of the analysis. The target genes of each miRNA were altered significantly upon transfection of specific miRNA mimics in the C4–2 CRPC cell line, which was consistent with our pathway analysis results. Finally, we hypothesized that miR-218, miR-145, miR-197, miR-149, miR-122, and let-7b may contribute to the development of CRPC through the influence of Ras, Rho proteins, and the SCF complex. Further investigation is needed to verify the functions of the identified novel pathways in CRPC development.  相似文献   

8.
We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions.  相似文献   

9.
Prostate cancer (PC) is the more frequently diagnosed neoplasia in men in developed countries. The evolution of PC to castration-resistant prostate cancer (CRPC) represents real problems of clinical management, in consequence to the limited therapeutic options. MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in gene expression and function regulation. The increased evidence that miRNAs are involved in cancer development and progression has made them potential biomarkers for cancer diagnosis, prognosis, and aggressiveness. Our purpose was to identify a miRNA expression profile associated with the development of CRPC. We firstly observed a miRNA expression profile differentially expressed between the castration-resistant (CR) PC3 cell line and the hormone-sensitive LnCaP cell line, where miR-7, miR-221, and miR-222 were upregulated in PC3 (11.3-fold increase, P?=?0.012; 11.3-fold increase, P?=?0.002; 8.6-fold increase, P?=?0.002, respectively). We also observed that the trend of miR-1233 expression levels was higher in PC3 (3.7-fold increase, P?=?0.057). These miRNAs differentially expressed in vitro were studied in a peripheral whole-blood samples from PC patients. We observed that patients presenting an early CR acquisition (≤20 months) had higher expression levels of miR-7 and miR-221 (P?=?0.034 and P?=?0.036, respectively). Furthermore, we found that patients diagnosed with high-Gleason score tumors and presenting simultaneous higher miR-7 expression levels have a significant reduce time to CR compared with patients who present lower miR-7 expression levels (11 vs. 51 months, log-rank test P?=?0.004). We also found that patients diagnosed with high-Gleason score tumors and higher expression levels of miR-221 have an early CRPC compared to patients with lower miR-221 expression levels (10 vs. 46 months, log-rank test P?=?0.012). We observed a significantly lower overall survival in patients with higher peripheral whole-blood expression levels of miR-7 (28 vs. 116 months, log-rank test P?=?0.001). Our results suggest that miR-7 and miR-221 peripheral whole-blood expression levels can be potential predictive biomarkers of CRPC development.  相似文献   

10.
11.
Objective: This study aimed to characterize the miRNA expression profiles from plasma samples of our local breast cancer patients in comparison to healthy control by using miRNA PCR Array. Methods: In this study, plasma miRNA profiles from eight early-stage breast cancer patients and nine age-matched (± 2 years) healthy controls were characterized by miRNA array-based approach, followed by differential gene expression analysis, Independent T-test and construction of Receiver Operating Characteristic (ROC) curve to determine the capability of the assays to discriminate between breast cancer and the healthy control. Results: Based on the 372-miRNAs microarray profiling, a set of 40 differential miRNAs was extracted regarding to the fold change value at 2 and above. We further sub grouped 40 miRNAs of breast cancer patients that were significantly expressed at 2-fold change and higher. In this set, we discovered that 24 miRNAs were significantly upregulated and 16 miRNAs were significantly downregulated in breast cancer patients, as compared to the miRNA expression of healthy subjects. ROC curve analysis revealed that seven miRNAs (miR-125b-5p, miR-142-3p, miR-145-5p, miR-193a-5p, miR-27b-3p, miR-22-5p and miR-423-5p) had area under curve (AUC) value > 0.7 (AUC p-value < 0.05). Overlapping findings from differential gene expression analysis, ROC analysis, and Independent T-Test resulted in three miRNAs (miR-27b-3p, miR-22-5p, miR-145-5p). Cohen’s effect size for these three miRNAs was large with d value are more than 0.95. Conclusion: miR-27b-3p, miR-22-5p, miR-145-5p could be potential biomarkers to distinguish breast cancer patients from healthy controls. A validation study for these three miRNAs in an external set of samples is ongoing.  相似文献   

12.
Androgen receptor (AR) is expressed in all stages of prostate cancer progression, including in castration-resistant tumors. Eliminating AR function continues to represent a focus of therapeutic investigation, but AR regulatory mechanisms remain poorly understood. To systematically characterize mechanisms involving microRNAs (miRNAs), we conducted a gain-of function screen of 1129 miRNA molecules in a panel of human prostate cancer cell lines and quantified changes in AR protein content using protein lysate microarrays. In this way, we defined 71 unique miRNAs that influenced the level of AR in human prostate cancer cells. RNA sequencing data revealed that the 3'UTR of AR (and other genes) is much longer than currently used in miRNA target prediction programs. Our own analyses predicted that most of the miRNA regulation of AR would target an extended 6 kb 3'UTR. 3'UTR-binding assays validated 13 miRNAs that are able to regulate this long AR 3'UTR (miR-135b, miR-185, miR-297, miR-299-3p, miR-34a, miR-34c, miR-371-3p, miR-421, miR-449a, miR-449b, miR-634, miR-654-5p, and miR-9). Fifteen AR downregulating miRNAs decreased androgen-induced proliferation of prostate cancer cells. In particular, analysis of clinical prostate cancers confirmed a negative correlation of miR-34a and miR-34c expression with AR levels. Our findings establish that miRNAs interacting with the long 3'UTR of the AR gene are important regulators of AR protein levels, with implications for developing new therapeutic strategies to inhibit AR function and androgen-dependent cell growth.  相似文献   

13.
Hao Y  Zhao Y  Zhao X  He C  Pang X  Wu TC  Califano JA  Gu X 《Cancer investigation》2011,29(4):318-324
Prostate-specific antigen (PSA) test is limited in prostate cancer diagnosis due to its inaccuracy. A new approach which integrates the PSA test with miRNA profiling was investigated to improve prostate cancer diagnosis. Six prostate cancer-related miRNAs (miR-16, -21, -34c, -101, -125b, -141) were tested in five cultured prostate cell lines and 20 human prostate specimens. We found that the miRNA expression profiles were significantly different between nontumorigenic and tumorigenic cell lines and specimens. Positive predictive value analysis of prostate cancer was increased from 40% to 87.5% by integrating patient PSA blood levels with miR-21 and miR-141 profiles.  相似文献   

14.
miR-221/-222 and components of the urokinase-type plasminogen activator system (uPAS) are associated with metastasis and poor prognosis in breast cancer, including the triple-negative subtype (TNBC). Modification of components of uPAS and involved miRNAs may contribute to targeted therapy for breast cancer patients. miR-221−/−222-overexpressing or miR-221-depleted cells were employed for qRT-PCR and Western blots to show associations of uPAR with miR-221/-222. To substantiate direct targeting of miR-221/-222 within 3′ UTR of the uPAR isoform 2, in silico analysesand in vitro assays were conducted. Significant associations between miR-221 and uPAR isoform 2 expressions were observed at the mRNA and protein levels in breast cancer cells representing TNBC. For the first time, the uPAR isoform 2 was demonstrated as direct target for miR-221/-222. Inhibition of miR-221 reduced uPAR protein expression and expression of the tumor cell invasion markers vimentin and RHOC. These results demonstrate a direct and positive regulation of the secreted uPAR isoform 2 by miR-221, increasing its protein expression, a prerequisite for malignancy, while the other uPAR isoforms (1, 3 and 4) are indirectly regulated through miR-10b and miR-221/-222. By targeting uPAR isoforms and/or miRNA-221/-222, the diagnosis and therapy of breast cancer, in particular in TNBC, could be significantly improved.  相似文献   

15.
16.
Our recent study of microRNA (miRNA) expression signatures in prostate cancer (PCa) has revealed that all members of the miR-23b/27b/24-1 cluster are significantly downregulated in PCa tissues. The aim of this study was to investigate the effectiveness of these clustered miRNAs as a disease progression marker and to determine the functional significance of these clustered miRNAs in PCa. Expression of the miR-23b/27b/24-1 cluster was significantly reduced in PCa tissues. Kaplan-Meier survival curves showed that low expression of miR-27b predicted a short duration of progression to castration-resistant PCa. Gain-of-function studies using mature miR-23b, miR-27b, and miR-24-1 significantly inhibited cell proliferation, migration and invasion in PCa cells (PC3 and DU145). To identify the molecular targets of these miRNAs, we carried out gene expression and in silico database analyses. GOLM1 was directly regulated by miR-27b in PCa cells. Elucidation of the molecular targets and pathways regulated by the tumor-suppressive microRNAs should shed light on the oncogenic and metastatic processes in PCa.  相似文献   

17.
Fulvestrant is a selective estrogen receptor downregulator (SERD) and highly effective antagonist to hormone-sensitive breast cancers following failure of previous tamoxifen or aromatase inhibitor therapies. However, after prolonged fulvestrant therapy, acquired resistance eventually occurs in the majority of breast cancer patients, due to poorly understood mechanisms. To examine a possible role(s) of aberrantly expressed microRNAs (miRNAs) in acquired fulvestrant resistance, we compared antiestrogen-resistant and -sensitive breast cancer cells, revealing the overexpression of miR-221/222 in the SERD-resistant cell lines. Fulvestrant treatment of estradiol (E2)- and fulvestrant-sensitive MCF7 cells resulted in increased expression of endogenous miR-221/222. Ectopic upregulation of miR-221/222 in estrogen receptor-α (ERα)-positive cell lines counteracted the effects of E2 depletion or fulvestrant-induced cell death, thus also conferring hormone-independent growth and fulvestrant resistance. In cells with acquired resistance to fulvestrant, miR-221/222 expression was essential for cell growth and cell cycle progression. To identify possible miR-221/222 targets, miR-221- or miR-222- induced alterations in global gene expression profiles and target gene expression at distinct time points were determined, revealing that miR-221/222 overexpression resulted in deregulation of multiple oncogenic signaling pathways previously associated with drug resistance. Activation of β-catenin by miR-221/222 contributed to estrogen-independent growth and fulvestrant resistance, whereas TGF-β-mediated growth inhibition was repressed by the two miRNAs. This first in-depth investigation into the role of miR-221/222 in acquired fulvestrant resistance, a clinically important problem, demonstrates that these two 'oncomirs' may represent promising therapeutic targets for treating hormone-independent, SERD-resistant breast cancer.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号