首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic modulation of mesolimbic dopaminergic neurons in the ventral tegmental area (VTA) plays an important role in reward, potentially mediated through the M5 muscarinic acetylcholine receptor (M5R). However, the key sites for M5R‐mediated control of dopamine neurons within this region are still unknown. To address this question we examined the electron microscopic immunocytochemical localization of antipeptide antisera against M5R and the plasmalemmal dopamine transporter (DAT) in single sections through the rat VTA. M5R was located mainly to VTA somatodendritic profiles (71%; n = 627), at least one‐third (33.2%; n = 208) of which also contained DAT. The M5R immunoreactivity was distributed along cytoplasmic tubulovesicular endomembrane systems in somata and large dendrites, but was more often located at plasmalemmal sites in small dendrites, the majority of which did not express DAT. The M5R‐immunoreactive dendrites received a balanced input from unlabeled terminals forming either asymmetric or symmetric synapses. Compared with dendrites, M5R was less often seen in axon terminals, comprising only 10.8% (n = 102) of the total M5R‐labeled profiles. These terminals were usually presynaptic to unlabeled dendrites, suggesting that M5R activation can indirectly modulate non–DAT‐containing dendrites through presynaptic mechanisms. Our results provide the first ultrastructural evidence that in the VTA, M5R has a subcellular location conducive to major involvement in postsynaptic signaling in many dendrites, only some of which express DAT. These findings suggest that cognitive and rewarding effects ascribed to muscarinic activation in the VTA can primarily be credited to M5R activation at postsynaptic plasma membranes distinct from dopamine transport. J. Comp. Neurol. 521: 2927–2946, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Opiate-evoked reward and motivated behaviors reflect, in part, the enhanced release of dopamine produced by activation of the mu-opioid receptor (muOR) in the ventral tegmental area (VTA). We examined the functional sites for muOR activation and potential interactions with dopaminergic neurons within the rat VTA by using electron microscopy for the immunocytochemical localization of antipeptide antisera raised against muOR and tyrosine hydroxylase (TH), the synthesizing enzyme for catecholamines. The cellular and subcellular distribution of muOR was remarkably similar in the two major VTA subdivisions, the paranigral (VTApn) and parabrachial (VTApb) nuclei. In each region, somatodendritic profiles comprised over 50% of the labeled structures. MuOR immunolabeling was often seen at extrasynaptic/perisynaptic sites on dendritic plasma membranes, and 10% of these dendrites contained TH. MuOR-immunoreactivity was also localized to plasma membranes of axon terminals and small unmyelinated axons, none of which contained TH. The muOR-immunoreactive axon terminals formed either symmetric or asymmetric synapses that are typically associated with inhibitory and excitatory amino acid transmitters. Their targets included unlabeled (30%), muOR-labeled (25%), and TH-labeled (45%) dendrites. Our results suggest that muOR agonists in the VTA affect dopaminergic transmission mainly indirectly through changes in the postsynaptic responsivity and/or presynaptic release from neurons containing other neurotransmitters. They also indicate, however, that muOR agonists directly affect a small population of dopaminergic neurons expressing muOR on their dendrites in VTA and/or terminals in target regions.  相似文献   

3.
Throughout the ventral tegmental area (VTA), dopamine is packaged within subcellular organelles by the vesicular monoamine transporter-2 (VMAT2). Somatodendritically released dopamine in this region binds to the D2 receptor (D2R) to modulate ongoing neurotransmission. Although autoregulation of mesocortical dopaminergic neurons in the parabrachial VTA (PB-VTA) is known to be less efficacious than that of mesolimbic dopaminergic neurons in the paranigral (PN-VTA), the cellular basis for this regional heterogeneity is not known. For this reason, we used electron microscopic immunocytochemistry to determine the subcellular localization of the dopamine storage vesicles (identified by the presence of VMAT2) in relation to the D2R in these VTA subdivisions. In both regions, D2R immunoreactivity was principally located on extrasynaptic dendritic plasma membranes near excitatory-type synapses. Equivalent percentages (72 and 74%) of the D2R-labeled dendrites in each region contained VMAT2-immunoreactive tubulovesicles. Of the total VMAT2-labeled dendrites, however, a significantly lower percentage in the PB-VTA (26%) than in the PN-VTA (38%) contained D2R labeling. In contrast, a significantly higher number of VMAT2 immunogold-silver deposits was seen within individual dendrites in the PB-VTA than in PN-VTA. In both regions, D2R immunoreactivity was also detected in VMAT2-negative axon terminals that formed synapses on dendrites containing VMAT2. Our results are the first to demonstrate that within VTA neurons and their afferents the D2R is strategically positioned for activation by dopamine released from dendritic storage vesicles. These findings also suggest that the potential for D2R activation may affect the expression levels of VMAT2 in VTA dendrites.  相似文献   

4.
Serotonin (5-hydroxytryptamine, 5-HT) 2A receptor antagonists are clinically effective antipsychotics that may differentially target mesocortical and mesolimbic dopaminergic neurons having partially segregated distribution in the parabrachial (PB) and paranigral (PN) ventral tegmental area (VTA). We examined the ultrastructural immunocytochemical localization of the 5-HT2A receptor in these subdivisions of rat VTA, to determine (1) the functional sites for receptor activation, and (2) cellular associations between the receptor and dopaminergic neurons identified by their content of tyrosine hydroxylase (TH). The mean area density of neuronal profiles containing 5-HT2A receptor labeling was not significantly different in the PB and PN VTA. In each region approximately 44% of the 5-HT2A labeled profiles were dendrites while the remainder were mainly axons. Dendritic 5-HT2A-immunoreactivity was often localized to membranous cytoplasmic organelles resembling smooth endoplasmic reticulum, and to more rarely to segments of the plasma membrane beneath contacts from unlabeled axon terminals. 5-HT2A labeling was also seen within the cytoplasm of a few axon initial segments and many small unmyelinated axons. Approximately 40% of the 5-HT2A-labeled dendritic profiles contained TH in either PB or PN VTA. Our results suggest that 5-HT2A receptors in VTA are largely cytoplasmic and play an equally important role in modulating dopaminergic neurons in PB and PN VTA. These results also implicate 5-HT2A receptors in the postsynaptic activation of non-dopaminergic neurons and possibly the presynaptic release from terminals of axons originating in, or passing through, these regions.  相似文献   

5.
Serotonin (5-hydroxytryptamine [5-HT]) modulates dopamine-related cognitive functions and motor activity through activation of selective receptor subtypes including 5-HT1A. Potential targets for these 5-HT1A-mediated actions of 5-HT include mesocortical and mesolimbic dopaminergic neurons having partially segregated distribution in the parabrachial and paranigral subdivisions of the ventral tegmental area (VTA), respectively. We therefore examined the ultrastructural immunocytochemical localization of the 5-HT1A receptor in the parabrachial (VTApb) and paranigral (VTApn) subdivisions of rat VTA, to determine 1) the functional sites for receptor activation, and 2) the cellular associations between this receptor and dopaminergic neurons identified by their tyrosine hydroxylase (TH) content. In each region, 5-HT1A immunoreactivity was mainly observed in somatodendritic profiles, but it was also present in small unmyelinated axons and in a few axon terminals and glia, suggesting a role for 5-HT1A receptors in presynaptic and glial functions, as well as postsynaptic neuronal activation, in VTA. In somatodendritic profiles, 5-HT1A gold particles were mainly localized to tubulovesicles presumed to be smooth endoplasmic reticulum. In addition, however, in distal dendrites receiving multiple inputs the receptor was targeted to selective postsynaptic junctions, or more randomly distributed on nonsynaptic portions of the plasma membrane. Of the 5-HT1A-labeled dendrites, 64% in VTApb and 44% in VTApn contained TH. These findings suggest a reserve of cytoplasmic 5-HT1A receptors that are mobilized to functional postsynaptic sites on the plasma membrane by afferent input to distal dendrites in the VTA. They also indicate that 5-HT1A activation may affect a larger population of dopaminergic neurons in VTApb compared with VTApn, thus having a potentially greater impact on cognitive functions modulated by mesocortical dopaminergic neurons.  相似文献   

6.
Endogenous opiates modulate activity in the mesocorticolimbic dopaminergic system, and this interaction is thought to underlie major aspects of motoric, reward-seeking, and stress-coping behaviors. We sought to determine the ultrastructural substrate for this modulatory action at the level of dopaminergic perikarya in the rat ventral tegmental area (VTA). Using a dual-labeling, immunoperoxidase and immunogold-silver method, we localized antisera directed against leu5-enkephalin (ENK) and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) in acrolein-fixed sections through the VTA. ENK-like immunoreactivity (ENK-LI) was visualized within unmyelinated axons and in axon terminals. In terminals, ENK-LI was densely localized to one or more dense-cored vesicles and either densely or lightly detected surrounding small clear vesicles. Immunoreactive dense-cored vesicles were occasionally associated with the presynaptic specialization but were more frequently detected at distant sites along the plasmalemmal surface, often in apposition to astrocytic processes. ENK-immunoreactive terminals formed both symmetric and asymmetric synapses, most frequently on large proximal dendrites. Direct appositions without glial separation were also detected between terminals containing ENK-LI and other ENK-labeled or unlabeled terminals. In contrast to ENK-LI, immunolabeling for TH was primarily detected within perikarya and dendrites in the VTA. Of the ENK-immunoreactive terminals that formed synaptic contacts in single sections, approximately 50-60% were in association with TH-labeled dendrites. The remainder formed synapses on dendrites lacking detectable immunoreactivity for TH. Multiple ENK-immunoreactive terminals occasionally formed convergent synaptic contacts on single TH-labeled or unlabeled dendrites. Furthermore, individual ENK-labeled terminals sometimes formed divergent contacts on two TH-labeled or unlabeled dendrites. When a single ENK-immunoreactive terminal made dual synaptic contacts on TH-labeled dendrites, the latter were usually in close apposition to one another. These findings represent the first ultrastructural demonstration that opioid peptide-containing terminals provide a direct synaptic input to dopaminergic, as well as nondopaminergic, neurons in the VTA. In addition, the morphological evidence suggests that endogenous opioid peptides (1) may be released from nonsynaptic sites, (2) may modulate the release of transmitters from other terminals, and/or (3) may synchronize the activity of multiple neuronal targets in the VTA. These results provide a number of morphological substrates through which opiates may directly or indirectly regulate activity in mesocorticolimbic dopaminergic pathways.  相似文献   

7.
Mesocorticolimbic projections originating from dopaminergic and GABAergic neurons in the ventral tegmental area (VTA) play a critical role in opiate addiction. Activation of mu-opioid receptors (MOR), which are located mainly within inhibitory neurons in the VTA, results in enhanced dopaminergic transmission in target regions, including the medial prefrontal cortex (mPFC). We combined retrograde tract-tracing and electron microscopic immunocytochemistry to determine if neurons in the VTA that project to the mPFC contain MOR or receive input from MOR-containing terminals. Rats received unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the mPFC. Tissue sections throughout the VTA were then processed for electron microscopic examination of FG and MOR. Immunoperoxidase labeling for FG was present in VTA cell bodies that contained immunogold-silver particles for MOR that often were contacted by profiles exclusively immunoreactive for MOR, including somata and axon terminals. The majority of dually labeled profiles were dendrites that received convergent input from unlabeled axon terminals forming either symmetric or asymmetric type synapses. Within retrogradely labeled cell bodies and proximal dendrites, MOR immunoreactivity was mainly sequestered within the cytoplasm. In contrast, distal retrogradely labeled dendrites contained MOR gold particles located along the plasma membranes. These data suggest that opiates active at MOR in the VTA modulate cortical activity through 1) presynaptic actions on MOR in terminals contacting mesocortical cell bodies, and 2) direct activation of MOR in distal dendrites of projection neurons.  相似文献   

8.
Interactions between stress and the mesocorticolimbic dopamine (DA) system have been suggested from behavioral and electrophysiological studies. Because corticotropin-releasing factor (CRF) plays a role in stress responses, we investigated possible interactions between neurons containing CRF and those producing DA in the ventral tegmental area (VTA). We first investigated the cellular distribution of CRF in the VTA by immunolabeling VTA sections with anti-CRF antibodies and analyzing these sections by electron microscopy. We found CRF immunoreactivity present mostly in axon terminals establishing either symmetric or asymmetric synapses with VTA dendrites. We established that nearly all CRF asymmetric synapses are glutamatergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed the vesicular glutamate transporter 2, and that the majority of CRF symmetric synapses are GABAergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed glutamic acid decarboxylase, findings that are of functional importance. We then looked for synaptic interactions between CRF- and DA-containing neurons, by using antibodies against CRF and tyrosine hydroxylase (TH; a marker for DA neurons). We found that most synapses between CRF-immunoreactive axon terminals and TH neurons are asymmetric (in the majority likely to be glutamatergic) and suggest that glutamatergic neurons containing CRF may be part of the neuronal circuitry that mediates stress responses involving the mesocorticolimbic DA system. The presence of CRF synapses in the VTA offers a mechanism for interactions between the stress-associated neuropeptide CRF and the mesocorticolimbic DA system.  相似文献   

9.
Cannabinoid modulation of dopaminergic transmission is suggested by the ability of delta9-tetrahydrocanabinoid to affect motor and motivated behaviors in a manner similar to that produced by pharmacological manipulation of the nigrostriatal and mesocorticolimbic dopamine systems. These behavioral effects as well as analogous effects of endocannabinoids are largely mediated through the cannabinoid type 1 receptor (CB1R). This receptor is located within the substantia nigra and ventral tegmental area, which respectively house the somata of nigrostriatal and mesocorticolimbic dopaminergic neurons. The CB1R is also abundantly expressed in brain regions targeted by the efferent terminals of these dopaminergic neurons. In this review we present the accumulating anatomical and electrophysiological evidence indicating that in each of these systems cannabinoids modulate dopamine transmission largely if not exclusively through indirect mechanisms. The summarized mechanisms include presynaptic release of amino acid transmitters onto midbrain dopamine neurons and onto both cortical and striatal neurons that express dopamine D1-like or D2-like receptors functionally affiliated with the CB1 receptor. The review concludes with a consideration of the psychiatric and neurological implications of cannabinoid modulation of dopamine transmission within these networks.  相似文献   

10.
Drugs of abuse cause changes in the mesocorticolimbic dopamine (DA) system, such as a long-term potentiation (LTP)-like phenomenon at glutamatergic synapses onto ventral tegmental area (VTA) DA neurons. Abolishing this LTP interferes with drug-seeking behavior. Endocannabinoids (ECs) can be released by DA neurons in response to repetitive activation, which can inhibit glutamate release. Therefore, we hypothesized that ECs may act as negative regulators of LTP. Here we tested the induction of LTP in DA neurons of the VTA in mice expressing enhanced green fluorescent protein under the control of the tyrosine hydroxylase promoter. Immunohistochemistry showed colocalization of CB1 receptors with vesicular glutamate transporter (VGLUT)1 in terminals near DA neuron dendrites, with less extensive colocalization with VGLUT2. In addition, a CB1 receptor agonist, as well as trains of stimulation leading to EC production, decreased glutamate release onto DA neurons. We found that blocking CB1 receptors or synthesis of the EC 2-arachidonoylglycerol (2-AG) was without effect on basal excitatory postsynaptic potential amplitude; however, it facilitated the induction of LTP. As previously reported, antagonizing γ-aminobutyric acid (GABA)(A) transmission also facilitated LTP induction. Combining GABA(A) and CB1 receptor antagonists did not lead to larger LTP. LTP induced in the presence of CB1 receptor blockade was prevented by an N-methyl-d-aspartate receptor antagonist. Our observations argue in favor of the hypothesis that 2-AG acts as a negative regulator of LTP in the VTA. Understanding the factors that regulate long-term synaptic plasticity in this circuit is critical to aid our comprehension of drug addiction in humans.  相似文献   

11.
Cholinergic activation of dopaminergic neurons in the ventral tegmental area (VTA) is thought to play a major role in cognitive functions and reward. These dopaminergic neurons differentially project to cortical and limbic forebrain regions, where their terminals differ in levels of expression of the plasmalemmal dopamine transporter (DAT). This transporter selectively identifies dopaminergic neurons, whereas the vesicular acetylcholine transporter (VAchT) is present only in the neurons that store and release acetylcholine. We examined immunogold labeling for DAT and immunoperoxidase localization of VAchT antipeptide antisera in single sections of the rat VTA to determine whether dopaminergic somata and dendrites in this region differ in their levels of expression of DAT and/or input from cholinergic terminals. VAchT immunoreactivity was prominently localized to membranes of small synaptic vesicles in unmyelinated axons and axon terminals. VAchT-immunoreactive terminals formed almost exclusively asymmetric synapses with dendrites. Of 159 dendrites that were identified as cholinergic targets, 35% contained plasmalemmal DAT, and 65% were without detectable DAT immunoreactivity. The DAT-immunoreactive dendrites postsynaptic to VAchT-labeled terminals contained less than half the density of gold particles as seen in other dendrites receiving input only from unlabeled terminals. These results suggest selective targeting of cholinergic afferents in the VTA to non-dopaminergic neurons and a subpopulation of dopaminergic neurons that have a limited capacity for plasmalemmal reuptake of dopamine, a characteristic of those that project to the frontal cortex.  相似文献   

12.
The release of dopamine in the ventral tegmental area (VTA) plays an important role in the autoinhibition of the dopamine neurons of the mesocorticolimbic system through the activation of somatodendritic dopamine D2 autoreceptors. Accordingly, the intra-VTA application of dopamine D2 receptor agonists reduces the firing rate and release of dopamine in the VTA, and this control appears to possess a tonic nature because the corresponding antagonists enhance the somatodendritic release of the transmitter. In addition, the release of dopamine in the VTA is increased by potassium or veratridine depolarization and abolished by tetrodotoxin and calcium omission. Overall, it appears that the somatodendritic release of dopamine is consistently lower than that in nerve endings. Apart from intrinsic dopaminergic mechanisms, other transmitter systems such as serotonin, noradrenaline, acetylcholine, GABA and glutamate play a role in the control of the activity of dopaminergic neurons of the VTA, although the final action depends on the particular receptor involved as well as the neuronal type where it is localized. Given the involvement of the mesocorticolimbic dopaminergic systems in the pathogenesis of severe neuropsychiatric disorders such as schizophrenia, the knowledge of the factors that regulate the release of dopamine in the VTA could provide new insight into the ethiogenesis of the disease as well as its implication on the mechanisms of action of therapeutic drugs.  相似文献   

13.
Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype have been implicated in behavioral sensitization to psychostimulants and in psychotic behaviors involving excitation of ventral tegmental area (VTA) dopaminergic neurons. Antagonists of serotonin (5-hydroxytryptamine, 5-HT) receptors of the 5-HT(2A) subtype are potent antipsychotics that attenuate these NMDA-evoked responses. We examined the electron microscopic immunocytochemical localization of antisera against the NMDA R1 subunit (NMDAR1) and 5-HT(2A) receptors to determine potential sites for their dual activation in the rat paranigral and parabrachial VTA subdivisions that are distinguished, in part, by their respective striatolimbic and cortical projections. In both regions, NMDAR1 immunoreactivity was localized mainly to the cytoplasm of somata and dendrites, and was only occasionally seen near or within excitatory-type asymmetric synapses. Many of the NMDAR1-labeled somata and dendrites also expressed 5-HT(2A) receptors, having a similar, but largely non-overlapping, neuronal distribution. The mean area density of NMDAR1 and dually labeled dendritic profiles was significantly greater in the paranigral than in the parabrachial VTA. NMDAR1 was also present in small axons showing a similar regional difference in area density. No regional difference in area density was seen in dendrites or small axons containing only 5-HT(2A) receptors. Our results indicate that NMDA and 5-HT(2A) receptors in the VTA are transiently expressed on synaptic plasma membranes of single neurons showing widespread cytoplasmic distributions of each of the receptors. They also suggest a major role for NMDA receptors in modulating the output of paranigral neurons and the release of transmitters from axons passing through this region.  相似文献   

14.
Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal ganglia circuits and a main source of inputs to the striatum. In this study, we analyzed the subcellular and subsynaptic distribution of GABA(B) receptor subunits by using light and electron microscopic immunocytochemical techniques. Quantitative immunoperoxidase and immunogold analysis showed that both subunits display a similar pattern of distribution in CM/PF, being expressed largely at extrasynaptic and perisynaptic sites in neuronal cell bodies, dendrites, and axon-like processes and less abundantly in axon terminals. Postsynaptic GABA(B)R1 labeling was found mostly on the plasma membrane (70-80%), whereas GABA(B)R2 was more evenly distributed between the plasma membrane and intracellular compartments of CM/PF neurons. A few axon terminals forming symmetric and asymmetric synapses were also labeled for GABA(B)R1 and GABA(B)R2, but the bulk of presynaptic labeling was expressed in small axon-like processes. About 20% of presynaptic vesicle-containing dendrites of local circuit neurons displayed GABA(B)R1/R2 immunoreactivity. Vesicular glutamate transporters (vGluT1)-containing terminals forming asymmetric synapses expressed GABA(B)R1 and/or displayed postsynaptic GABA(B)R1 at the edges of their asymmetric specialization. Overall, these findings provide evidence for multiple sites where GABA(B) receptors could modulate GABAergic and glutamatergic transmission in the primate CM/PF complex.  相似文献   

15.
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R‐ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R–negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R+). Some M2R+ dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R‐ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R+ terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R+. The main targets of M2R+ terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R+ dendritic shafts. M2R‐ir was also seen in VAChT+ cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R‐mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ‐aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400–2417, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) shell is implicated in schizophrenia and in psychostimulant-induced drug-seeking behavior, both of which are affected by activation of the functionally opposed high-affinity neurotensin receptor (NTS1). To determine the functionally relevant sites, we examined the dual electron microscopic immunocytochemical localization of D2R and NTS1 in the NAc shell of rat brain. Immunolabeling for each receptor was seen in association with cytoplasmic organelles, or more rarely, on the plasma membrane of both axonal and somatodendritic profiles. Some of the axonal and many of the dendritic processes colocalized the two receptors. The dually labeled axon terminals often formed symmetric synapses or appositional contacts with unlabeled dendritic profiles. The morphology of these terminals suggests that they contain either inhibitory amino acids or dopamine. Other axonal profiles expressing exclusively NTS1 or D2R were without synaptic specializations or formed asymmetric, excitatory-type synapses mainly on unlabeled dendritic spines. In addition, however, several D2R-immunoreactive terminals were observed presynaptic to dendrites containing NTS1. The somatodendritic profiles immunolabeled for NTS1 and/or D2R had morphological features typical of inhibitory spiny projection neurons in the NAc. These results suggest that activation of NTS1 and D2R can dually modulate transmitter release from the same or separate phenotypically distinct axon terminals in the NAc shell. These presynaptic receptors as well as the postsynaptic NTS1 distribution in neurons that also contain or receive input from terminals containing D2R may mediate the opposing actions of neurotensin and dopamine in the NAc.  相似文献   

17.
The ventral tegmental area (VTA) forms part of the mesocorticolimbic system and plays a pivotal role in reward and reinforcing actions of drugs of abuse. Glutamate transmission within the VTA controls important aspects of goal-directed behavior and motivation. Noradrenergic receptors also present in the VTA have important functions in the modulation of neuronal activity. Here we studied the effects of α2 noradrenergic receptor activation in the alteration of glutamate neurotransmission in VTA dopaminergic neurons from male Sprague-Dawley rats. We used whole-cell patch-clamp recordings from putative VTA dopaminergic neurons and measured excitatory postsynaptic currents. Clonidine (40 μm) and UK 14,304 (40 μm), both α2 receptor agonists, reduced (approximately 40%) the amplitude of glutamate-induced excitatory postsynaptic currents. After clonidine administration, there was a dose-dependent reduction over the concentration range of 15-40 μm. Using yohimbine (20 μm) and two other α2 adrenergic receptor antagonists, idaxozan (40 μm) and atipemazole (20 μm), we demonstrated that the inhibitory action is specifically mediated by α2 receptors. Moreover, by inhibiting protein kinases with H-7 (75 μm), Rp-adenosine 3',5'-cyclic (11 μm) and chelerythrine (1 μm) it was shown that the clonidine-induced inhibition seems to involve a selective activation of the protein kinase C intracellular pathway. Increased paired-pulse ratios and changes in spontaneous and miniature excitatory postsynaptic current frequencies but not amplitudes indicated that the effect of the α2 agonist was presynaptically mediated. It is suggested that the suppression of glutamate excitatory inputs onto VTA dopaminergic neurons might be relevant in the regulation of reward and drug-seeking behaviors.  相似文献   

18.
In many brain areas, few cholinergic synapses are identified. Acetylcholine is released into the extracellular space and acts through diffuse transmission. Motoneurons, however, are contacted by numerous cholinergic terminals, indicating synaptic cholinergic transmission on them. The muscarinic m2 receptor is the major acetylcholine receptor subtype of motoneurons; therefore, we analyzed the localization of the m2 receptor in correlation with synapses by electron microscopic immunohistochemistry in the mouse trigeminal, facial, and hypoglossal motor nuclei. In all nuclei, m2 receptors were localized at the membrane of motoneuronal perikarya and dendrites. The m2 receptors were concentrated at cholinergic synapses located on the perikarya and most proximal dendrites. However, m2 receptors at cholinergic synapses represented only a minority (<10%) of surface m2 receptors. The m2 receptors were also enriched at glutamatergic synapses in both motoneuronal perikarya and dendrites. A relatively large proportion (20–30%) of plasma membrane–associated m2 receptors were located at glutamatergic synapses. In conclusion, the effect of acetylcholine on motoneuron populations might be mediated through a synaptic as well as diffuse type of transmission. J. Comp. Neurol. 521:2008–2024, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Dopaminergic neurons of the A 10 cell group in the rat ventral tegmental area (VTA) exhibit electrical and dye coupling. Also, the activity of these neurons at least partially reflects their content of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. We examined the ultrastructural localization of TH to determine the morphological features of dopaminergic neurons in the VTA and the relationships between their TH immunoreactivity content and afferent input. Antiserum against the trypsin-treated form of TH was localized using peroxidase-antiperoxidase (PAP) and immunoautoradiographic methods. Immunoreactivity was detected in perikarya, dendrites, and terminals. The perikarya contained the usual organelles, as well as cilia, lamellar bodies, and subsurface cisterns. Qualitative evaluation of peroxidase reaction product and quantitative analysis of the number of silver grains/unit area revealed varying amounts of TH immunoreactivity in nuclei and cytoplasm. Lightly or intensely labeled nuclei were not necessarily associated with corresponding cytoplasmic labeling density. However, cytoplasmic labeling directly corresponded to the relative frequencies of neuronal appositions and synaptic input. Those neurons with less dense cytoplasmic PAP product received fewer synaptic contacts and were less frequently in apposition to other TH-labeled soma and dendrites than neurons displaying relatively more dense cytoplasmic PAP product. Analysis of single sections revealed that 67% (n = 71) of all TH-labeled somata and 15% (n = 2431) of all TH-labeled dendrites were in apposition to other TH-labeled soma or dendrites. TH-labeled terminals were rarely detected and contained relatively low levels of immunoreactivity. The majority of labeled terminals (n = 29/46) formed synapses with labeled soma and dendrites. Unlabeled terminals (n = 2424) in contact with TH-labeled dendrites appeared to form predominantly symmetric synapses. Ten percent (n = 248) of the unlabeled terminals dually synapsed onto adjacent immunoreactive dendrites, perikarya, or dendrite and perikaryon. We conclude that in the rat VTA, (1) detected TH immunoreactivity in cytoplasm, but not nucleus, corresponds to the level of feedback principally from nondopaminergic afferents; (2) dendrodendritic as well as axodendritic synapses between TH-immunoreactive neurons may mediate dopaminergic autoinhibition; and (3) gap junction-like appositions between neurons and convergent inputs from unlabeled terminals onto TH-immunoreactive profiles provide an anatomical substrate whereby cellular activities might be coordinated under certain conditions.  相似文献   

20.
Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep–wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R‐labeled somata and 16% of the more numerous M2R‐labeled dendrites coexpressed VAchT. M2R and M2R/VAchT‐labeled dendritic profiles received synapses from inhibitory‐ and excitatory‐type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT‐negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084–3103, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号