首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannan, a polysaccharide preparation from Saccharomyces cerevisiae, has previously been shown to enhance influenza virus replication in mice by inhibiting host defense collectins. The use of mannan in infections may serve to broaden the types of influenza viruses that can be studied in rodent infection models. When mannan was co-administered with influenza B/Sichuan/379/99 virus to mice, the animals died from the infection, whereas mice infected with only virus survived. Three types of influenza A (H1N1) and another influenza B (Hong Kong/330/01) virus infection were also enhanced by mannan, but not four types of influenza A (H3N2) viruses. Mannan was used at 0.16 or 0.5 mg/mouse for optimal disease-enhancing activity using influenza B/Sichuan/379/99 virus. Using this model, influenza B/Sichuan/379/99 infections were treated with oseltamivir, ribavirin or viramidine (the carboxamidine derivative of ribavirin). When oral gavage treatments started 4 h before virus and mannan challenge, oseltamivir was effective at 2.5, 5 and 10 mg/kg/day. Ribavirin was active at 20, 40 and 80 mg/kg/day. Viramidine was effective at 80 and 160 mg/kg/day but not at 40 mg/kg/day. Active drug doses improved lung consolidation scores and lung weights, with decreases in lung virus titres also noted. Arterial oxygen saturation values in treated groups were significantly better than those of the placebo group on days 7-11 of the infection. Oseltamivir (5 mg/kg/day) and ribavirin (40 mg/kg/day) were used alone and in combination to determine how late after infection they could be beneficially administered. Ribavirin alone was very effective (90-100% survival of mice) when treatments started as late as 3 days after infection. Forty percent survival was evident even when treatments started 4 days post-infection. Oseltamivir was active starting treatments 1 day after virus exposure, but lost considerable efficacy when treatments began after that time. The combination of ribavirin and oseltamivir appeared to be no better than ribavirin alone, due to the stronger beneficial effect of ribavirin in this model. The overall results demonstrate that mannan can be used to enhance certain non-lethal influenza virus infections sufficiently to allow antiviral studies.  相似文献   

2.
Mouse models have been widely used for evaluating potential influenza virus inhibitors. However, the viral strains traditionally used in these models are fairly old and do not represent currently circulating viruses in nature. We developed two new lethal infection models in mice using mouse-adapted influenza A/New Caledonia/20/99 (H1N1) and influenza B/Sichuan/379/99 viruses. Both virus infections were used to study oral treatment with oseltamivir and ribavirin, both alone and in combination. Oral treatments were given twice daily for 5 days starting 4 h before infection in initial studies. Against influenza A, oseltamivir was active at 10, 20, and 40 mg/kg/day, protected 80-100% of mice from death and reduced lung consolidation - ribavirin was similarly effective at 20, 40, and 80 mg/kg/day. When treatments were initiated after virus challenge, delaying treatment with oseltamivir even 1 day caused it to be ineffective. Ribavirin prevented mortality by 50-80% when treatments were delayed 1-4 days after infection. The combination of the two drugs (oseltamivir at 20 mg/kg/day and ribavirin at 40 mg/kg/day) was no better than ribavirin alone. In contrast to what we observed with influenza A virus infections, oseltamivir and ribavirin showed similar dose-related antiviral activities against influenza B virus infections. The compounds both significantly increased survival when treatments started up to 4 days after infection, but ribavirin was more active than oseltamivir (50-80% survival compared to 30-40% survival, respectively, when starting treatments on days 2-4 after infection). By varying the doses of each drug that were used in combination (oseltamivir at 1.25, 2.5 and 5 mg/kg/day; ribavirin at 5, 10 and 20 mg/kg/day) certain dosage combinations were superior to either compound used alone as assessed by decreased mortality, lung virus titre, lung score and lung weight parameters. These activities differed from published results with older, more established virus strains as oseltamivir was less effective and ribavirin was more active than previously reported.  相似文献   

3.
T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was inhibitory to four strains of avian H5N1 influenza virus in MDCK cells, with the 90% effective concentrations ranging from 1.3 to 7.7 microM, as determined by a virus yield reduction assay. The efficacy was less than that exerted by oseltamivir carboxylate or zanamivir but was greater than that exerted by ribavirin. Experiments with mice lethally infected with influenza A/Duck/MN/1525/81 (H5N1) virus showed that T-705 administered per os once, twice, or four times daily for 5 days beginning 1 h after virus exposure was highly inhibitory to the infection. Dosages from 30 to 300 mg/kg of body weight/day were well tolerated; each prevented death, lessened the decline of arterial oxygen saturation (SaO(2)), and inhibited lung consolidation and lung virus titers. Dosages from 30 to 300 mg/kg/day administered once or twice daily also significantly prevented the death of the mice. Oseltamivir (20 mg/kg/day), administered per os twice daily for 5 days, was tested in parallel in two experiments; it was only weakly effective against the infection. The four-times-daily T-705 treatments at 300 mg/kg/day could be delayed until 96 h after virus exposure and still significantly inhibit the infection. Single T-705 treatments administered up to 60 h after virus exposure also prevented death and the decline of SaO(2). Characterization of the pathogenesis of the duck influenza H5N1 virus used in these studies was undertaken; although the virus was highly pathogenic to mice, it was less neurotropic than has been described for clinical isolates of the H5N1 virus. These data indicate that T-705 may be useful for the treatment of avian influenza virus infections.  相似文献   

4.
Avian influenza H5N1 infections can cause severe, lethal human infections. Whether influenza A virus treatments effectively ameliorate avian influenza H5N1 human infections is uncertain. The research objective was to evaluate the efficacy of novel zinc and other metallo-ion formulations in two influenza A mouse models. Mice infected with influenza A/Duck/MN/1525/81 (H5N1) virus were treated orally 48 h before virus exposure and then twice daily for 13 days with ZnAL42. The optimal dosing regimen for ZnAL42 was achieved at 17.28 mg/kg 48 h prior to virus exposure, twice daily for 7 days. The survival rate was 80% compared with 10% in the untreated control group and a 100% survival rate with ribavirin (75 mg/kg/day, twice a day for 5 days, beginning 4 h before virus exposure). ZnAL42 treatment significantly lessened the decline in arterial oxygen saturation (SaO2; P < 0.001). This regimen was also well tolerated by the mice. Manganese and selenium formulations were not inhibitory to virus replication when given therapeutically. Mice were also infected with influenza A/NWS/33 (H1N1) virus and were treated 48 h before virus exposure with three dosages of ZnAL42 (8.64, 1.46 or 0.24 mg/kg/day). Treatment was by oral gavage twice daily for 13 days. The highest dose of ZnAL42 was significantly inhibitory to the virus infection as seen by prevention of deaths and lessening of decline in SaO2. The data suggest that the prophylactic use of ZnAL42 is effective against avian influenza H5N1 or H1N1 virus infection in mice and should be further explored as an option for treating human influenza virus infections.  相似文献   

5.
The oxygen free-radical scavenger recombinant human manganese superoxide dismutase (MnSOD) was studied for its effects on influenza virus infections in mice when used alone and in combination with ribavirin. Mice challenged with influenza A/NWS/33 (H1N1) virus were treated parenterally in doses of 25, 50, and 100 mg/kg of body weight per day every 8 h for 5 days beginning at 48 h post-virus exposure. An increase in mean day to death, lessened decline in arterial oxygen saturation, and reduced lung consolidation and lung virus titers occurred in the treated animals. To determine the influence of viral challenge, experiments were run in which mice were infected with a 100 or 75% lethal dose of virus and were treated intravenously once daily for 5 days beginning 96 h after virus exposure. Weak inhibition of the mortality rate was seen in mice receiving the high viral challenge, whereas significant inhibition occurred in the animals infected with the lower viral challenge, indicating that MnSOD effects are virus dose dependent. To determine if treatment with small-particle aerosol would render an antiviral effect, infected mice were treated by this route for 1 h daily for 5 days beginning 72 h after virus exposure. A dose-responsive disease inhibition was seen. An infection induced by influenza B/Hong Kong/5/72 virus in mice was mildly inhibited by intravenous MnSOD treatment as seen by increased mean day to death, lessened arterial oxygen saturation decline, and lowered lung consolidation. MnSOD was well tolerated in all experiments. A combination of MnSOD and ribavirin, each administered with small-particle aerosol, resulted in a generally mild improvement of the disease induced by the influenza A virus compared with use of either material alone.  相似文献   

6.
The cyclopentane influenza virus neuraminidase inhibitor RWJ-270201 was evaluated against influenza A/NWS/33 (H1N1), A/Shangdong/09/93 (H3N2), A/Victoria/3/75 (H3N2), and B/Hong Kong/05/72 virus infections in mice. Treatment was by oral gavage twice daily for 5 days beginning 4 h pre-virus exposure. The influenza virus inhibitor oseltamivir was run in parallel, and ribavirin was included in studies with the A/Shangdong and B/Hong Kong viruses. RWJ-270201 was inhibitory to all infections using doses as low as 1 mg/kg/day. Oseltamivir was generally up to 10-fold less effective than RWJ-270201. Ribavirin was also inhibitory but was less tolerated by the mice at the 75-mg/kg/day dose used. Disease-inhibitory effects included prevention of death, lessening of decline of arterial oxygen saturation, inhibition of lung consolidation, and reduction in lung virus titers. RWJ-270201 and oseltamivir, at doses of 10 and 1 mg/kg/day each, were compared with regard to their effects on daily lung parameters in influenza A/Shangdong/09/93 virus-infected mice. Maximum virus titer inhibition was seen on day 1, with RWJ-270201 exhibiting the greater inhibitory effect, a titer reduction of >10(4) cell culture 50% infective doses (CCID(50))/g. By day 8, the lung virus titers in mice treated with RWJ-270201 had declined to 10(1.2) CCID(50)/g, whereas titers from oseltamivir-treated animals were >10(3) CCID(50)/g. Mean lung consolidation was also higher in the oseltamivir-treated animals on day 8. Both neuraminidase inhibitors were well tolerated by the mice. RWJ-270201 was nontoxic at doses as high as 1,000 mg/kg/day. These data indicate potential for the oral use of RWJ-270201 in the treatment of influenza virus infections in humans.  相似文献   

7.
To better understand the potential of ribavirin in the treatment of orthopoxvirus infections (such as those acquired through bioterrorist activities), the efficacy of the drug was studied in a cowpox respiratory infection model in mice under varying disease severity. Mice did not survive a high intranasal cowpox virus challenge [3 x 10(6) plaque forming units (pfu)/animal] treated with subcutaneous ribavirin (100 mg/kg/day for 5 days), but lived 3.9 days longer than placebos. In contrast, 100% of animals receiving the same dose of drug survived a 3 x 10(5) pfu challenge compared with 0% survival of those that received placebo. Survival rates of 50 and 30% occurred with ribavirin doses of 50 and 25 mg/kg/day, respectively. At the 100 mg/kg/day dose, ribavirin reduced lung virus titres 40-fold on day 6 of the infection relative to titres in the placebo group. Weight loss resulting from illness and mean lung weights of mice treated with ribavirin were also significantly reduced. Mice were infected intranasally with the high 3 x 10(6) pfu virus challenge dose and treated with 100 mg/kg/day ribavirin for 5 days, followed by single injections of 75 mg/kg cidofovir on day 6, 7, 8 or 9. Cidofovir alone (without ribavirin) administered on day 6 had no beneficial effect on disease outcome. Ribavirin alone increased the mean time to death by 3.7 days. Ribavirin treatment for 5 days followed by cidofovir treatment on days 6 and 7 significantly increased the mean time to death beyond that achieved with ribavirin alone by 8.2 and 4.4 days, respectively, with 30 and 40% of mice surviving the infection. These results suggest that many individuals infected with an orthopoxvirus by aerosol route would benefit by a course of ribavirin therapy. Later, the fewer number of very sick individuals could be treated with intravenous cidofovir.  相似文献   

8.
1-beta-d-Ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin) was effective against strains of influenza virus types A and F, whereas amantadine hydrochloride was effective only against strains of influenza virus type A. Dose-related protective effects against lethal influenza infections in mice were obtained with single oral doses of 25 to 400 mg of ribavirin per kg administered at the time of virus inoculation or up to 24 h thereafter. Therapeutic indexes (maximum tolerated dose/median effective dose) against various strains of influenza virus ranged from 5 to 35. With multiple-dose treatment initiated immediately after virus inoculation, oral doses as low as 12 to 25 mg/kg twice daily also afforded significant protection. Treatment with ribavirin inhibited the growth of influenza virus in the lungs of mice and delayed by about 24 h the attainment of maximal viral titers, which in nontreated mice were reached within 24 to 48 h. Inhibition of viral growth was correlated with a suppression of lung consolidation. Ribavirin appears to exert its protective effects against influenza infections by inhibiting virus growth, thereby preventing virus titers from reaching levels that result in massive lung tissue destruction and death of the mice.  相似文献   

9.
目的 建立PRA以评估奥司他韦(达菲)、金刚烷胺、利巴韦林和板蓝根4种药物的体外抗流感病毒作用.方法 建立PRA,选取临床分离的流感病毒株8株,其中甲型流感病毒3株,乙型流感病毒5株.病毒培养并接种,利用PRA测定奥司他韦、金刚烷胺、利巴韦林和板蓝根4种药物体外对流感病毒的IC_(50)值.结果 8株甲、乙型流感病毒临床分离株的PRA测定结果显示,奥司他韦对甲型流感病毒IC_(50)值为0.064-0.128 mg/L,金刚烷胺为0.5 mg/L,利巴韦林对甲型流感病毒不敏感(IC_(50)>8 mg/L),板蓝根无抗病毒作用;奥司他韦、金刚烷胺、利巴韦林和板蓝根对乙型流感病毒均未发现体外抗病毒作用.结论 奥司他韦和金刚烷胺对甲型流感病毒敏感,利巴韦林不敏感,板蓝根无抗病毒作用,该4种药物未发现体外抗乙型流感病毒作用.  相似文献   

10.
We demonstrate the potent antiviral activity of a novel viral neuraminidase (sialidase) inhibitor, 4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (GG167), administered by the intranasal route in comparison with those of amantadine and ribavirin in experimental respiratory tract infections induced with influenza A and B viruses. In an extended study in which mice were infected (day 0) with influenza A/Singapore/1/57 virus, with treatments given prophylactically plus twice daily over days 0 to 3 and with mice observed to day 10, we show that intranasally administered GG167 at 0.4 and 0.01 mg/kg of body weight per dose reduced mortality, lung consolidation, and virus titers in the lung, with no virus growing back following the cessation of treatment. In other studies with influenza B/Victoria/102/85 virus in which infected mice were culled after the cessation of treatment, the calculated intranasal dose required to reduce virus titers in the lungs of treated animals to 10% of that seen in untreated controls (EDAUC10 [where AUC is area under the virus titer days curve]) was 0.085 mg/kg per dose. GG167 was inactive against influenza viruses A and B when given by the intraperitoneal or oral route (EDAUC10, > 100 mg/kg per dose). GG167 was metabolically stable, with an elimination half-life of 10 min following intravenous administration. While readily bioavailable by systemic routes, it was poorly bioavailable by the oral route. Its potent efficacy by the intranasal route but lack of efficacy by other routes, relative to those of amantadine and ribavirin, was explicable in terms of its in vitro activity, bioavailability, and pharmacokinetic properties and with the extracellular activity of viral sialidase.  相似文献   

11.
We studied the effects of a neuraminidase inhibitor (oseltamivir) and an inhibitor of influenza virus polymerases (ribavirin) against two highly pathogenic H5N1 influenza viruses. In vitro, A/Vietnam/1203/04 virus (clade 1) was highly susceptible to oseltamivir carboxylate (50% inhibitory concentration [IC50] = 0.3 nM), whereas A/Turkey/15/06 virus (clade 2.2) had reduced susceptibility (IC50 = 5.5 nM). In vivo, BALB/c mice were treated with oseltamivir (1, 10, 50, or 100 mg/kg of body weight/day), ribavirin (37.5, 55, or 75 mg/kg/day), or the combination of both drugs for 8 days, starting 4 h before virus inoculation. Monotherapy produced a dose-dependent antiviral effect against the two H5N1 viruses in vivo. Three-dimensional analysis of the drug-drug interactions revealed that oseltamivir and ribavirin interacted principally in an additive manner, with several exceptions of marginal synergy or marginal antagonism at some concentrations. The combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 1 mg/kg/day and the combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 10 mg/kg/day were synergistic against A/Vietnam/1203/04 and A/Turkey/15/06 viruses, respectively. These optimal oseltamivir-ribavirin combinations significantly inhibited virus replication in mouse organs, prevented the spread of H5N1 viruses beyond the respiratory tract, and abrogated the cytokine response (P < 0.01). Importantly, we observed clear differences between the efficacies of the drug combinations against two H5N1 viruses: higher doses were required for the protection of mice against A/Turkey/15/06 virus than for the protection of mice against A/Vietnam/1203/04 virus. Our preliminary results suggest that oseltamivir-ribavirin combinations can have a greater or lesser antiviral effect than monotherapy, depending on the H5N1 virus and the concentrations used.  相似文献   

12.
We have recently reported an influenza virus neuraminidase inhibitor, RWJ-270201 (BCX-1812), a novel cyclopentane derivative discovered through structure-based drug design. In this paper, we compare the potency of three compounds, RWJ-270201, oseltamivir, and zanamivir, against neuraminidase enzymes from various subtypes of influenza. RWJ-270201 effectively inhibited all tested influenza A and influenza B neuraminidases in vitro, with 50% inhibitory concentrations of 0.09 to 1.4 nM for influenza A neuraminidases and 0.6 to 11 nM for influenza B neuraminidases. These values were comparable to or lower than those for oseltamivir carboxylate (GS4071) and zanamivir (GG167). RWJ-270201 demonstrated excellent selectivity (>10,000-fold) for influenza virus neuraminidase over mammalian, bacterial, or other viral neuraminidases. Oral administration of a dosage of 1 mg/kg of body weight/day of RWJ-270201 for 5 days (beginning 4 h preinfection) showed efficacy in the murine model of influenza virus infection as determined by lethality and weight loss protection. RWJ-270201 administered intranasally at 0.01 mg/kg/day in the murine influenza model demonstrated complete protection against lethality, whereas oseltamivir carboxylate and zanamivir at the same dose demonstrated only partial protection. In the delayed-treatment murine influenza model, oral administration of a 10-mg/kg/day dose of RWJ-270201 or oseltamivir (GS4104, a prodrug of GS4071) at 24 h postinfection showed significant protection against lethality (P < 0.001 versus control). However, when the treatment was delayed for 48 h, no significant protection was observed in either drug group. No drug-related toxicity was observed in mice receiving 100 mg/kg/day of RWJ-270201 for 5 days. These efficacy and safety profiles justify further consideration of RWJ-270201 for the treatment and prevention of human influenza.  相似文献   

13.
Experiments were done to determine how an alteration of the treatment schedule of 5 or 32 mg/kg/day per os (p.o.) doses of GS 4104 [the ethyl ester prodrug of the neuraminidase inhibitor (3R, 4R,5S)-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cylohexene-1 -carboxylic acid (GS 4071)] would affect influenza A (H1N1) virus infection in mice. Treatments with a low dose, one, two, three or four times daily, were highly inhibitory, unless therapy was terminated relatively early in the infection (days 2-3), in which case efficacy was curtailed. Single administrations at various times relative to virus exposure had essentially no effect. The 32 mg/kg/day dose was significantly inhibitory using all treatment schedules. These data indicated a requirement for the compound to be in the host when lung virus titres were reaching maximal levels and, for minimally effective doses, that at least continued daily therapy was needed to maintain adequate serum levels to achieve an appropriate antiviral effect. Twice daily p.o. treatment for 5 days with 20 mg/kg/day of GS 4104 totally prevented deaths in mice receiving high viral challenge doses that were sufficient to kill placebo-treated controls in less than 5 days. Other parameters of antiviral efficacy (lung consolidation, arterial oxygen saturation, lung virus titres) were also markedly inhibited regardless of viral challenge doses. These data provide further insights into how the maximum therapeutic benefit can be derived from use of this orally effective influenza virus neuraminidase inhibitor.  相似文献   

14.
Duan M  Zhou Z  Lin RX  Yang J  Xia XZ  Wang SQ 《Antiviral therapy》2008,13(1):109-114
BACKGROUND: Current vaccination strategies and antiviral drugs only provide limited protection against influenza virus infection. In this study, we investigated the use of a novel antisense oligonucleotide (named IV-AS), which is specific for the 5'-terminal conserved sequence found in all eight viral RNA segments of influenza A virus. METHODS: The activity of IV-AS was monitored both in vitro, in Madin-Darby canine kidney (MDCK) cells, and in vivo using a mouse model. IV-AS was given intranasally to H5N1-infected mice once daily for 6 days starting 6 h after infection. A three-base mismatch of IV-AS was used as a control. RESULTS: IV-AS inhibited influenza virus A induced cytopathic effects in MDCK cells with the 50% effective concentration (EC50) ranging from 2.2 to 4.4 microM. IV-AS was effective against H5N1 virus in preventing death, lessening weight reduction, inhibiting lung consolidation and reducing lung virus titres. Dosages of 40 and 60 mg/kg/day provided 40% and 60% survival rates and prolonged mean survival days in comparison with the infected control group (P<0.05). The lung index in mice treated with IV-AS, at a dose of 20, 40 or 60 mg/kg/day, had been inhibited on day 4 or 6 (P<0.05 or P<0.01); virus titres in lung had declined to 2.42, 1.51 and 1.54 log10 TCID50/g of lung, respectively, whereas the yields in the infected control mice were 6.00 log10 TCID50/g of lung. CONCLUSIONS: Our results suggest that the 5'-terminal conserved region of influenza A virus RNA segments can be targeted using antisense technology; therefore, IV-AS is a potential drug for prophylaxis and control of influenza virus infections.  相似文献   

15.
T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has a potent and selective inhibitory activity against influenza virus. We studied the effects of an infectious dose on the anti-influenza virus activities of T-705 and oseltamivir, a commercially available neuraminidase inhibitor, both in vitro and in vivo. Plaque formation of influenza A/PR/8/34 virus was completely inhibited by 10 microg/ml of T-705 after 72 h incubation, whereas visible plaque formation was detected in the plate treated with GS 4071, the active form of oseltamivir (10 microg/ml). The antiviral activity of T-705 was not influenced by an increase in multiplicity of infection (MOI) from 0.0001 to 1, but that of GS 4071 was influenced in a yield reduction assay. No increase in viral yield was seen in either culture supernatant or cells after removal of T-705 (10 microg/ml) but, in contrast, productive infection recurred in culture supernatant and in cells after removal of GS 4071. In mice infected with a high challenge dose of influenza A/PR/8/34 virus, orally administered T-705 (200 and 400 mg/kg/day) completely prevented the death of mice and the survival rates of mice were significantly higher than those in mice treated with oseltamivir (P<0.01). When the treatment was delayed at 1, 13 and 25 h post infection, oral administration of 200 mg/kg of T-705 significantly prevented the death of mice (P<0.01), and the survival rates of mice treated with T-705 were comparable to those of mice treated with oseltamivir. These results suggest that T-705 has the potential to be a potent inhibitor of human influenza virus infections.  相似文献   

16.
Pulmonary disease in mice induced by influenza virus was monitored by measurement of oxygen saturation (SaO2) in blood with a pulse oximeter. The SaO2 declined in inverse proportion to the viral inoculum. The known antiviral agent ribavirin inhibited the SaO2 decline, prevented death, lowered lung consolidation, and reduced the level of recoverable virus. Pulse oximetry is an effective means of monitoring murine influenzal disease and can be used in the study of potential antiviral drugs.  相似文献   

17.
BACKGROUND: The clinical management of H5N1 influenza virus infection in humans remains unclear. Combination chemotherapy with drugs that target different viral proteins might be more effective than monotherapy. METHODS: BALB/c mice were treated by oral gavage for 5 days with amantadine (1.5, 15 or 30 mg/kg/day) and oseltamivir (1 or 10 mg/kg/day) separately or in combination. Mice were challenged 24 h after initiation of treatment with 10 mouse 50% lethal doses of either amantadine-sensitive (having S31 in the M2 protein) or amantadine-resistant (having N31 in the M2 protein) recombinant A/Vietnam/1203/04 (H5N1) virus. RESULTS: Combination treatment with amantadine (15 or 30 mg/kg/day) and oseltamivir (10 mg/kg/day) provided greater protection (60% and 90%, respectively) against lethal infection with amantadine-sensitive H5N1 virus than did monotherapy. Moreover, spread of the virus to the brain was prevented by both combination regimens. The efficacy of the drug combinations against amantadine-resistant H5N1 virus was comparable to that of oseltamivir alone. Oseltamivir produced a dose-dependent effect against both recombinant H5N1 viruses (P < 0.05) but did not provide complete protection against lethal infection. Importantly, no mutations in the HA, NA and M2 proteins were detected when the two drugs were used in combination. CONCLUSIONS: Combination chemotherapy provided a survival advantage over single-agent treatment of mice inoculated with neurotropic H5N1 influenza virus. This strategy might be an option for the control of pandemic influenza viruses that are sensitive to amantadine. Combinations that include other drugs should be explored.  相似文献   

18.
We evaluated the efficacy of a single intravenous dose peramivir for treatment of influenza B virus infection in ferrets and cynomolgus macaques in the present study. A single dose of peramivir (60 mg/kg of body weight) given to ferrets on 1 day postinfection with influenza B virus significantly reduced median area under the curve (AUC) virus titers (peramivir, 8.3 log(10) 50% tissue culture infective doses [TCID(50)s] · day/ml; control, 10.7 log(10) TCID(50)s · day/ml; P < 0.0001). Furthermore, nasal virus titers on day 2 postinfection in ferrets receiving a single injection of peramivir (30 mg/kg) and AUCs of the body temperature increase in ferrets receiving a single injection of peramivir (30 and 60 mg/kg) were lower than those in ferrets administered oral oseltamivir phosphate (30 and 60 mg/kg/day twice daily for 3 days). In macaques infected with influenza B virus, viral titers in the nasal swab fluid on days 2 and 3 postinfection and body temperature after a single injection of peramivir (30 mg/kg) were lower than those after oral administration of oseltamivir phosphate (30 mg/kg/day for 5 days). The two animal models used in the present study demonstrated that inhibition of viral replication at the early time point after infection was critical in reduction of AUCs of virus titers and interleukin-6 production, resulting in amelioration of symptoms. Our results shown in animal models suggest that the early treatment with a single intravenous injection of peramivir is clinically recommended to reduce symptoms effectively in influenza B virus infection.  相似文献   

19.
Antiviral medications with activity against influenza viruses are important in controlling influenza. We compared intravenous peramivir, a potent neuraminidase inhibitor, with oseltamivir in patients with seasonal influenza virus infection. In a multinational, multicenter, double-blind, double-dummy randomized controlled study, patients aged ≥ 20 years with influenza A or B virus infection were randomly assigned to receive either a single intravenous infusion of peramivir (300 or 600 mg) or oral administration of oseltamivir (75 mg twice a day [b.i.d.] for 5 days). To demonstrate the noninferiority of peramivir in reducing the time to alleviation of influenza symptoms with hazard model analysis and a noninferiority margin of 0.170, we planned to recruit 1,050 patients in South Korea, Japan, and Taiwan. A total of 1,091 patients (364 receiving 300 mg and 362 receiving 600 mg of peramivir; 365 receiving oseltamivir) were included in the intent-to-treat infected population. The median durations of influenza symptoms were 78.0, 81.0, and 81.8 h in the groups treated with 300 mg of peramivir, 600 mg of peramivir, and oseltamivir, respectively. The hazard ratios of the 300- and 600-mg-peramivir groups compared to the oseltamivir group were 0.946 (97.5% confidence interval [CI], 0.793, 1.129) and 0.970 (97.5% CI, 0.814, 1.157), respectively. Both peramivir groups were noninferior to the oseltamivir group (97.5% CI, <1.170). The overall incidence of adverse drug reactions was significantly lower in the 300-mg-peramivir group, but the incidence of severe reactions in either peramivir group was not different from that in the oseltamivir group. Thus, a single intravenous dose of peramivir may be an alternative to a 5-day oral dose of oseltamivir for patients with seasonal influenza virus infection.  相似文献   

20.
1,3,4-Thiadiazol-2-ylcyanamide (LY217896) and its sodium salt were shown to be effective against influenza A and B viruses in vitro and in the mouse model. In nondividing confluent MDCK cells, the 50% inhibitory concentration of LY217896 ranged from 0.37 to 1.19 micrograms/ml against various strains of influenza A virus and from 0.75 to 1.54 micrograms/ml against various strains of influenza B virus, with no apparent cytotoxicity. However, at a concentration of 0.31 microgram/ml, LY217896 inhibited the replication of dividing MDCK cells. LY217896 (9 mg/m2 of body surface area per day) administered in the diet, in the drinking water, by oral gavage, by intraperitoneal injection, or by aerosolization was well tolerated and protected CD-1 mice infected with a lethal dose of influenza A or B virus. Effective administration of the compound could be delayed for up to 96 h postinfection. Virus titer was reduced by 1 to 2 log10 units in lungs of mice given LY217896 in the drinking water. Mice treated initially with protective levels of LY217896 were resistant to a subsequent challenge of influenza virus in the absence of the compound, indicating that the animals were able to develop immunity to the initial infection. Administration of LY217896 to uninfected mice did not induce interferon-like activity or interfere with natural killer cell function. In the ferret, LY217896 was effective in preventing fever induced by influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号