首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infections in humans by Leishmania donovani parasites can result in a fatal disease, visceral leishmaniasis (VL), or in a self-limiting asymptomatic infection. In murine models of the infection employing Leishmania major, the course of the disease can be directed into a VL-like syndrome by interleukin-4 (IL-4)-producing Th2 cells, or cure may result by Th1 cells secreting gamma interferon (IFN-gamma). The present study examined the potential of human T cells to generate Th1 or Th2 responses to L. donovani. The profiles of IFN-gamma, IL-4, and lymphotoxin secretion after antigen stimulation were analyzed in a panel of L. donovani-reactive CD4+ human T-cell clones generated from individuals who had recovered from VL after antimonial treatment. Two of the T-cell clones produced large amounts of IL-4 without production of IFN-gamma, seven clones produced both IFN-gamma and IL-4, and eight produced only IFN-gamma. This is the first report of a Th1- and Th2-type response in human leishmaniasis. These results suggest that in analogy with murine models, there is a dichotomy in the human T-cell response to L. donovani infections. Preferential activation of IL-4-producing Th2-like cells may be involved in the exacerbation of human VL, whereas activation of IFN-gamma-producing Th1 cells may protect the host from severe disease. Identification of leishmanial antigens activating one or the other type of T cells will be important in the development of vaccines against leishmaniasis.  相似文献   

2.
To determine the in vivo role of IL-12 in the development of protective immunity in visceral leishmaniasis caused by Leishmania donovani, we examined the course of L. donovani infection in IL-12-deficient C57BL/6 (IL-12-/-) mice. IL-12-/- mice displayed significantly higher parasite burdens in their livers and spleens than wild-type C57BL/6 mice throughout the course of infection. Despite high parasite burdens, the onset of hepatosplenomegaly was significantly delayed in L. donovani-infected IL-12-/-. Moreover, livers and spleens from IL-12-/- mice displayed significantly less inflammation and poorly formed granulomatous lesions than those from IL-12+/+ mice throughout the course of infection. Antigen-stimulated splenocytes from IL-12-/- mice produced significantly less IFN-gamma but more IL-4 than IL-12+/+ mice. These findings indicate that although endogenous IL-12 is critical for the development of protective immunity to L. donovani, it is also responsible for inducing the significant immunopathology associated with visceral leishmaniasis.  相似文献   

3.
Human visceral leishmaniasis (VL) results in a severe and potentially fatal systemic disease, accompanied by cellular immune depression. The production of IL-10 correlates with ongoing disease and it has been suggested that the cellular immune depression that accompanies active disease may be due to a predominance of IL-10 production rather than a lack of IFN-gamma production, which is essential for optimal macrophage activation and parasite elimination. To examine the role of IL-10 in resistance during L. donovani infection (a causative agent of VL), the course of infection was examined in mice lacking the gene for IL-10. BALB/c IL-10-/-, as well as C57BL/6 IL-10-/- mice, were highly resistant to L. donovani infection, as evidenced by liver parasite burdens which were tenfold lower than those in control mice after 14 days of infection. Enhanced resistance was accompanied by increased production of IFN-gamma and nitric oxide in BALB/c IL-10-/- mice. Susceptibility to infection in BALB/c IL-10-/- mice was enhanced following in vivo treatment with a neutralizing antibody to IFN-gamma or IL-12. Together these studies demonstrate for the first time that IL-10 is a critical component of the immune response that inhibits resistance to L. donovani.  相似文献   

4.
The acquisition of immunity following subclinical or resolved infection with the intracellular parasite Leishmania donovani suggests that vaccination could prevent visceral leishmaniasis (VL). The LACK (Leishmania homolog of receptors for activated C kinase) antigen is of interest as a vaccine candidate for the leishmaniases because of its immunopathogenic role in murine L. major infection. Immunization of mice with a truncated (24-kDa) version of the 36-kDa LACK antigen, delivered in either protein or DNA form, was found previously to protect against cutaneous L. major infection by redirecting the early T-cell response away from a pathogenic interleukin-4 (IL-4) response and toward a protective Th1 response. The amino acid sequence of the Leishmania p36(LACK) antigen is highly conserved, but the efficacy of this vaccine antigen in preventing disease caused by strains other than L. major has not been determined. We investigated the efficacy of a p36(LACK) DNA vaccine against VL because of the serious nature of this form of leishmaniasis and because it was unclear whether the LACK vaccine would be effective in a model where there was not a dominant pathogenic IL-4 response. We demonstrate here that although the LACK DNA vaccine induced a robust parasite-specific Th1 immune response (IFN-gamma but not IL-4 production) and primed for an in vivo T-cell response to inoculated parasites, it did not induce protection against cutaneous or systemic L. donovani challenge. Coadministration of IL-12 DNA with the vaccine did not enhance the strong vaccine-induced Th1 response or augment a protective effect.  相似文献   

5.
Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) alpha in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF(-/-)) or LT alpha (B6.LT alpha(-/-)) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LT alpha and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LT alpha was essential for migration of leukocytes from periportal areas, an event consistent with LT alpha-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4(+) T cells. LT alpha and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4(+) T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LT alpha-deficient infected mice. These results demonstrate that both LT alpha and TNF are required for control of L. donovani infection in noncompensatory ways.  相似文献   

6.
In this study we show an increased incidence of T cell apoptosis in the liver and spleen of mice infected with Leishmania donovani. T cells from L. donovani-infected mice were found to be increasingly susceptible to CD95-mediated apoptosis in vitro, compared to controls. To test if suboptimal T cell function resulting from CD95-mediated apoptosis contributes to sustained parasite burden in L. donovani parasitized mice, B6.gld mice (lacking functional CD95 ligand) were infected with L. donovani. Surprisingly, at four different time points no difference in levels of T cell apoptosis in the spleen and liver was found between these mice and controls following intravenous delivery of L. donovani amastigotes, indicating that the CD95 / CD95L interaction is not essential for T cell apoptosis in the L. donovani-infected liver and spleen. However, B6.gld mice were increasingly susceptible to L. donovani infection, associated with less efficient granuloma formation in the liver and uncontrolled parasite growth in the spleen. Late in infection (day 56 post-infection), B6.gld mice had higher numbers of IFN-gamma-producing CD4(+) T cells in the liver and spleen, indicating a role for CD95 signaling in the homeostasis of this subset of cytokine-producing T cells in L. donovani-parasitized mice. Adoptive transfer of CD4(+) and CD8(+) T cells into recombinase activating gene 1 knockout (RAG-1(- / -)) recipients, revealed that CD95L expressed on CD4(+) T cells contributes to early control of L. donovani infection in the liver via mechanisms that are independent of granuloma formation and induction of apoptosis. These results indicate important roles for CD95 and CD95L that are unrelated to regulation of apoptosis in the early control of L. donovani infection.  相似文献   

7.
The immune response against Leishmania donovani infection has been investigated in one resistant mouse strain (C3H/HeJ) and three susceptible mouse strains (C57BL/6, BALB/c, and B10D2/n). In order to correlate the strain-specific course of infection with the individual T cell response phenotype, the ex vivo cytokine secretion patterns of splenic lymphocytes were assessed by ELISA (interferon-y [IFN-gamma], interleukin-4 [IL-4], IL-10) or by bioassay (IL-2). The strain-dependent differences in the course of infection correlated closely with the potency of T cells to produce IFN-gamma. C3H/HeJ mice produced high amounts of IFN-gamma before and during infection, whereas susceptible mice produced low amounts of IFN-gamma early during L. donovani infection. However, C57BL/6 mice, which recovered from the infection rapidly after the acute stage, developed marked IFN-gamma response within the first 30 days of infection. In contrast, in BALB/c and B10D2/n mice, the IFN-gamma production diminished during the acute stage, and this was associated with a delay in recovery and with subsequent switching into the chronic stage. Interestingly, CD8+ T cells contributed significantly to IFN-gamma production during this phase. In contrast to IFN-y, the levels of IL-4 in response to antigen or mitogen ex vivo were always very low. Moreover, neutralization of endogenous IL-4 in vivo by treatment with soluble murine IL-4 receptor did not result in significant decreases in the parasite burdens in spleen and liver but did cause a decrease in the serum IgE level of L. donovani-infected BALB/c mice. These results confirm that in visceral leishmaniasis a Thl-dominated immune response is protective against the L. donovani parasites and, furthermore, that the capacity to produce IFN-gamma rather than the presence of IL-4 determines the efficacy of the immune response in susceptible mice. The data show that CD8+ T cells represent an important source of IFN-gamma during L. donovani infection in susceptible mice, implying a role for this cell type in healing and development of protective immunity.  相似文献   

8.
BALB/c mice resolve Leishmania donovani infection in the liver over an 8-12-week period. However, after an initial phase of 2-4 weeks where increases in parasite load are not readily detectable, parasite numbers in the spleen begin to increase reaching maximum levels at 16 weeks post-infection. Thereafter, parasite replication in the spleen is controlled and BALB/c mice maintain this residual parasite load in the spleen for many months, without further increase. We evaluated functions of CD11C+ splenic dendritic cells throughout the course of L. donovani infection in the spleen of BALB/c mice. Unlike the dendritic cell (DC)-specific antigen DEC-205, CD11C was not up-regulated on macrophages during visceral leishmaniasis. No appreciable impairment of splenic DC functions was observed when this antigen-presenting cell subset was purified from 30-day post-infected mice. Significant impairment in inducing allogeneic mixed lymphocyte reaction (MLR) and presenting L. donovani antigens or keyhole limpet haemocyanin (KLH) to specific T cells was observed with CD11C+ splenic DC purified from 60-day post-infected mice. Functional impairment of splenic DC at 60 days post-infection correlated with their reduced surface expression of major histocompatibility complex (MHC) class II molecules, impairment of interleukin-12 (IL-12) production and to their ability to suppress interferon-gamma (IFN-gamma) production by Leishmania antigen-primed T cells. Of interest, the impairment of splenic DC in presenting Leishmania antigens or KLH to specific T cells was corrected at 120 days post-infection, and correlated with their up-regulation of MHC class II expression, IL-12 production, induction of IFN-gamma by Leishmania antigen-primed T cells and the onset of control over splenic parasite replication in vivo. These results indicate that functional integrity of DC may be important in controlling L. donovani infection.  相似文献   

9.
Sublethal infection of mice with recombinant Listeria monocytogenes expressing a model epitope in either secreted or nonsecreted form results in similar CD8(+) T-cell priming. Since nonsecreted bacterial proteins have no obvious access to the endogenous major histocompatibility complex (MHC) class I presentation pathway, presentation of these antigens requires destruction of the bacterium to reveal the nonsecreted molecules to an exogenous MHC class I presentation pathway. Gamma interferon (IFN-gamma), a cytokine made by multiple cell types in response to L. monocytogenes infection, could be required for exogenous presentation of nonsecreted bacterial antigens via its capacity to upregulate the expression of molecules involved in antigen presentation, its capacity to activate macrophages to kill bacteria to expose nonsecreted molecules or both. IFN-gamma knockout (KO) mice were used to address the requirement for IFN-gamma in CD8(+) T-cell priming against (i) a model exogenous antigen and (ii) secreted and nonsecreted L. monocytogenes antigens. We demonstrate that IFN-gamma KO mice are capable of cross-presenting the model exogenous antigen ovalbumin to prime CD8(+) T-cell responses that are only slightly weaker than that in wild-type (WT) mice. Despite their extreme susceptibility to primary L. monocytogenes infection, previously immunized and naive IFN-gamma KO mice were able to generate CD8(+) T-cell responses against both secreted and nonsecreted L. monocytogenes antigens which were similar to responses of WT mice. Interestingly, IFN-gamma KO mice were as capable as WT mice in mediating the characteristic drop in bacterial load in the liver at 4 h postinfection, although the IFN-gamma KO mice have exacerbated bacterial loads as early as 24 h postinfection. These results demonstrate that the regulatory functions of IFN-gamma are not required for priming of CD8(+) T cells by cross-presentation of a model exogenous antigen or in response to a nonsecreted L. monocytogenes antigen. In addition, the capacity of IFN-gamma to activate the microbicidal activities of macrophages is not required for the very early innate immune response to L. monocytogenes or priming of CD8(+) T cells against a nonsecreted bacterial antigen.  相似文献   

10.
CD40 ligand (CD40L)-deficient C57BL/6 mice failed to control intracellular Leishmania donovani visceral infection, indicating that acquired resistance involves CD40-CD40L signaling and costimulation. Conversely, in wild-type C57BL/6 and BALB/c mice with established visceral infection, injection of agonist anti-CD40 monoclonal antibody (MAb) induced killing of approximately 60% of parasites within liver macrophages, stimulated gamma interferon (IFN-gamma) secretion, and enhanced mononuclear cell recruitment and tissue granuloma formation. Comparable parasite killing was also induced by MAb blockade (inhibition) of cytotoxic T lymphocyte antigen-4 (CTLA-4) which downregulates separate CD28-B7 T-cell costimulation. Optimal killing triggered by both anti-CD40 and anti-CTLA-4 required endogenous IFN-gamma and involved interleukin 12. CD40L(-/-) mice also failed to respond to antileishmanial chemotherapy (antimony), while in normal animals, anti-CD40 and anti-CTLA-4 synergistically enhanced antimony-associated killing. CD40L-CD40 signaling regulates outcome and response to treatment of experimental visceral leishmaniasis, and MAb targeting of T-cell costimulatory pathways (CD40L-CD40 and CD28-B7) yields macrophage activation and immunotherapeutic and immunochemotherapeutic activity.  相似文献   

11.
It has previously been reported that inhibition of delayed-type hypersensitivity-mediating functions of T cells during mycobacterial infection in mice is haplotype dependent. In the present study, we show that Mycobacterium bovis BCG infection induced, in susceptible C57BL/6 and BALB/c mice but not in resistant C3H/HeJ and DBA/2 mice, an important splenomegaly. An in vitro defect in T-cell proliferation in response to T-cell receptor (TCR) stimulation with mitogens or anti-CD3 antibodies was associated with enhanced levels of CD4(+) and CD8(+) T-cell apoptosis in susceptible but not in resistant mice 2 weeks after infection. Further investigations of C57BL/6 and C3H/HeJ mice revealed that in vivo splenomegaly was associated with destruction of the lymphoid tissue architecture, liver cellular infiltrates, and increased numbers of apoptotic cells in both spleen and liver tissue sections. Infection of C57BL/6 mice but not of C3H/HeJ mice induced massive production of tumor necrosis factor alpha (TNF-alpha) in serum, as well as an increase in Fas and Fas ligand (FasL) expression in T cells. In vitro addition of neutralizing anti-TNF-alpha antibodies led to a significant reduction in CD3-induced T-cell apoptosis of both CD4(+) and CD8(+) T cells of C57BL/6 mice, while the blockade of Fas-FasL interactions reduced apoptosis only in CD4(+) but not in CD8(+) T cells. Together, these results suggest that TNF-alpha and Fas-FasL interactions play a role in the activation-induced cell death (AICD) process associated with a defect in T-cell proliferation of the susceptible C57BL/6 mice. T-cell death by apoptosis may represent one of the important components of the ineffective immune response against mycobacterium-induced immunopathology in susceptible hosts.  相似文献   

12.
Infection of immunocompetent mice with Leishmania donovani is characterized by the development of a tissue granulomatous response, in vivo macrophage activation, and a predominantly Th1-type CD4+ T-cell response. To determine whether a recently described T-cell-independent pathway of gamma interferon (IFN-gamma) production involving the collaboration of macrophages and natural killer (NK) cells contributed to this pattern of events, we have investigated the responses of scid mice to L. donovani infection. The multiplication of parasites in the livers of scid mice progressed at a rate equivalent to that seen in BALB/c mice over the first 14 days of infection, but by day 28 scid mice had a fivefold-higher parasite burden. This infection was not, however, accompanied by any demonstrable histological response in the liver or by elevated major histocompatibility complex class II expression on splenic macrophages. In vitro, L. donovani was unable to trigger IFN-gamma production from scid spleen cell cultures under conditions which allowed efficient triggering by bacterial stimuli. Although L. donovani also failed to stimulate the release of tumor necrosis factor, an important macrophage-derived cofactor for IFN-gamma secretion by NK cells, exogenous recombinant tumor necrosis factor alpha could not restore the IFN-gamma response. Even with the potent synergistic effect of exogenous interleukin-2, L. donovani was unable to stimulate this pathway to the same extent as Listeria monocytogenes. Indeed, L. donovani inhibited the response to L. monocytogenes in a dose-dependent fashion. Experiments involving the transfer of supernatants and the use of neutralizing monoclonal antibodies have failed to find evidence that interleukin-10 is involved in this inhibition. These data suggest that NK cell-derived IFN-gamma is unlikely to participate in the early regulation of visceral leishmaniasis in the mouse.  相似文献   

13.
Interleukin-10 (IL-10) is associated with inhibition of cell-mediated immunity and downregulation of the expression of costimulatory molecules required for T-cell activation. When IL-10-deficient (IL-10KO) mice are infected with Toxoplasma gondii, they succumb to a T-cell-mediated shock-like reaction characterized by the overproduction of IL-12 and gamma interferon (IFN-gamma) associated with widespread necrosis of the liver. Since costimulation is critical for T-cell activation, we investigated the role of the CD28-B7 and CD40-CD40 ligand (CD40L) interactions in this infection-induced immunopathology. Our studies show that infection of mice with T. gondii resulted in increased expression of B7 and CD40 that was similar in wild-type and IL-10KO mice. In vivo blockade of the CD28-B7 or CD40-CD40L interactions following infection of IL-10KO mice with T. gondii did not affect serum levels of IFN-gamma or IL-12, nor did it prevent death in these mice. However, when both pathways were blocked, the IL-10KO mice survived the acute phase of infection and had reduced serum levels of IFN-gamma and alanine transaminase as well as decreased expression of inducible nitric oxide synthase in the liver and spleen. Analysis of parasite-specific recall responses from infected IL-10KO mice revealed that blockade of the CD40-CD40L interaction had minimal effects on cytokine production, whereas blockade of the CD28-B7 interaction resulted in decreased production of IFN-gamma but not IL-12. Further reduction of IFN-gamma production was observed when both costimulatory pathways were blocked. Together, these results demonstrate that the CD28-B7 and CD40-CD40L interactions are involved in the development of infection-induced immunopathology in the absence of IL-10.  相似文献   

14.
CD8(+) T-cell immunity plays an important role in protection against intracellular infections. Earlier studies have shown that CD4(+) T-cell help was needed for launching in vivo CD8(+) T-cell activity against these pathogens and tumors. However, recently CD4(+) T-cell-independent CD8 responses during several microbial infections including those with Toxoplasma gondii have been described, although the mechanism is not understood. We now demonstrate that, in the absence of CD4(+) T cells, T. gondii-infected mice exhibit an extended NK cell response, which is mediated by continued interleukin-12 (IL-12) secretion. This prolonged NK cell response is critical for priming parasite-specific CD8(+) T-cell immunity. Depletion of NK cells inhibited the generation of CD8(+) T-cell immunity in CD4(-/-) mice. Similarly neutralization of IL-12 reduces NK cell numbers in infected animals and leads to the down-regulation of CD8(+) T-cell immunity against T. gondii. Adoptive transfer of NK cells into the IL-12-depleted animals restored their CD8(+) T-cell immune response, and animals exhibited reduced mortality. NK cell gamma interferon was essential for cytotoxic T-lymphocyte priming. Our studies for the first time demonstrate that, in the absence of CD4(+) T cells, NK cells can play an important role in induction of primary CD8(+) T-cell immunity against an intracellular infection. These observations have therapeutic implications for immunocompromised individuals, including those with human immunodeficiency virus infection.  相似文献   

15.
Although enhanced macrophage-specific arginase activity is directly related to increased parasite burden in cutaneous leishmaniasis (CL), the regulation and precise role of arginase in the disease outcome of visceral leishmaniasis (VL) has yet to be explored. As in CL, BALB/c mice infected with Leishmania donovani showed increased levels of arginase in acute infection. Arginase 1 is the major isoform associated with infection and while the IL-4-induced arginase pathway is operative in CL, IL-10 plays a crucial role in modulating arginase activity in VL, although a synergism with IL-4 is required. IL-10, in combination with IL-4, regulated both in vivo and ex vivo arginase 1 induction in a STAT6 and C/EBPβ-dependent fashion. Further investigation toward the cause of such synergism suggests that induction of a STAT3-dependent IL-10-mediated cascade in VL triggers the expression and surface localization of the IL-4 receptor alpha (IL-4Rα) which, in turn, enhances IL-4 responsiveness toward STAT6 and C/EBPβ-dependent signaling for arginase 1. This could also offer a mechanistic explanation for the fact that, in spite of the low level of IL-4 in VL, enhanced IL-4-Rα expression by IL-10 might markedly amplify IL-4-mediated arginase 1 signaling and provide a possible mechanism for synergistic induction of arginase 1.  相似文献   

16.
Resistance to murine visceral leishmaniasis (VL) correlates with the development of an IFN-γ predominant immune response. Beta1,4-galactose terminal glycans are potent inducers of IFN-γ. Here, we demonstrate the efficacy of a 29 kDa β1,4-galactose terminal glycoprotein (GP29) of Leishmania donovani (LD) in an in vitro macrophage model and an in vivo mouse model of VL. GP29 induced splenic macrophages to release NO and ROS in appreciable amounts that resulted in effective parasite clearance from macrophages. This was associated with the toll-like receptor (TLR)-4 mediated IL-12 induction and inhibition of TLR2-mediated IL-10 production. Two subcutaneous injections of GP29 at fortnightly intervals resulted in dominant IL-12-mediated IFN-γ production and 100% animals were protected against a subsequent challenge with virulent LD parasites. Vaccinated mice showed a reversal of T-cell anergy, significantly elevated expression of iNOS and a type-1 IgG subclass response. Moreover, vaccinated mice downregulated arginase1 and IL-10 expression but did not alter IL-4 expression. The IFN-γ/IL-10 ratio regulated the intensity of the protective immune response. Experiments with IFN-γ and IL-10 knockout mice reiterated the role IL-10 and IFN-γ play in disease progression or resolution in the murine model of VL.  相似文献   

17.
18.
Th1 cells and gamma interferon (IFN-gamma) production play critical roles in protective immunity against genital tract infections by Chlamydia trachomatis. Here we show that inducible costimulatory molecule (ICOS)(-/-) mice develop greatly augmented host resistance against chlamydial infection. Protection following a primary infection was characterized by strong Th1 immunity with enhanced CD4(+) T-cell-mediated IFN-gamma production in the genital tract and high expression of T-bet in the draining para-aortic lymph node. This Th1 dominance was associated with low expression of interleukin 10 (IL-10) mRNA in the uteruses of protected ICOS(-/-) mice. By contrast, CD28(-/-) mice were severely impaired in their adaptive immune response, demonstrating a lack of CD4(+) T cells and IFN-gamma in the genital tract, with a substantial delay in bacterial elimination compared to that seen in wild-type (WT) mice. Upon reinfection, WT mice exhibited a transient local infection with evidence of regulatory T-cell (Treg)/Foxp3 mRNA and a more balanced Th1 and Th2 response in the genital tract than ICOS(-/-) mice, whereas 90% of the latter mice developed sterile immunity, poor expression of local Treg/Foxp3 mRNA, and macroscopic signs of enhanced local immunopathology. Therefore, different requirements for CD28 signaling and ICOS signaling clearly apply to host protection against a genital tract infection by C. trachomatis. Whereas, CD28 signaling is critical, ICOS appears to be dispensable and can have a dampening effect on Th1 development by driving Th2 immunity and anti-inflammation through IL-10 production and promotion of the Foxp3(+) Treg populations in the genital tract. Both the CD28-deficient and the ICOS-deficient mice demonstrated poor specific antibody production, supporting the fact that antibodies are not needed for protection against genital tract chlamydial infections.  相似文献   

19.
The usual agent of visceral leishmaniasis in the Old World is Leishmania donovani, which typically produces systemic diseases in humans and mice. L. donovani has developed efficient strategies to infect and persist in macrophages from spleen and liver. Dendritic cells (DC) are sentinels of the immune system. Following recognition of evolutionary conserved microbial products, DC undergo a maturation process and activate antigen-specific na?ve T cells. In the present report we provide new insights into how DC detect Leishmania in vivo. We demonstrate that in both C57BL/6 and BALB/c mice, systemic injection of L. donovani induced the migration of splenic DC from marginal zones to T-cell areas. During migration, DC upregulated the expression of major histocompatibility complex II and costimulatory receptors (such as CD40, CD80, and CD86). Leishmania-induced maturation requires live parasites and is not restricted to L. donovani, as L. braziliensis, L. major, and L. mexicana induced a similar process. Using a green fluorescent protein-expressing parasite, we demonstrate that DC undergoing maturation in vivo display no parasite internalization. We also show that L. donovani-induced DC maturation was partially abolished in MyD88-deficient mice. Taken together, our data suggest that Leishmania-induced DC maturation results from direct recognition of Leishmania by DC, and not from DC infection, and that MyD88-dependent receptors are implicated in this process.  相似文献   

20.
Visceral leishmaniasis is a severe and lethal disease caused by the protozoan parasites of the genus Leishmania. In areas where leishmaniasis is endemic, most infected individuals control the infection and remain asymptomatic; chemotherapy of visceral leishmaniasis restores some immunity which protects against relapses. In the present study, Leishmania-specific T-cell clones were established from six asymptomatic and five cured patients. Cytokines production by these clones was analyzed. A large fraction of the parasite-specific T-cell clones from asymptomatic patients were CD8(+) and produced high amounts of gamma interferon (IFN-gamma). Most CD4(+) T-cell clones from two asymptomatic subjects exhibited an unusual phenotype: production of high levels of IFN-gamma low levels of interleukin-4, (IL-4), but high levels of IL-5. In contrast, only few parasite-specific CD8(+) T-cell clones were obtained from cured patients after chemotherapy; moreover, CD4(+) T-cell clones from these patients exhibited an heterogeneous profile of cytokines from Th1-like to Th2-like phenotypes. These results point to CD8(+) T cells and to IL-5- and IFN-gamma-producing CD4(+) T cells as possible contributors to human resistance to Leishmania infection. They should stimulate new immunological approaches in the control of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号