首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six Shiga toxin-producing Escherichia coli (STEC) serogroups, which include O26, O45, O103, O111, O121, and O145, are responsible for the majority of non-O157 STEC infections in the United States, representing a growing public health concern. Cattle and other ruminants are reservoirs for these pathogens; thus, food of bovine origin may be a vehicle for infection with non-O157 STEC. Methods for detection of these pathogens in animal reservoirs and in food are needed to determine their prevalence and to develop intervention strategies. This study describes a method for detection of non-O157 STEC in ground beef, consisting of enrichment in modified tryptic soy broth at 42°C, followed by real-time multiplex polymerase chain reaction (PCR) assays targeting stx(1), stx(2), and genes in the O-antigen gene clusters of the six serogroups, [corrected] and then immunomagnetic separation (IMS) followed by plating onto Rainbow? Agar O157 and PCR assays for confirmation of isolates. All ground beef samples artificially inoculated with 1-2 and 10-20 CFU/25?g of ground beef consistently gave positive results for all of the target genes, including the internal amplification control using the multiplex real-time PCR assays after enrichment in modified tryptic soy broth for a total of 24?h (6?h at 37°C and 18?h at 42°C). The detection limit of the real-time multiplex PCR assays was ~50 CFU per PCR. IMS for O26, O103, O111, and O145 was performed with commercially available magnetic beads, and the IMS beads for O45 and O121 were prepared using polyclonal antiserum against these serogroups. A large percentage of the presumptive colonies of each serogroup picked from Rainbow Agar O157 were confirmed as the respective serogroups; however, the percent recovery of STEC O111 was somewhat lower than that of the other serogroups. This work provides a method for detection and isolation in ground beef and potentially other foods of non-O157 STEC of major public health concern.  相似文献   

2.
A molecular-based detection method was developed to detect Escherichia coli O26, O111 and O157 in minced (ground) beef samples. This method consists of an initial overnight enrichment in modified tryptone soya broth (mTSB) and novobiocin prior to DNA extraction and subsequent serogrouping using a triplex PCR. This method has a low limit of detection and results are available within 24 hours of receipt of samples. Once optimized, this rapid method was utilized to determine the prevalence of these E. coli serogroups in six hundred minced beef samples all of which were previously examined by immunomagnetic separation (IMS) and selective plating for E. coli O26 and O111. Using IMS, two E. coli O26 isolates were detected. No E. coli O111 were recovered. The multiplex PCR technique described here did not detect E. coli O111 nor O157 in any of the samples, however six minced beef samples were positive for E. coli O26 using our method, only two of these were previously detected by IMS and culture. Application of molecular methods are useful to support culture-based approaches thereby further contributing to risk reduction along the food chain.  相似文献   

3.
4.
Verocytotoxigenic Escherichia coli (VTEC) O157 are recognized as bacterial pathogens with significant public health impact. However, other serogroups, including O26, O111, O103, and O145, have the potential to cause the same spectrum of illness. In this study, 800 minced (ground) beef samples covering a large geographical region in Ireland were collected and tested for Escherichia coli (E. coli) O26 and E. coli O111 by conventional microbiological protocols. Two minced beef samples (0.25%) tested positive for E. coli O26, indicating fecal contamination. None of these isolates possessed verocytotoxin-encoding genes, (vt1/vt2 also known as stx1/stx2), the hemolysinencoding gene (hlyA), or the E. coli attachment-effacement (eae) gene, as determined by polymerase chain reaction (PCR). None of the beef samples analyzed contained E. coli O111. Although the E. coli O26 isolates were nonvirulent, the presence of these isolates in raw minced beef is an indication of fecal contamination and therefore potentially of public health significance.  相似文献   

5.
Susceptibilities to fourteen antimicrobial agents important in clinical medicine and agriculture were determined for 752 Escherichia coli isolates of serotypes O26, O103, O111, O128, and O145. Strains of these serotypes may cause urinary tract and enteric infections in humans and have been implicated in infections with Shiga toxin-producing E. coli (STEC). Approximately 50% of the 137 isolates from humans were resistant to ampicillin, sulfamethoxazole, cephalothin, tetracycline, or streptomycin, and approximately 25% were resistant to chloramphenicol, trimethoprim-sulfamethoxazole, or amoxicillin-clavulanic acid. Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin. Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin. Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.  相似文献   

6.
O-antigens on the surface of Escherichia coli are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in pathogenicity. O-antigens that are responsible for antigenic specificity of the strain determine the O-serogroup. E. coli O26, O45, O103, O111, O113, O121, O145, and O157 have been the most commonly identified O-serogroups associated with Shiga toxin-producing E. coli (STEC) implicated in outbreaks of human illness all over the world. A multiplex polymerase chain reaction assay was developed to simultaneously detect the eight STEC O-serogroups targeting the wzx (O-antigen-flippase) genes of all O-antigen gene clusters. The sensitivity of the multiplex polymerase chain reaction was found to be 10 colony forming units for each O-group when enriched in broth and 100 colony forming units when enriched in artificially inoculated apple juice diluted with tryptic soy broth for 16?h at 37°C. The method can be used for detecting STEC O-groups simultaneously and may be exploited for improving the safety of food products.  相似文献   

7.
In August 2008, a large outbreak of Shiga toxin-producing Escherichia coli (STEC) O111:NM infections associated with a buffet-style restaurant in rural Oklahoma was identified. A case-control study of restaurant patrons and a retrospective cohort study of catered event attendees were conducted coupled with an environmental investigation to determine the outbreak's source and mode of transmission. Of 1823 persons interviewed, 341 (18·7%) met the outbreak case definition; 70 (20·5%) were hospitalized, 25 (7·3%) developed haemolytic uraemic syndrome, and one died. Multiple food items were significantly associated with illness by both bivariate and multivariate analyses, but none stood out as a predominant transmission vehicle. All water, food, and restaurant surface swabs, and stool cultures from nine ill employees were negative for the presence of Shiga toxin and E. coli O111:NM although epidemiological evidence suggested the outbreak resulted from cross-contamination of restaurant food from food preparation equipment or surfaces, or from an unidentified infected food handler.  相似文献   

8.
Phenotypic and genetic markers of Shiga toxin-producing Escherichia coli (STEC) O26 from North America were used to develop serotype-specific protocols for detection of this pathogen. Carbohydrate fermentation profiles and prevalence of gene sequences associated with STEC O26 (n = 20) were examined. Non-STEC O26 (n = 17), E. coli O157 (n = 20), E. coli O111 (n = 22), and generic E. coli (n = 21) were used as comparison strains. Effects of supplements: cefixime-tellurite, 4-methylumbelliferyl-beta-D-glucuronide (MUG) and chromogenic additives (5-bromo4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal), 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (X-GlcA) and o-nitrophenyl-beta-D-galactopyranoside (ONPG), added to isolation agar media were examined. Tests for presence of gene sequences encoding beta intimin (eae beta), Shiga toxin 1 and 2 (stx1 and stx2), H7 flagella (flicCh7), enterohemolysin (ehlyA), O26 somatic antigen (wzx), and high pathogenicity island genes (irp2 and fyuA) were conducted using multiplex polymerase chain reaction. Pulsed-field gel electrophoresis (PFGE) of XbaI restriction endonuclease genomic DNA digests was used to establish clonality among E. coli O26 strains. Of the 26 carbohydrates tested, only rhamnose had diagnostic value. Rhamnose non-fermenters included STEC O26 (100%), non-STEC O26 (40%), generic E. coli (29%), E. coli O111 (23%), and E. coli O157 (0%). Rhamnose non-fermenting colonies growing on Rhamnose-McConkey agar supplemented with X-GlcA, X-Gal, or ONPG, respectively, were blue, white, or faint yellow, whereas rhamnose-fermenters were red. Blue colonies from X-GlcA-containing media were the most well-defined and easiest to pick for further tests. All STEC O26 were MUG-fluorescent, while STEC O157 (n = 18) were non-fluorescent. E. coli O111 and generic E. coli strains were either MUG-positive or-negative. Serotype-specific detection of STEC O26 was achieved by selecting cefixime-tellurite-resistant, MUG-fluorescent, rhamnose-nonfermenting colonies, which carried stx1, eae beta, irp2, and wzx gene sequences. STEC O26 prevalence in dairy farm environmental samples determined using the developed isolation and genetic detection protocols was 4%. PFGE indicated the presence of one major cluster of E. coli O26 with 72-100% DNA fragment-length digest similarity among test strains. The serotype-specific detection methods described herein have potential for routine application in STEC O26 diagnosis.  相似文献   

9.
This study investigates a sorbitol-fermenting enterohaemorrhagic Escherichia coli (SF EHEC) O157 infection in a farmer's family in the Austrian province of Salzburg. The investigation commenced after a 10-month-old boy was admitted to hospital with the clinical diagnosis of a haemolytic-uraemic syndrome (HUS) and his stool specimen grew SF EHEC O157:H-. In a subsequent environmental survey, a stool specimen of the 2-year-old brother and faecal samples of two cattle from the family's farm were also found to be positive for SF EHEC O157:H-. All four isolates had indistinguishable phenotypic and molecular characteristics and were identical to the first strain detected in Bavaria in 1988. Despite identical isolates being demonstrated in Bavaria after 1988, and until this report, increased surveillance in neighbouring Austria had not found this organism. We propose that the strain may have recently spread from Bavaria to Austria. Although SF EHEC O157:H- strains are still rare, they may represent a considerable health threat as they can spread from farm animals to humans and between humans.  相似文献   

10.
On April 20, 2010, the Colorado Department of Public Health and Environment (CDPHE) was notified by correctional authorities regarding three inmates with bloody diarrhea at a minimum-security correctional facility. The facility, which houses approximately 500 inmates, is a designated work center where inmates are employed or receive vocational training. Approximately 70 inmates work at an onsite dairy, which provides milk to all state-run correctional facilities in Colorado. CDPHE immediately began an investigation and was later assisted by the High Plains Intermountain Center for Agricultural Health and Safety at Colorado State University and by CDC. This report describes the results of the investigation, which determined that the illnesses were caused by Shiga toxin-producing Escherichia coli O111 (STEC O111) infections. During April-July, 10 inmates at the facility received a diagnosis of laboratory-confirmed STEC O111 infection, and a retrospective prevalence study of 100 inmates found that, during March-April, 14 other inmates had experienced diarrheal illness suspected of being STEC O111 infection. Pulsed-field gel electrophoresis (PFGE) testing indicated that STEC O111 isolates from inmates matched STEC O111 isolates from cattle at the onsite dairy. An environmental investigation determined that inmates employed at the dairy might have acquired STEC O111 infection on the job or transported contaminated clothing or other items into the main correctional facility and kitchen, thereby exposing other inmates.?To prevent similar outbreaks in correctional facilities, authorities should consult with public health officials to design and implement effective infection control measures.  相似文献   

11.
To detect various serotypes of Shiga toxin-producing Escherichia coli (STEC) in food, methods independent of serotyping are needed. We established procedures to isolate STEC using a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay targeting the Shiga toxin (ST) gene and a method of plating LAMP assay positive dilutions onto media for the selection of E. coli. After incubation, suspensions of a colony or some colonies were tested in the LAMP assay. Positive suspensions were diluted and plated onto selective media. The procedure was repeated. Finally, LAMP positive colonies were confirmed as STEC and serotype. As a result of surveillance in beef in 2005-2007, 11 of 720 samples (1.5%) tested positive for the ST gene by LAMP assay. Serotype O8, O128, and O-untypeable STEC were isolated from the samples by the newly established procedure. It was demonstrated that the procedure was effective for detecting STEC independent of serotype.  相似文献   

12.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains isolated from a seagull in Japan were examined. A total of 50 faecal samples was collected on a harbour bank in Hokkaido, Japan, in July 1998. Two different STEC strains, whose serotypes were O136:H16 and O153:H-, were isolated from the same individual by PCR screening; both of them were confirmed by ELISA and Vero cell cytotoxicity assay to be producing active Stx2 and Stx1, respectively. They harboured large plasmids, but did not carry the haemolysin or eaeA genes of STEC O157:H7. Based on their plasmid profiles, antibiotic resistance patterns, pulsed-field gel electrophoresis analysis (PFGE), and the stx genes sequences, the isolates were different. Phylogenic analysis of the deduced Stx amino acid sequences demonstrated that the Stx toxins of seagull-origin STEC were closely associated with those of the human-origin, but not those of other animal-origin STEC. In addition, Stx2phi-K7 phage purified from O136 STEC resembled Stx2phi-II from human-origin O157:H7, and was able to convert non-toxigenic E. coli to STEC. These results suggest that birds may be one of the important carriers in terms of the distribution of STEC.  相似文献   

13.
There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx2c, either alone (16%) or in combination with stx1 (74%) or stx2 (3%). PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.  相似文献   

14.
Shiga toxin producing Escherichia coli O103:H2/H(-) belong to the third most frequently isolated EHEC serotypes in Germany following isolates of O157:H7/H(-) and O26:H11/H(-). A total of 145 respective E. coli 103 isolates from single cases of diarrhoea and haemolytic uremic syndrome (HUS) in 1997-2000 were characterised by a range of molecular subtyping methods (PFGE, P-gene profiling, ribotyping, electrotyping) and phage typing in order to analyse their genetic relatedness and the practicability for new epidemiological tracing back. All isolates cluster into a distinct EHEC subgroup and reveal a high clonal diversity together with a considerable stability. Since strains of this serotype rank up to the third most frequently isolated EHEC in Germany a large population of this serotype, and therefore, a great supply of such strains may exist in this country.  相似文献   

15.
16.
An outbreak due to Shiga toxin-producing Escherichia coli O26:H11 (STEC) occurred at a nursery in southeastern Japan in 1997. Thirty-two children had watery or bloody diarrhoea but none of them suffered from haemolytic-uremic syndrome. All of the STEC O26 were isolated during the period from 23 July to 22 August from 24 children, 3 nurses, and 2 food samples. These organisms had stx1 and eae genes but none of the other genes for which we tested (stx2, bfp, and EAF plasmid). They also possessed multiple antimicrobial resistances, which were encoded by a transmissible plasmid, and showed mostly identical genomic pulsed-field gel electrophoretic patterns. The results of this investigation suggested that contaminated food was the main contributing factor to this multiple antimicrobial-resistant STEC O26 infection, and person-to-person transmission also contributed to the spread of this outbreak.  相似文献   

17.
The prevalence of Shiga toxin-producing Escherichia coli (STEC) was investigated in 350 edible beef intestinal samples, including omasum (n=110), abomasum (n=120), and large intestines (n=120), collected from traditional beef markets in Seoul, Korea. A total of 23 STEC strains were isolated from 15 samples (four strains from three omasa, 10 from five abomasa, and nine from seven large intestines). The O serotypes and toxin gene types of all STEC isolates were identified, and antimicrobial resistance was assessed using the disk diffusion method. The isolation rates of STEC from edible beef intestines were 2.8% in omasum, 4.2% in abomasums, and 5.9% in large intestines. All STEC isolates harbored either stx1, or both stx1 and stx2 genes simultaneously. Among the 23 isolates, 13 strains were identified as 11 different O serogroups, and 10 strains were untypable. However, enterohemorrhagic Esherichia coli O157, O26, and O111 strains were not isolated. The highest resistance rate observed was against tetracycline (39%), followed by streptomycin (35%) and ampicillin (22%). Of the 23 isolates, 12 isolates (52%) were resistant to at least one antibiotic, nine (39%) isolates were resistant to two or more antibiotics, and one isolate from an abmasum carried resistance against nine antibiotics, including beta-lactam/beta-lactamase inhibitor in combination and cephalosporins. This study shows that edible beef by-products, which are often consumed as raw food in many countries, including Korea, can be potential vehicles for transmission of antimicrobial-resistant pathogenic E. coli to humans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号