首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous study showed that perinatal exposure to interleukin-1β (IL-1β), an inflammatory cytokine, induces acute injury to developing white matter in the neonatal rat brain, and α-phenyl-n-tert-butyl-nitrone (PBN), a free radical scavenger and antioxidant, protects against IL-1β-induced acute brain injury. The objective of the present study was to further examine whether perinatal exposure to IL-1β resulted in persistent brain damage and neurological disabilities, and whether PBN offers lasting protection. Intracerebral injection of IL-1β (1 μg/kg) was performed in postnatal day 5 (P5) Sprague-Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after IL-1β injection. Perinatal IL-1β exposure significantly affected neurobehavioral functions in juvenile rats. Although some neurobehavioral deficits such as performance in negative geotaxis, cliff avoidance, beam walking, and locomotion were spontaneously reversible, sustained deficits such as poor performance in the vibrissa-elicited forelimb-placing test, the pole test, the passive avoidance task, and the elevated plus-maze task were still observable at P21. Perinatal IL-1β exposure resulted in persistent brain damage including enlargement of ventricles, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, axonal and dendritic injury, and loss of hippocampal CA1 neurons and tyrosine hydroxylase positive neurons in the substantia nigra and ventral tegmental areas of the rat brain. Treatments with PBN provided lasting protection against the IL-1β-induced brain injury and improved the associated neurological dysfunctions in juvenile rats, suggesting that prompt treatments for brain injury induced by perinatal infection/inflammation might have important long-term consequences.  相似文献   

2.
Fan LW  Pang Y  Lin S  Rhodes PG  Cai Z 《Neuroscience》2005,133(1):159-168
Our previous studies have shown that intracerebral administration of endotoxin, lipopolysaccharide (LPS), induces selective white matter injury and hypomyelination in the neonatal rat brain and that the LPS-induced brain injury is associated with activation of microglia. To test the hypothesis that inhibition of microglial activation may protect against LPS-induced white matter injury, we examined roles of minocycline, a putative suppressor of microglial activation, on LPS-induced brain injury in the neonatal rat. A stereotactic intracerebral injection of LPS (1 mg/kg) was performed in postnatal day 5 Sprague-Dawley rats and control rats were injected with sterile saline. Minocycline (45 mg/kg) was administered intraperitoneally 12 h before and immediately after LPS injection and then every 24 h for 3 days. Inflammatory responses, activation of microglia and brain injury were examined 1 and 3 days after LPS injection. LPS injection resulted in brain injury in selective brain areas, including bilateral ventricular enlargement, cell death at the sub- and periventricular areas, loss of O4+ and O1+ oligodendrocyte (OL) immunoreactivity and hypomyelination, as indicated by decreased myelin basic protein immunostaining, in the neonatal rat brain. Minocycline administration significantly attenuated LPS-induced brain injury in these rat brains. The protective effect of minocycline was associated with suppressed microglial activation as indicated by the decreased number of activated microglial cells following LPS stimulation and with consequently decreased elevation of interleukin 1beta and tumor necrosis factor-alpha concentrations induced by LPS and a reduced number of inducible nitric oxide synthase expressing cells. Protection of minocycline was also linked with the reduction in LPS-induced oxidative stress, as indicated by 4-hydroxynonenal positive OLs. The overall results suggest that reduction in microglial activation may protect the neonatal brain from LPS-induced white matter injury and inhibition of microglial activation might be an effective approach for the therapeutic treatment of infection-induced white matter injury.  相似文献   

3.
Mild traumatic brain injury (MTBI) may frequently cause transient behavioral abnormalities without observable morphological findings. In this study, we investigated neuropathological mechanisms underlying transient cognitive deficits after MTBI. Mongolian gerbils were subjected to experimental MTBI. At various time points after injury, behavioral changes were evaluated by the open-field test and T-maze test, and immunohistochemistry of microtubule-associated protein (MAP2) and amyloid precursor protein (APP) was performed to examine disruptions of the neuronal cytoskeleton and axonal transport, respectively. Transient cognitive deficits were observed after MTBI. Sustained MAP2 loss was found within the cortical impact site, but not the hippocampus. Transient APP accumulation at the same time as transient cognitive deficits occurred in the ipsilateral hemisphere, particularly in the subcortical white matter. These results suggest that the axonal dysfunction indicated by the reversible APP accumulation in the white matter, but not the sustained neuronal cytoskeletal damage reflected by the cortical MAP2 loss confined to the impact site, is responsible for the transient functional deficits after MTBI.  相似文献   

4.
Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype.  相似文献   

5.
An illustrative case of diffuse axonal injury (DAI) emphasizes features that help to separate focal outer head trauma owing to blows and/or falls from angular acceleration head injuries associated with diffuse inner brain lesions. In the past, explaining significant neurological deficits and death as the result of diffuse closed head trauma received from high-speed automobile accidents has been difficult as well as confusing. The long-term consequences from such diffuse inner cerebral trauma are still poorly defined. Head injuries sustained in automobile accidents have been associated with diffuse brain damage characterized by axonal injury at the moment of impact. The reported victim of a motor vehicle accident showed post-mortem findings for both inner cerebral trauma and focal outer cerebral damage. The diffuse degeneration of cerebral white matter is associated with sagittal and lateral acceleration with centroaxial trauma and has a different pathogenesis from outer focal head trauma, typified by subdural hematomas and coup injuries. Unlike outer cerebral injury, over 50 percent of victims with diffuse axonal injury die within two weeks. These individuals characteristically have no lucid interval and remain unconscious, vegetative, or severely disabled until death. Compared to head trauma victims without diffuse axonal injury, there is a lower incidence of skull fractures, subdural hemorrhages, or other intracranial mass effect as well as outer brain contusions. Primary brainstem injuries often demonstrated at autopsy are seen in the reported victim. Diffuse axonal injury is produced by various angles of acceleration with prolonged acceleration/deceleration usually accompanying traffic accidents. Less severe diffuse axonal injury causes concussion.  相似文献   

6.
Morphologic Variations in Periventricular Leukomalacia   总被引:2,自引:1,他引:1       下载免费PDF全文
Periventricular leukomalacia (PVL) usually is manifested as discrete foci of coagulation necrosis of the deep periventricular white matter in the human neonatal brain. During the examination of the brains of 116 infants utilizing an oil red O technic on gelatin-embedded frozen sections, 25 cases of PVL were found with typical foci of coagultion necrosis. Three morphologic varieties of the lesion could be demonstrated. In the first type, rather than being restricted to the periventricular zone, the discrete necrotic foci extended throughout the entire zone of cerebral white matter, even out to just beneath the cortex. The subcortical lesions appeared of short duration, whereas older lesions were always present nearer the ventricle. The second type of lesion presented as linear, some-what serpentine zones of coagulation necrosis radiating into the cerebral white matter. A third type of lesion consisted of a variegated irregular coagulation necrosis which was poorly delineated from more normal tissue. Diffuse pallor of the white matter, the nature of which is still not clear, was associted with the more severe lesions. Although the pathogenesis of PVL is unknown, it is suggested that these new varieties of PVL beyond the discrete periventricular foci of necrosis would be more apt to result in a diffuse loss of white matter and hence mental retardation if the child should survive.  相似文献   

7.
Rees S  Harding R 《Neuroscience letters》2004,361(1-3):111-114
The intrauterine environment can significantly affect fetal brain development. Here we review our recent findings using animal models that mimic adverse intrauterine conditions which could exist during human pregnancy. We have focused on effects of both acute and chronic hypoxic and inflammatory insults. Relatively brief periods of hypoxemic compromise can have significant effects on the fetal brain causing neuronal loss and cerebral white matter damage. Subtle brain injury can occur, for example to a particular class of neuron, and this can have a significant effect on the function of a specific system. Chronic mild placental insufficiency can result in long term deficits in neuronal connectivity affecting function postnatally as demonstrated in the auditory and visual systems. Repeated acute exposure to an inflammatory agent results in diffuse subcortical white matter damage and in some cases periventricular necrosis. We have demonstrated that the timing and severity of these prenatal insults are determinants of the outcomes, in terms of the severity of the damage and the regions of the brain affected.  相似文献   

8.
Amoeboid microglial subpopulations visualized by antibodies against ionized calcium-binding adapter molecule 1, CD68, and CD45 enter the forebrain starting at 4.5 postovulatory or gestational weeks (gw). They penetrate the telencephalon and diencephalon via the meninges, choroid plexus, and ventricular zone. Early colonization by amoeboid microglia–macrophages is first restricted to the white matter, where these cells migrate and accumulate in patches at the junctions of white-matter pathways, such as the three junctions that the internal capsule makes with the thalamocortical projection, external capsule and cerebral peduncle, respectively. In the cerebral cortex anlage, migration is mainly radial and tangential towards the immature white matter, subplate layer, and cortical plate, whereas pial cells populate the prospective layer I. A second wave of microglial cells penetrates the brain via the vascular route at about 12–13 gw and remains confined to the white matter. Two main findings deserve emphasis. First, microglia accumulate at 10–12 gw at the cortical plate–subplate junction, where the first synapses are detected. Second, microglia accumulate in restricted laminar bands, most notably around 19–30 gw, at the axonal crossroads in the white matter (semiovale centre) rostrally, extending caudally in the immature white matter to the visual radiations. This accumulation of proliferating microglia is located at the site of white-matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes such as axonal guidance, synaptogenesis, and neurodevelopmental apoptosis as well as in injuries to the developing brain, in particular in the periventricular white-matter injury of preterm infants.  相似文献   

9.
Periventricular leukomalacia (PVL) is the dominant form of brain injury in premature infants and no specific treatment is currently available. Neotrofin, a neurotrophin agonist, has been shown to provide neuroprotection in several in vivo and in vitro studies. The aim of this study was to investigate the neuroprotective effect of neotrofin treatment after endotoxin induced PVL in a rat model. Wistar rat pups were divided into four groups as: (1) control, (2) lipopolysaccharide (LPS)-administered group, (3) LPS-administered and prenatal maternal neotrofin-treated group and (4) LPS-administered and postnatal neotrofin-treated group. Intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) was administered consecutively at the 18th and 19th embryonic days to establish endotoxin-induced PVL model. In the prenatal treatment group dams received an i.p. injection of neotrofin (60 mg/kg) following after the second LPS dose; and in the postnatal treatment group rat pups received i.p. injection of neotrofin (60 mg/kg) at birth. At P7, apoptosis and hypomyelination in periventricular white matter were evaluated by immunohistochemical assessments. The prenatal maternal neotrofin treatment significantly reduced the number of apoptotic cell death and greatly prevented LPS-stimulated loss of hypomyelinization. However, neotrofin treatment in the postnatal period was not as effective as intrauterine treatment. Given our results, neotrofin may be useful in reducing brain injury and possessing clinical relevance for the treatment of white matter injury in newborns.  相似文献   

10.
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.  相似文献   

11.
目的研究中枢神经系统小胶质细胞(MG)正常发育尤其是少突胶质细胞前体细胞(OPCs)最易受损阶段的发育,探讨宫内感染早产鼠MG依赖的OPCs损伤机制。方法①观察正常C57B/L鼠不同胎龄(孕10、15d)和生后(0、5、10d)MG和OPCs在脑白质的发育分布情况,明确两者在发育和分布上的关联。②建立脂多糖(LPS)宫内感染新生鼠模型(宫内分别接种LPS5、10和20μg·mL-1为感染A-C组),以PBS溶液接种为对照组。以Tomato lectin作为静息状态MG标志,CD68作为活化MG的特殊抗体,O4+作为OPCs抗体,抗体浮片法进行免疫组化染色并计数分析。③Western blot法检测各组脑室周围白质组织Toll样受体-4(TLR-4)蛋白表达。④采用ELISA法检测各组MG活化后IL-2、TNF-α和SOD水平变化。结果①MG在孕10d胎鼠Tomato lectin表达低下,孕15d胎鼠表达显著增高,MG主要分布在脑室周围白质区域,灰质皮质几乎不表达。出生后,脑室周围白质区域MG的表达有所下降,灰质皮质的表达逐渐增高。②感染A-C组CD68+细胞数量均显著增加,与对照组差异有统计学意义(P〈0.01),但感染C组与B组CD68+细胞数量差异无统计学意义(P〉0.05)。与对照组比较,感染A-C组均可见O4+细胞数量显著性下降(P〈0.01),其中以感染C组下降最为明显。③对照组未检测到TLR-4蛋白表达,感染A-C组均可见LPS剂量依赖的TLR-4蛋白表达增加,与对照组差异有统计学意义(P〈0.05)。④随接种LPS剂量增大,IL-2和TNF-α水平较对照组呈显著增加趋势,SOD水平较对照组呈显著降低趋势。结论新生鼠发育依赖的MG在脑白质受损区域过度表达,表明活化MG起到本底激活效应,是早产儿脑白质损伤的物质基础。  相似文献   

12.

Background

Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy.

Methods

In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd ?/?, lacking γδT cells), and TCRα-deficient (Tcra ?/?, lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze.

Results

White matter development was normal in Tcrd ?/? and Tcrα ?/? compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα ?/? mice, but not in the Tcrd ?/? mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα ?/? mice, but no such effect was observed in Tcrd ?/? mice.

Conclusions

Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
  相似文献   

13.
We hypothesized that the cerebral injury produced by hypoxia-ischemia (HI) in neonatal rats would differ in white compared with gray matter as detected histologically or with magnetic resonance (MR) imaging methods. Maps of T2 and the apparent diffusion coefficient (ADC) of water were acquired in 1-week-old rats at times prior to cerebral HI (right carotid artery occlusion plus 1.5 h of hypoxia), within the last 5–10 min of HI, and 1 h or 24 h after HI. Near the end of HI, ADC decreased and T2 increased in both cortical gray and subcortical white matter within the cingulum of the HI hemisphere. One hour after HI, ADC partially recovered, but T2 remained increased and then increased further by 24 h post-HI. In contrast to the similar MR responses in white and gray matter, histological evidence for irreversible cell damage occurred in white matter earlier than in gray matter within the HI hemisphere. At 1 h post-HI, rarefied or disrupted nerve fibers and an increase in TUNEL-positive cells were observed within white matter in the cingulum, whereas neurons within the cortical gray matter appeared normal. By 24 h post-HI, damage was apparent in both white and gray matter. Thus, MR imaging detected acute tissue edema following cerebral HI in both gray and white matter but did not distinguish between the early irreversible tissue injury detected histologically in white but not gray matter in this rather severe model of neonatal encephalopathy.  相似文献   

14.
目的:研究新生大鼠生后早期感染对脑白质中自噬相关蛋白Beclin1 和LC3 表达的影响。方法:将64 只新生SD 大鼠随机分为实验组与对照组,实验组新生大鼠于生后第2、3、4、5、6 天腹腔注射脂多糖0.6 mg/ (kg•d)1 次,建立新生大鼠感染致脑白质损伤模型,对照组注射等量生理盐水;分别在造模完成后的12 h、1、3、5 d 处死大鼠并取脑白质;HE 染色后观察脑白质区病理变化;通过Western blot 和半定量RT-PCR 法检测各组脑白质中Beclin1、LC3 蛋白和mRNA 水平的表达变化。结果:实验组HE 染色显示脑白质病变明显;与对照组相比,实验组Beclin1、LC3 蛋白和mRNA 水平在造模后12 h 表达升高,1 d 达高峰,随后下降,各时间点均高于对照组(P<0.05)。结论:新生大鼠早期感染可以引起脑白质损伤;Beclin1 和LC3 蛋白所呈现的表达变化规律表明自噬可能参与了感染致脑白质损伤的病理过程。  相似文献   

15.
A critical issue in animal models of perinatal brain injury is to adapt the pertinent pathophysiological scenarios to their corresponding developmental window in order to induce neuropathological and behavioral characteristics reminiscent to perinatal cerebral palsy (CP). A major problem in most of these animal models designed up to now is that they do not present motor deficits characteristic of CP. Using a unique rat paradigm of prenatal inflammation combined to an early postnatal hypoxia–ischemia pertinent to the context of very early premature human newborns, we were interested in finding out if such experimental conditions might reproduce both histological damages and behavioral deficits previously described in the human context. We showed that exposure to lipopolysaccharide (LPS) or hypoxia–ischemia (H/I) induced behavioral alterations in animals subjected to forced motor activity. When both LPS and H/I aggressions were combined, the motor deficits reached their highest intensity and affected both spontaneous and forced motor activities. LPS+H/I-exposed animals also showed extensive bilateral cortical and subcortical lesions of the motor networks affecting the frontal cortices and underlying white matters fascicles, lenticular nuclei and the substantia nigra. These neuropathological lesions and their associated motor behavioral deficits are reminiscent of those observed in very preterm human neonates affected by subsequent CP and validate the value of the present animal model to test new therapeutic strategies which might open horizons for perinatal neuroprotection.  相似文献   

16.
Deferoxamine (DFO) and erythropoietin (EPO) have each been shown to provide neuroprotection in neonatal rodent models of brain injury. In view of the described anti-oxidative actions of DFO and the anti-apoptotic and anti-inflammatory effects of EPO, we hypothesized that the combination of DFO and EPO would increase neuroprotection after neonatal hypoxic–ischemic brain injury as compared to single DFO or EPO treatment. At postnatal day 7 rats underwent right common carotid artery occlusion followed by a 90-min exposure to 8% oxygen. Rats were treated intraperitoneally with DFO (200 mg/kg), recombinant human EPO (1 kU/kg), a combination of DFO–EPO or vehicle at 0, 24 and 48 h after hypoxia–ischemia (HI) and were sacrificed at 72 h. DFO–EPO administration reduced the number of cleaved caspase 3-positive cells in the ipsilateral cerebral cortex. Early neuronal damage was assessed by staining for microtubuli-associated protein (MAP)-2. In our model 63 ± 9% loss of ipsilateral MAP-2 was observed after HI, indicating extensive brain injury. DFO, EPO or DFO–EPO treatment did not improve neuronal integrity as defined by MAP-2. Cerebral white matter tracts were stained for myelin basic protein (MBP), a constituent of myelin. Hypoxia–ischemia strongly reduced MBP staining which suggests white matter damage. However, DFO, EPO and DFO–EPO treatment had no effect on the loss of MBP staining. Finally, HI-induced loss of striatal tyrosine hydroxylase staining was not attenuated by DFO, EPO or DFO–EPO. Although DFO–EPO treatment reduced the number of cleaved caspase 3+ cells, treatment with DFO, EPO, or with the combination of DFO and EPO did not protect against gray or white matter damage in the experimental setting applied.  相似文献   

17.
Cyclooxygenase-2 (COX-2) is known to be expressed in rat brain and up-regulated by ischemia. The administration of COX inhibitors before as well as soon after the ischemic insult reduces the extension of cerebral damage in rats. Overexpression of COX-2 has also been shown in the ischemic brain of adult human patients, while no information concerning COX-2 expression in neonatal ischemia is available. Intrapartum asphyxia and perinatal brain injury may result in cerebral palsy, mental retardation or epilepsy. COX-2 expression in the brain of neonates delivered after severe birth asphyxia was investigated using immunohistochemistry. Meningeal vessel walls of term and preterm babies widely expressed COX-2 immunoreactivity, as did periventricular large vessels in preterms. A number of brain cells (mature and immature cortical, periventricular and basal ganglia neurons, and oligodendrocytes of the cerebral white matter in brains from term neonates) also expressed COX-2. The present findings suggest that COX-2 may take part in enhancing neonatal brain damage via different mechanisms, such as those involving excitotoxicity and production of reactive oxygen species.  相似文献   

18.
Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury.  相似文献   

19.
Focal cerebral ischemia activates the nuclear protein poly(ADP-ribose) polymerase (PARP). Apoptosis-inducing factor (AIF) is a flavoprotein that is normally confined to the mitochondria, but translocates to the nucleus, as shown by in vitro models of neuronal injury. Using INO-1001, a novel potent inhibitor of PARP, we determined the role of PARP activation in the process of AIF translocation in a rat model of focal cerebral ischemia. The potency of INO-1001 as a PARP inhibitor and its cytoprotective potential in oxidant-challenged human neuronal SK-N-MC cells was first confirmed in vitro. PARP inhibition markedly reduced infarct size and improved neurological status in both transient and permanent models of MCA occlusion in Sprague-Dawley rats, with a therapeutic window of 6 h and 2 h in the transient and permanent ischemia models, respectively. The PARP inhibitor reduced the accumulation of poly(ADP-ribose) in the ischemic/reperfused hemisphere and reduced the accumulation of APP in the white matter of the affected hemisphere, consistently with protection against neuronal necrosis and axonal damage, respectively. Immunohistochemical analysis showed the appearance of AIF labeling in neuronal nuclei of the border zone ischemic area in the striatum after stroke. Cytoplasmatic (axonal) AIF staining was significantly diminished in the necrotic core of the striatum, while it was somewhat enhanced at the borderline ischemic territories of the white matter. Inhibition of PARP with INO-1001 reshifted the location of the apoptotic marker to the axons in the ipsilateral striatum. Thus, PARP inhibition is neuroprotective and regulates the ischemic nuclear translocation of AIF in stroke.  相似文献   

20.
Oxidative and nitrative injury in periventricular leukomalacia: a review   总被引:7,自引:0,他引:7  
Periventricular leukomalacia (PVL) is the major substrate of cerebral palsy in survivors of prematurity. Its pathogenesis is complex and likely involves ischemia/reperfusion in the critically ill premature infant, with impaired regulation of cerebral blood flow, as well as inflammatory mechanisms associated with maternal and/or fetal infection. During the peak period of vulnerability for PVL, developing oligodendrocytes (OLs) predominate in the white matter. We hypothesize that free radical injury to the developing OLs underlies, in part, the pathogenesis of PVL and the hypomyelination seen in long-term survivors. In human PVL, free radical injury is supported by evidence of oxidative and nitrative stress with markers to lipid peroxidation and nitrotyrosine, respectively. Evidence in normal human cerebral white matter suggests an underlying vulnerability of the premature infant to free radical injury resulting from a developmental mismatch of antioxidant enzymes (AOE) and subsequent imbalance in oxidant metabolism. In vitro studies using rodent OLs suggest that maturational susceptibility to reactive oxygen species is dependent, not only on levels of individual AOE, but also on specific interactions between these enzymes. Rodent in vitro data further suggest 2 mechanisms of nitric oxide damage: one involving the direct effect of nitric oxide on OL mitochondrial integrity and function, and the other involving an activation of microglia and subsequent release of reactive nitrogen species. The latter mechanism, while important in rodent studies, remains to be determined in the pathogenesis of human PVL. These observations together expand our knowledge of the role that free radical injury plays in the pathogenesis of PVL, and may contribute to the eventual development of therapeutic strategies to alleviate the burden of oxidative and nitrative injury in the premature infant at risk for PVL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号