首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared the effects of centrally administered oxytocin (OT) and arginine vasopressin (AVP) on partner preference formation and social contact in male and female prairie voles (Microtus ochrogaster). After 1 hr of cohabitation and pretreatment with either AVP or OT, both males and females exhibited increased social contact and significant preference for the familiar partner. After pretreatment with either an OT receptor antagonist (OTA) or an AVP (V1a) receptor antagonist (AVPA), neither OT nor AVP induced a partner preference. In addition, treatment with OT+OTA or AVP+AVPA was associated with low levels of social contact in both sexes. Either AVP or OT is sufficient to facilitate social contact if either the OT or AVP receptor is available. However, the formation of partner preferences may require access to both AVP and OT receptors.  相似文献   

2.
The neuropeptide oxytocin (OT) has been implicated in a range of mammalian reproductive and social behaviors including parent-offspring bonding and partner preference formation between socially monogamous mates. Its role in mediating non-reproductive social relationships in rodents, however, remains largely unexplored. We examined whether OT facilitates same-sex social preferences between female meadow voles—a species that forms social nesting groups in short, winter-like day lengths. In contrast to results from studies of opposite-sex attachment between prairie vole mates, we found that neither OT nor dopamine neurotransmission was required for baseline levels of social partner preference formation or expression. OT enhanced preference formation beyond baseline levels—an effect that was counteracted by treatment with an oxytocin receptor antagonist (OTA). Oxytocin receptor (OTR) density correlated with social behavior in brain regions not known to be associated with opposite-sex affiliation, including the lateral septum and central amygdala. In addition, voles housed in short day lengths (SD) exhibited higher levels of OTR binding in the central amygdala, and voles exposed to high concentrations of estradiol exhibited less binding in the nucleus accumbens (NAcc) and increased binding in the ventromedial nucleus of the hypothalamus. These results suggest that same-sex social behavior shares common elements with other mammalian social behaviors affected by OT, but that the specific neural pathways through which OT exerts its influence are likely distinct from those known for sexual attachments.  相似文献   

3.
The authors investigated the effects of postnatal manipulations of oxytocin (OT) on the subsequent tendency to form a partner preference in male prairie voles (Microtus ochrogaster). Neonatally, males received either an injection of OT, an oxytocin antagonist (OTA), 0.9% saline vehicle, or handling without injection. As adults, males were tested for partner preference following 1 hr of cohabitation with a nonestrous female. In a 3-hr preference test, males neonatally exposed to exogenous OT exhibited a significant partner preference, not seen in males receiving OTA or saline. Both OT and OTA voles had significantly higher levels of social contact than saline controls. A single neonatal injection of OT increased both total and selective social behaviors in male prairie voles.  相似文献   

4.
Early postnatal manipulations of oxytocin have long-term behavioral and physiological consequences; the present study examined the hypothesis that oxytocin or its absence influences the subsequent expression of either oxytocin or arginine vasopressin in the CNS. On postnatal day 1 female and male prairie voles (Microtus ochrogaster) received a single i.p. injection of oxytocin (3 microg), oxytocin antagonist (0.3 microg), or 50 microl of isotonic saline or were only handled. On postnatal days 1, 8 and 21, brains were fixed, sectioned and stained for oxytocin or vasopressin immunoreactivity and analyzed as a function of age, treatment and sex. Both oxytocin and vasopressin immunoreactivity were observed on day 1 in the supraoptic and paraventricular nuclei (PVN) of the hypothalamus. Numbers of oxytocin and vasopressin neurons increased with age in both nuclei. Females treated on postnatal day 1 with oxytocin or oxytocin antagonist displayed a significant increase in oxytocin immunoreactivity on day 21 in the PVN. In contrast, males treated with antagonist tended to have decreased vasopressin immunoreactivity in the same region. These results revealed that the effects of neonatal manipulation of oxytocin are age-dependent, site-specific and sexually dimorphic. The long-lasting effects of neonatal exposure to exogenous oxytocin and oxytocin antagonist indicate a role for oxytocin in the development of the CNS during the neonatal period, affecting the development of the oxytocinergic system in females and the vasopressinergic system in males. The developmental effects observed suggest one possible mechanism by which neonatal exposure to oxytocin or neonatal inhibition of endogenous oxytocin produces long-lasting behavioral and physiological alterations and could play a role in the development of male- and female-typical behavior.  相似文献   

5.
Male prairie voles (Microtus ochrogaster) form a pair bond with a female partner after mating, and this behavior is regulated by the neuropeptide vasopressin (AVP). The authors report that AVP in the lateral septum is important for pair bond formation. Administration of an AVP V1a receptor antagonist in the lateral septum blocked mating-induced pair bonding, whereas administration of AVP induced this behavior in the absence of mating. In addition, administration of an oxytocin (OT) receptor antagonist in the lateral septum also blocked pair bond formation induced by either mating or AVP administration, suggesting that the OT receptor blockade may have interfered with the AVP regulation of behavior. Together, these data provide evidence suggesting that AVP in the lateral septum regulates pair bond formation in male prairie voles and that this process requires access to both AVP and OT receptors.  相似文献   

6.
Comparisons between monogamous and promiscuous vole species have proven useful in examining neurobiological mechanisms underlying social attachment. Reward processing is important for social attachment, and the medial prefrontal cortex (mPFC) exerts a direct influence on reward pathways. Dopamine (DA), oxytocin (OT), and arginine vasopressin (AVP) all have been implicated in the regulation of social attachment in monogamous voles. Therefore, we used radiolabeled ligands to examine dopamine D(1)- and D(2)-like, OT, and AVP V(1a) receptor binding densities in the mPFC of monogamous and promiscuous voles. Species differences were found; monogamous voles had higher densities of D(2)-like and OT receptor binding and lower densities of D(1)-like and V(1a) receptor binding than did promiscuous voles. Sex differences also were found; females had higher densities of OT receptor binding but lower densities of V(1a) receptor binding than did males in both species. Further, the laminar distribution of receptor binding indicates the possibility of an interaction between DA and OT systems in the mPFC in the regulation of social attachment. Differences in D(1)- and D(2)-like receptor binding between species are discussed in terms of how they might modulate cortical activity and subsequent DA release in the nucleus accumbens (NAcc).  相似文献   

7.
In voles (Microtus), central oxytocin (OT) receptor patterns are associated with interspecific social organization. Social, monogamous voles have more OT receptors in the extended amygdala than asocial, nonmonogamous voles. Nonmonogamous meadow voles (Microtus pennsylvanicus), which exhibit seasonal changes in social organization (long day [LD] females are territorial, short day [SD] females live socially), provide a model for examining whether OT receptor patterns are associated with seasonal changes in intraspecific social behaviors. The authors examined whether sexually inexperienced (naive) SD females had more OT receptor binding than naive LD females. Naive SD females had greater OT receptor binding in the lateral septum (LS), lateral amygdala (LatAmyg), and central amygdala (CenAmyg) than less social, naive LD females. Because both SD and LD females acquire partner preferences, the authors assessed whether OT receptor binding was associated with partner preference onset. For LD females, partner preference onset corresponded with greater OT receptor binding in the anterior olfactory nucleus, LS, and bed nucleus of the stria terminalis, compared with naive LD females. In contrast, naive SD females and those exhibiting partner preferences did not differ. However, SD females that failed to acquire partner preferences showed less OT binding in the LatAmyg and CenAmyg. This study is the first to show that central OT receptor patterns are associated with seasonal changes in intraspecific social organization and partner preference onset in a nonmonogamous rodent.  相似文献   

8.
Paternal and nonpaternal voles (microtus) have different arginine-vasopressin (AVP) and oxytocin (OT) receptor patterns in the extended amygdala, a neural pathway associated with parental behavior. Using receptor autoradiography, the authors examined whether AVP and OT receptor patterns were associated with facultative paternal behavior in either sexually and parentally inexperienced or experienced meadow voles (Microtus pennsylvanicus). Experienced, in contrast to inexperienced, males had less AVP binding in the lateral septum (LS), more AVP binding in the anterior olfactory nucleus (AON), and more OT binding in the AON, bed nucleus of the stria terminalis, LS, and lateral amygdala. Thus, specific AVP receptor patterns, which co-occur with paternal care in consistently paternal voles, also may be associated with paternal care (when present) in typically nonpaternal species. This study also demonstrated a possible relationship between OT receptor patterns and paternal state in male mammals.  相似文献   

9.
Liu Y  Wang ZX 《Neuroscience》2003,121(3):537-544
Although oxytocin (OT) and dopamine (DA) have been implicated in pair bond formation in monogamous prairie voles (Microtus ochrogaster), the nature of potential interactions between these two neurochemical systems and the brain circuits important for such interactions in the regulation of pair bonding have not been explored. Here, we demonstrated that access to both OT and DA D2-type receptors is necessary for pair bond formation, as blockade of either type of receptor prevented partner preferences induced by OT or a D2-type agonist. We also demonstrated that the nucleus accumbens (NAcc) is a brain area important for such OT-DA interactions. In NAcc, blockade of OT receptors prevented partner preferences induced by a D2-type agonist whereas blockade of D2-type, but not D1-type, DA receptors blocked OT-induced partner preferences. Together, our data suggest that concurrent activation of OT and DA D2-type receptors in NAcc is essential for pair bond formation in female prairie voles.  相似文献   

10.
This paper examines the developmental effects of the mammalian neuropeptide, oxytocin (OT). In adults, OT is the most abundant neuropeptide in the hypothalamus and serves integrative functions, coordinating behavioral and physiological processes. For example, OT has been implicated in parturition, lactation, maternal behavior and pair bond formation. In addition, OT is capable of moderating behavioral responses to various stressors as well as the reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Neonates may be exposed to hormones of maternal origin, possibly including peptides administered to the mother in the perinatal period to hasten or delay birth and in milk; however, whether peptide hormones from the mother influence the developing infant remains to be determined. In rodents, endogenous OT is first synthesized during the early postnatal period, although its functions at this time are not well known. Experiments in neonatal prairie voles have documented the capacity of OT and OT receptor antagonists to have immediate and lifelong consequences for social behaviors, including adult pair bonding and parental behaviors, as well as the reactivity of the HPA axis; most of these effects are sexually dimorphic. Possible mechanisms for such effects, including long-lasting changes in OT and vasopressin, are summarized.  相似文献   

11.
Neonatal manipulation of oxytocin (OT) has long-term effects on behavior and physiology. Here we test the hypothesis that neonatal OT treatment can affect the subsequent expression of intrasexual aggression partly by reprogramming the neural activities of relevant brain regions. To test this hypothesis, mandarin voles (Lasiopodomys mandarinus) received OT or isotonic saline treatment within 24 h of birth. At about 75 days of age, aggressive behaviors and Fos expression in different brain regions were tested. The results indicate that the (1) level of intrasexual aggression was higher and other social contact was lower in SAL-treated sexually na?ve males than in females and; (2) OT-treated females showed a greater increase in aggressive behaviors and Fos expression only after exposure to a male than SAL-treated females, but there were no significant changes in aggressive behaviors in males. These results demonstrate a sexual difference in aggression, and that neonatal exposure to OT may increase aggression in female mandarin voles. These effects may be based on changes in neural activities of relevant brain regions including the bed nucleus of the stria terminalis (BNST), lateral septal nucleus (LS), medial preoptic area (MPOA), the paraventricular nucleus of the hypothalamus (PVN), supraoptic nucleus (SON), mediodorsal thalamic nucleus (MD), ventromedial nucleus of hypothalamic (VMH), the medial amygdala (MeA) and central amygdala (CeA).  相似文献   

12.
13.
Immunoreactive (ir) staining of the neuropeptides oxytocin (OT) and vasopressin (AVP) was performed in the brains of Brandt's voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton)—two species that differ remarkably in social behaviors. Social Brandt's voles had higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities of AVP-ir cells in the lateral hypothalamus (LH) compared to solitary greater long-tailed hamsters. In contrast, the hamsters had higher densities of OT-ir cells in the anterior hypothalamus (AH) and LH and higher densities of AVP-ir cells in the MPOA than the voles. OT-ir and AVP-ir fibers were also found in many forebrain areas with subtle species differences. Given the roles of OT and AVP in the regulation of social behaviors in other rodent species, our data support the hypothesis that species-specific patterns of central OT and AVP pathways may underlie species differences in social behaviors. However, despite a higher density of OT-ir cells in the paraventricular nucleus of the hypothalamus (PVN) in females than in males in both species, no other sex differences were found in OT-ir or AVP-ir staining. These data failed to support our prediction that a sexually dimorphic pattern of neuropeptide staining in the brain is more apparent in Brandt's voles than in greater long-tailed hamsters.  相似文献   

14.
Oxytocin (OT) modulates adult mammalian sexual behavior, sperm production and transport, and steroidogenesis; however, the consequences of developmental manipulations of oxytocin have received little attention. The purpose of this experiment was to determine whether neonatal exposure to OT, an oxytocin antagonist (OTA), saline (SAL), or handling (HAN)-only would have long-term effects on reproductive potential in male prairie voles (Microtus ochrogaster). Adult males were observed for 24 h with a sexually receptive female and sexual behavior was recorded. Females were subsequently lavaged and smears were examined for sperm. Reproductive parameters including motility of epididymal sperm, testis weight, and plasma androgen levels were in the normal range. OT-treated males that did not mate within the first 30 min did not mate at all, and in comparison to controls, a higher proportion of those OT-treated and OTA-treated males that did mate did not transfer sperm to the females. OTA-treated males also had significantly higher testicular sperm concentrations than HAN-only males, and significantly lower epididymal sperm concentrations. These differences suggest that in males, developmental manipulations of OT may have the potential to influence the subsequent expression of sexual behavior and sperm transport.  相似文献   

15.
The purpose of this study was to determine the specificity and concentration of oxytocin (OT) and arginine vasopressin (AVP) binding sites in non-pregnant (NP) human and rhesus monkey endometrium, myometrium and fibromyomas, and to determine the cellular localization of OT receptor (OTR). Besides [3H]AVP, [125I]LVA, a specific VP1 receptor subtype antagonist, was used to determine vasopressin receptor (VPR) concentrations. Samples were obtained from 42 pre-menopausal and three pregnant women (5, 13 and 35 weeks gestation), and several NP and pregnant monkeys. Specificity of binding was assessed in competition experiments with unlabelled agonists and antagonists of known pharmacological potency. Cellular localization of OTR was determined by immunohistochemistry. In NP human uterine tissues, [3H]AVP was bound with higher affinity and greater binding capacity than [3H]OT, whereas in pregnant women and in NP and pregnant rhesus monkeys, uterine OT binding capacity was greater. OT and AVP binding sites discriminated very poorly between OT and AVP; [125I]LVA binding sites were more selective than [3H]AVP. Their ligand specificity and binding kinetics indicated the presence of two distinct populations of binding sites for OT and AVP in primate uterus. Endometrium of NP women and monkeys had low OTR and VPR concentrations. Myometrial and endometrial OTR and VPR were down-regulated in midcycle and in early human pregnancy, they were up-regulated in the secretory phase and second half of pregnancy. Immunoreactive OTR in NP uterus was localized in patches of myometrial muscle cells and small numbers of endometrial epithelial cells.  相似文献   

16.
Pair bonding represents social attachment between mates and is common among monogamous animals. The prairie vole (Microtus ochrogaster) is a monogamous rodent in which mating facilitates pair bond formation. In this review, we first discuss how prairie voles have been used as an excellent model for neurobiological studies of pair bonding. We then primarily focus on male prairie voles to summarize recent findings from neuroanatomical, neurochemical, cellular, molecular, and behavioral studies implicating vasopressin (AVP), oxytocin (OT), and dopamine (DA) in the regulation of pair bonding. Possible interactions among these neurochemicals in the regulation of pair bonding, the brain areas important for pair bond formation, and potential sexually dimorphic mechanisms underlying pair bonding are also discussed. As analogous social bonds are formed by humans, investigation of the neurochemical regulation of pair bond formation in prairie voles may be beneficial for our understanding of the mechanisms associated with normal and abnormal social behaviors in humans.  相似文献   

17.
Both exogenous and endogenous oxytocin (OT) are associated with an attenuated stress response. Increased levels of OT in the early postnatal period have been shown to affect behavior and physiology in rodents, and these effects last into adulthood, suggesting an organizational role for OT during development. We investigated the effects of neonatal exposure to OT on the development of the stress response in male and female prairie voles (Microtus ochrogaster). OT or an OT antagonist (OTA) was administered either on postnatal day 1 (single, D1) or days 1-7 (repeated, D1-7) and then on day 8 the response to social isolation was assessed by quantifying ultrasonic vocalizations (USVs) and measuring plasma corticosterone (CORT). Treatment effects were observed only in females. A single treatment with OTA was associated with a decrease in vocalizations, while repeated treatment produced an increase in vocalizations. A single treatment with either saline or OTA increased basal CORT. The results suggest that endogenous OT may be involved in the development of the stress response in females.  相似文献   

18.
Although abnormalities of the male external genitalia (MEG) are a relatively common problem, little is known concerning the molecular mechanisms that finely regulate penile development. We report here the expression of the oxytocin receptor (OTR) gene by real-time RT-PCR in human fetal tissues (11th-12th week of gestation), including the MEG. The developing penis expressed a very high level of OTR mRNA, only a half log(10) unit lower than fetal central nervous system, used as a positive control. The OTR protein is also highly expressed (western, immunohistochemistry and binding studies) and immunolocalized both in the mesenchymal body and in the surrounding blood capillaries, which will later constitute penile trabeculae and sinusoids. Binding studies using [125I]oxytocin antagonist ([125I]OTA) in cultured human fetal penile smooth muscle cells (hfPSMC) revealed the presence of specific OTR with a high capacity and affinity for oxytocin (OT) and for OTA. Increasing concentrations of OT dose-dependently induced intracellular Ca2+ mobilization. Furthermore, OTR mediated an increase in the proliferation and the migration of hfPSMC. In conclusion, we demonstrate that in the developing human MEG, OTR is highly expressed and might be involved in coordinating timely and appropriate proliferation and migration of the penile cells. Thus, OTR might represent an additional target for investigating human fetal MEG organogenesis.  相似文献   

19.
In adult females many of the effects of the neuropeptide oxytocin are steroid, and especially estrogen dependent. Here we demonstrate for the first time that neonatal manipulation of oxytocin can affect the expression of estrogen receptor alpha. On the first day of postnatal life male and female prairie voles (Microtus ochrogaster) were randomly assigned to receive one of four treatments; (a) 50 microl i.p. injection of 3 microg oxytocin (approximately 1 microg/g), (b) 0.3 microg of an oxytocin antagonist (approximately 0.1 microg/g), or (c) isotonic saline. A fourth group was handled, but not injected. On postnatal day 8 or 21, brain tissue was collected, fixed and sectioned. Free-floating sections were stained for estrogen receptor alpha using immunocytochemistry, and estrogen receptor alpha immunoreactive neurons were compared by age, treatment, and sex. To compare the temporal expression of estrogen receptor alpha an additional set of brains was collected from untreated males and females on the day of birth. The effects of oxytocin manipulations were age dependent, sexually dimorphic, and site-specific. While there were no significant treatment effects on postnatal day 8, by postnatal day 21 females that received oxytocin showed a significant increase in the number of cells expressing estrogen receptor alpha-immunoreactivity in the ventromedial nucleus of the hypothalamus. Treatment with oxytocin antagonist resulted in a significant decrease in estrogen receptor alpha-immunoreactivity in the medial preoptic area in postnatal day 21 females. While there were no significant effects in males, males treated with oxytocin antagonist trended toward a reduction in estrogen receptor alpha-immunoreactivity in the medial amygdala. The results indicate that oxytocin can have organizational effects on the expression of estrogen receptor alpha, that these effects are sexually dimorphic, and finally that during the preweaning period the development of estrogen receptor alpha is sexually dimorphic.  相似文献   

20.
The nonapeptides arginine vasopressin (AVP; including its non-mammalian homolog arginine vasotocin, AVT) and oxytocin (OT; including its non-mammalian homologs mesotocin, MT, and isotocin, IT) regulate social behavior, including aggression and reproduction, via receptors conserved across vertebrates. In monogamous prairie voles, the vasopressin and oxytocin pathways are crucially important for pair-bond formation, specifically by influencing affiliative behavior toward the mate and aggression toward non-mates. Monogamous social systems are found in diverse taxa. We hypothesized that the AVT/IT pathways are associated with mating behavior in monogamous teleost fishes. We used the monogamous convict cichlid, Amatitlania nigrofasciata, to test this idea. In the first experiment, we treated males with a general nonapeptide receptor antagonist during pair-bond formation. Control males were treated with vehicle. On the first day of treatment we observed a significant reduction in both affiliative behavior toward the potential mate and aggression toward neighbors. However, the antagonist did not prevent the pair-bond from forming and the behavioral effects disappeared on subsequent treatment days. In the second experiment, we administered on three consecutive days the AVP/OT receptor antagonist to males that were in an established pair-bond. In established pairs, male affiliation towards the mate and aggressive behavior towards territorial neighbors were not affected by the antagonist. Our results indicate that the basic social behaviors typically mediated by the AVP/OT pathways may provide the building blocks necessary for monogamous mating behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号