首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The population structure of 234 Mycobacterium tuberculosis complex strains obtained during 1995 and 1997 from tuberculosis patients living in Kampala, Uganda (East Africa), was analyzed by routine laboratory procedures, spoligotyping, and IS6110 restriction fragment length polymorphism (RFLP) typing. According to biochemical test results, 157 isolates (67%) were classified as M. africanum subtype II (resistant to thiophen-2-carboxylic acid hydrazide), 76 isolates (32%) were classified as M. tuberculosis, and 1 isolate was classified as classical M. bovis. Spoligotyping did not lead to clear differentiation of M. tuberculosis and M. africanum, but all M. africanum subtype II isolates lacked spacers 33 to 36, differentiating them from M. africanum subtype I. Moreover, spoligotyping was not sufficient for differentiation of isolates on the strain level, since 193 (82%) were grouped into clusters. In contrast, in the IS6110-based dendrogram, M. africanum strains were clustered into two closely related strain families (Uganda I and II) and clearly separated from the M. tuberculosis isolates. A further characteristic of both M. africanum subtype II families was the absence of spoligotype spacer 40. All strains of family I also lacked spacer 43. The clustering rate obtained by the combination of spoligotyping and RFLP IS6110 analysis was similar for M. africanum and M. tuberculosis, as 46% and 49% of the respective isolates were grouped into clusters. The results presented demonstrate that M. africanum subtype II isolates from Kampala, Uganda, belong to two closely related genotypes, which may represent unique phylogenetic branches within the M. tuberculosis complex. We conclude that M. africanum subtype II is the main cause of human tuberculosis in Kampala, Uganda.  相似文献   

2.
Mycobacterium tuberculosis complex strains cultured in Denmark have been analyzed by IS6110 restriction fragment length polymorphism (RFLP) on a routine basis from 1992 and onwards. Due to the influx of immigrants with tuberculosis, the number of strains harboring only one to five copies of IS6110 has increased steadily. Since the discriminatory power of IS6110 fingerprinting for such strains is poor, we have performed additional genotyping of all low-copy-number strains by the recently described PCR-based method known as spoligotyping. A total of 311 clinical strains were typed: 14 Mycobacterium bovis BCG, 48 M. bovis, and 249 M. tuberculosis strains. Spoligotyping correctly differentiated M. bovis and M. bovis BCG from M. tuberculosis strains, but it did not differentiate M. bovis from M. bovis BCG. All M. bovis BCG strains exhibited identical spoligotype patterns. The discriminatory power of spoligotyping of low-copy-number M. tuberculosis strains was higher than that of IS6110 fingerprinting. Based on RFLP typing solely, 83% of the low-copy-number M. tuberculosis strains were found to form part of a cluster, and 75% were found to form a cluster on the basis of spoligotyping. When the two techniques were combined, the amount of clustering decreased to 55%. The combination of these two techniques might be valuable in studying the epidemiology of M. tuberculosis strains harboring few copies of the IS6110 element.  相似文献   

3.
The variations in biochemical as well as molecular characteristics among several members of the Mycobacterium tuberculosis complex that are not M. tuberculosis have been assessed to facilitate an unambiguous species identification. Altogether, 96 M. tuberculosis complex strains including 52 M. bovis isolates and 44 M. africanum isolates were analyzed by spoligotyping. The strains could be clustered into five spoligotype groups. All M. bovis isolates showed the typical absence of the spacers 39 to 43 and typical biochemical properties. However, within these strains we found a group of strains that had a spoligotype pattern which is clearly defined by the additional absence of spacers 3 to 16 and that were uncommonly susceptible to pyrazinamide (PZA). This spoligotype pattern has previously been described as being typical for a caprine genotype because of its predominant isolation from sheep and goats. Due to the clinical importance of PZA resistance, we propose two M. bovis subtypes: M. bovis subtype bovis, which is resistant to PZA, and M. bovis subtype caprae, which is susceptible to PZA. Two additional strains that clustered in group 3 showed biochemical and genetic properties typical for M. bovis and were also sensitive to PZA; thus, they may represent a third PZA-susceptible M. bovis subtype. The M. africanum isolates could be clustered into two spoligotype groups which can be differentiated from M. bovis by hybridization to spacers 39 to 43. These groups correspond to the previously described M. africanum subtypes I and II and can be clearly distinguished from each other by spoligotyping and resistance to thiophen-2-carboxylic acid hydrazide. Our results demonstrate that spoligotyping is a useful tool for differentiation of M. bovis and M. africanum. Moreover, we describe two PZA-susceptible M. bovis subtypes and describe a method that facilitates an unambiguous differentiation of the two M. africanum subtypes.  相似文献   

4.
A collection of 105 clinical isolates originally identified as Mycobacterium africanum were characterized using both phenotypic and genotyping methods. The phenotypic methods included routine determination of cultural properties and biochemical tests used to discriminate among the members of the M. tuberculosis complex, whereas genotypic characterization was based on IS6110-restriction fragment length polymorphism (IS6110-RFLP) analysis, IS1081-RFLP analysis, direct repeat-based spacer oligonucleotide typing (spoligotyping), variable number of tandem DNA repeats (VNTR), and the polymorphism of the oxyR, pncA, and mtp40 loci. The results obtained showed that a majority of M. africanum isolates were characterized by a specific spoligotyping pattern that was intermediate between those of M. tuberculosis and M. bovis, which do not hybridize with spacers 33 to 36 and spacers 39 to 43, respectively. A tentative M. africanum-specific spoligotyping signature appeared to be absence of spacers 8, 9, and 39. Based on spoligotyping, as well as the polymorphism of oxyR and pncA, a total of 24 isolates were excluded from the final study (19 were identified as M. tuberculosis, 2 were identified as M. canetti, and 3 were identified as M. bovis). The remaining 81 M. africanum isolates were efficiently subtyped in three distinct subtypes (A1 to A3) by IS6110-RFLP analysis and spoligotyping. The A1 and A2 subgroups were relatively more homogeneous upon spoligotyping than A3. Further analysis of the three subtypes by VNTR corroborated the highly homogeneous nature of the A2 subtype but showed significant variations for subtypes A1 and A3. A phylogenetic tree based on a selection of isolates representing the three subtypes using VNTR and spoligotyping alone or in combination confirmed the subtypes described as well as the heterogeneity of subtype A3.  相似文献   

5.
Based on the variability of 43 spacers within the direct repeat (DR) locus of Mycobacterium tuberculosis complex organisms, spoligotyping is a rapid method that aids in the study of the epidemiology of tuberculosis. It was recently hypothesized that despite its presence in the DR locus, spacer 31 could not be amplified in M. tuberculosis clinical isolates belonging to spoligotype 50 due to the insertion of an extra copy of IS6110 between spacers 31 and 32 that could lead to an asymmetrical split of the primer targets (I. Filliol, C. Sola, and N. Rastogi, J. Clin. Microbiol. 38:1231--1234, 2000). In the present investigation, previous observations were extended to 25 clinical isolates of type 50 showing that the primer set IS6-DRb that selectively amplified the left and central DR regions was indeed able to demonstrate the presence of spacer 31. IS6110-restriction fragment length polymorphism (RFLP) and DR-RFLP showed that type 50 isolates were characterized by the presence of two copies of IS6110 associated with the DR locus and an additional double IS6110 band of 1.4 kb. The primer set IS3-IS6 was then used to selectively amplify a 750-bp inter-IS6110 fragment within the DR locus. The sequencing of the central DR region corroborated our previous findings and showed that the absence of spacer 31 among the type 50 isolates was due to the asymmetric insertion of an extra copy of IS6110 between spacers 31 and 32, leading to an unequal split of the DRa-DRb target into two portions, of 6 and 30 bp, respectively. These results show that the DR locus constitutes an ideal IS6110 preferential locus (ipl), permitting the insertion of two or more copies of IS6110, and provide new clues for epidemiological and phylogenetic interpretation of changes in IS6110-RFLP and spoligotyping profiles.  相似文献   

6.
Nineteen multidrug-resistant (MDR) Mycobacterium complex strains isolated in a nosocomial outbreak were characterized at the molecular level. The strains were microbiologically characterized as Mycobacterium bovis. The mpt40 sequence was not present in chromosomal DNA from these strains, supporting the fact that they were M. bovis. All of the isolates were resistant to isoniazid, rifampin, pyrazinamide, ethambutol, streptomycin, para-aminosalicylic acid, clarithromycin, cycloserine, ethionamide, ofloxacin, capreomycin, and amikacin. By performing the standardized IS6110 fingerprinting by restriction fragment length polymorphism (RFLP) analysis, we were able to differentiate two groups (groups A and B) containing two (16 isolates) and three (3 isolates) IS6110 copies, respectively. These strains were typed by spoligotyping, developed to distinguish M. bovis strains and also to distinguish them from M. tuberculosis strains (J. Kamerbeek et al., J. Clin. Microbiol. 35:907-914, 1997). All the strains were confirmed to be M. bovis. In addition, spoligotyping showed a difference in only 1 of 43 spacers between RFLP groups A and B. The rpo beta region of several strains representative of each identified group was cloned and sequenced, and identical mutations (Ser-531 to Leu) responsible for the rifampin resistance phenotype were found. To our knowledge, this is the first characterization at the molecular level of an MDR M. bovis strain responsible for a nosocomial outbreak.  相似文献   

7.
Population-based analysis of Mycobacterium tuberculosis transmission in Houston, Tex., over 5 years identified 377 patients infected with an isolate containing one to four copies of IS6110. The isolates were analyzed by spoligotyping and assigned to one of three major genetic groups based on nucleotide polymorphisms in codons katG 463 and gyrA 95. Prospectively obtained patient interviews were reviewed to assess epidemiologic links between apparently clustered patients. A total of 13 groups of isolates with the same IS6110 profile were identified, representing 326 of the 377 patients (86.5%; range 2 to 113 patients). In contrast, 28 groups of isolates containing 334 patients (88.6%) had the same spoligotype (range, 2 to 143 patients). Combination of IS6110 profile and spoligotype data identified 31 clusters with 300 patients (79.6%; range, 2 to 82 patients). All 377 isolates belonged to major genetic group 1 (77 patients) or genetic group 2 (300 patients); no major genetic group 3 isolates were identified. Among the 228 patients interviewed, 33 patients (14.5%) were directly linked to another patient in the same cluster. Possible epidemiologic links were also found among 11 patients. Moreover, many clusters consisted of individuals with the same ethnicity. In conclusion, we confirmed that IS6110 profiling and spoligotyping together provide enhanced molecular discrimination of M. tuberculosis isolates with low copy numbers of IS6110. Identification of epidemiologic links among some of the patients verified that the combination of these two methods reliably indexes tuberculosis transmission.  相似文献   

8.
In a previous study, we proposed to associate spoligotyping and typing with the variable number of tandem DNA repeats (VNTR) as an alternative strategy to IS6110-restriction fragment length polymorphism (RFLP) for molecular epidemiological studies on tuberculosis. The aim of the present study was to further evaluate this PCR-based typing strategy and to describe the population structure of Mycobacterium tuberculosis in another insular setting, Sicily. A collection of 106 DNA samples from M. tuberculosis patient isolates was characterized by spoligotyping and VNTR typing. All isolates were independently genotyped by the standard IS6110-RFLP method, and clustering results between the three methods were compared. The totals for the clustered isolates were, respectively, 15, 60, and 82% by IS6110-RFLP, spoligotyping, and VNTR typing. The most frequent spoligotype included type 42 that missed spacers 21 to 24 and spacers 33 to 36 and derived types 33, 213, and 273 that, together represented as much as 26% of all isolates, whereas the Haarlem clade of strains (types 47 and 50, VNTR allele 32333) accounted for 9% of the total strains. The combination of spoligotyping and VNTR typing results reduced the number of clusters to 43% but remained superior to the level of IS6110-RFLP clustering (ca. 15%). All but one IS6110-defined cluster were identified by the combination of spoligotyping and VNTR clustering results, whereas 9 of 15 spoligotyping-defined clusters could be further subdivided by IS6110-RFLP. Reinterpretation of previous IS6110-RFLP results in the light of spoligotyping-VNTR typing results allowed us to detect an additional cluster that was previously missed. Although less discriminative than IS6110-RFLP, our results suggest that the use of the combination of spoligotyping and VNTR typing is a good screening strategy for detecting epidemiological links for the study of tuberculosis epidemiology at the molecular level.  相似文献   

9.
The direct repeat (DR) region in Mycobacterium tuberculosis complex strains is composed of multiple well-conserved 36-bp DRs interspersed with nonrepetitive DNA spacer sequences of similar size. Clinical isolates show extensive polymorphism in this DR region, and this has led to the development of a 43-spacer reversed line blot methodology: spoligotyping. Although this method has contributed significantly to the molecular epidemiology of tuberculosis in the last decade, the discriminatory power and the readability of this method were not found to be optimal. In order to improve the discriminatory power, the usefulness of 43 redesigned oligonucleotides and the usefulness of 51 new spacer oligonucleotides were evaluated. For 314 M. tuberculosis complex strains isolated in the central part of The Netherlands over a 5-year period, 264 different IS6110 RFLP types could be distinguished, and 160 different spoligotype patterns were identified by traditional spoligotyping. After the introduction of 51 new spacer oligonucleotides, 14 additional spoligotypes were recognized. This enabled us to split 11 clusters of isolates identified by the traditional spoligotyping. Furthermore, on the basis of the new spacer oligonucleotides a dichotomy was found among the Beijing genotype isolates. Among 76 Mycobacterium bovis strains, 20 patterns were found by traditional spoligotyping and 30 patterns were found by novel probe spoligotyping, respectively. Nine M. bovis subsp. caprae isolates yielded six patterns by traditional spoligotyping and eight patterns by novel probe spoligotyping. A part of the redesigned oligonucleotides slightly improved the reading of spoligotype patterns. The reproducibility of spoligotyping, based on internal control probes, invariably yielded a high score; only 4 (1%) of the 314 patient isolates gave discrepant results. Analysis of a set of 31 duplicate M. tuberculosis complex strains demonstrated a 10% error rate for the identification of blinded duplicate samples. In a redundancy analysis, 40 essential spacer oligonucleotides of the 94-spacer sequences were selected, yielding the same number of spoligotype patterns. We propose to leave the traditional commercialized first-generation membrane for spoligotyping unchanged for current applications and to introduce a second-generation spoligotyping membrane whenever extended discrimination is required, e.g., for low-copy-number IS6110 strains or for phylogenetic studies of Beijing genotype strains.  相似文献   

10.
The spacer oligonucleotide typing (spoligotyping) method was evaluated for its ability to differentiate Mycobacterium bovis strains. This method detects the presence or absence of spacers of the direct repeat locus of the M. bovis genome. The spacers in the direct repeat locus are amplified by PCR and are detected by hybridization of the biotin-labelled PCR product with a membrane containing oligonucleotides derived from spacer sequences that have previously been bound to a membrane. One hundred eighty-two M. bovis isolates from domestic animals (cattle, goat, sheep, and cats) and wild animals (deer and wild boar) were spoligotyped, and the results were compared with those obtained by IS6110 restriction fragment length polymorphism analysis. Two rather homogeneous clusters of isolates containing 20 and 4 types, respectively, were identified by spoligotyping. The first cluster included isolates from cattle, cats, and feral animals. By spoligotyping, isolates from the Spanish wild boar and deer had the same pattern as some bovine isolates, suggesting transmission between these animals and cattle and highlighting the importance of the study of these reservoirs. The second cluster included all the caprine and ovine isolates. Within each cluster, the patterns of the different strains differed only slightly, suggesting that the spoligotypes may be characteristic of strains from particular animal species. Spoligotyping proved to be useful for studying the epidemiology of bovine M. bovis isolates, especially of those isolates containing only a single copy of IS6110. In view of our results, we suggest fingerprinting all M. bovis strains by the spoligotyping method initially and then by IS6110 restriction fragment length polymorphism typing of the strains belonging to the most common spoligotypes.  相似文献   

11.
An epidemiological survey for the monitoring of bovine tuberculosis transmission was carried out in western Liguria, a region in northern Italy. Fifteen Mycobacterium bovis strains were isolated from 63 wild boar samples (62 from mandibular lymph nodes and 1 from a liver specimen). Sixteen mediastinal lymph nodes of 16 head of cattle were collected, and 15 Mycobacterium bovis strains were subsequently cultured. All M. bovis strains isolated from cattle and wild boars were genotyped by spoligotyping and by restriction fragment length polymorphism (RFLP) analysis with the IS6110 and IS1081 probes. All M. bovis strains showed the typical spoligotype characterized by the absence of the 39 to 43 spacers in comparison with the number in M. tuberculosis. A total of nine different clusters were identified by spoligotyping. The largest cluster included 9 strains isolated from wild boars and 11 strains isolated from cattle, thus confirming the possibility of transmission between the two animal species. Fingerprinting by RFLP analysis with the IS6110 probe showed an identical single-band pattern for 29 of 30 strains analyzed, and only 1 strain presented a five-band pattern. The use of IS1081 as a second probe was useful for differentiation of M. bovis from M. bovis BCG but not for differentiation among M. bovis strains, which presented the same undifferentiated genomic profile. In relation to the epidemiological investigation, we hypothesized that the feeding in pastures contaminated by cattle discharges could represent the most probable route of transmission of M. bovis between the two animal species. In conclusion, our results confirmed the higher discriminatory power of spoligotyping in relation to that of RFLP analysis for the differentiation of M. bovis genomic profiles. Our data showed the presence of a common M. bovis genotype in both cattle and wild boars, confirming the possible interspecies transmission of M. bovis.  相似文献   

12.
Several genetic loci have been utilized to genotype isolates of Mycobacterium tuberculosis. A shortcoming of the most commonly used method, IS6110 fingerprinting, is that it does not adequately discriminate between isolates having few copies of IS6110. This study was undertaken to compare pTBN12 fingerprinting of polymorphic GC-rich repetitive sequence genes and spoligotyping of the direct repeat locus as secondary typing procedures for M. tuberculosis isolates having fewer than six copies of IS6110. A total of 88 isolates (100% of the isolates with fewer than six copies of IS6110 isolated in Arkansas during 1996 and 1997) were included in this study. Among the 88 isolates, 34 different IS6110 patterns were observed, 10 of which were shared by more than 1 isolate, involving a total of 64 isolates. The 64 isolates were subdivided into 13 clusters (containing 37 isolates) and 27 unique isolates based on a combination of IS6110 and pTBN12 fingerprinting and into 11 clusters (containing 51 isolates) and 13 unique isolates based on a combination of IS6110 fingerprinting and spoligotyping. Identical spoligotypes were found among isolates having different IS6110 patterns, as well as among isolates showing different pTBN12 patterns. In contrast, all isolates that had different IS6110 patterns were found to be unique by pTBN12 typing. The clustering rate was 73, 58, and 42%, respectively, for IS6110 fingerprinting alone, IS6110 fingerprinting and spoligotyping combined, and IS6110 and pTBN12 combined fingerprinting. The data indicate that the pTBN12 method has greater discriminating power among low-copy-number isolates than does spoligotyping.  相似文献   

13.
Spoligotyping (for spacer oligotyping) is an easy, economical, and rapid way of typing Mycobacterium tuberculosis complex strains with the DR spacer markers (J. Kamerbeek et al., J. Clin. Microbiol. 35:907-914, 1997; D. van Soolingen et al., 33:3234-3248, 1995). The stability of the markers was demonstrated by showing that all the Mycobacterium bovis BCG strains tested gave the same spoligotyping pattern. None of the 42 atypical mycobacterial strains tested gave a spoligotyping signal, indicating the specificity of the technique for M. tuberculosis complex. The utility of the spoligotyping method was demonstrated by analyzing 106 isolates of M. tuberculosis obtained over 1 year in three Paris hospitals. The results obtained by this technique were compared to those obtained by Torrea et al. (G. Torrea et al., J. Clin. Microbiol. 34:1043-1049, 1996) by IS6110-based restriction fragment length polymorphism (RFLP) analysis. Strains from patients with epidemiological relationships that were in the same IS6110-RFLP cluster were also in the same spoligotyping group. Spoligotyping was more discriminative than RFLP analysis for strains with one or two copies of IS6110. RFLP analysis did not discriminate between the nine strains with one or two IS6110 bands with no known epidemiological relation, whereas spoligotyping distinguished between eight different types. IS6I10-RFLP analysis split some of the spoligotyping clusters, particularly when the IS6110 copy number was high. Therefore, we propose a strategy for typing M. tuberculosis strains in which both markers are used.  相似文献   

14.
Restriction fragment length polymorphism (RFLP) analysis with probes derived from the insertion element IS6110, the direct repeat sequence, and the polymorphic GC-rich sequence (PGRS) and a PCR-based typing method called spacer oligonucleotide typing (spoligotyping) were used to strain type Mycobacterium bovis isolates from the Republic of Ireland. Results were assessed for 452 isolates which were obtained from 233 cattle, 173 badgers, 33 deer, 7 pigs, 5 sheep, and 1 goat. Eighty-five strains were identified by RFLP analysis, and 20 strains were identified by spoligotyping. Twenty percent of the isolates were the most prevalent RFLP type, while 52% of the isolates were the most prevalent spoligotype. Both the prevalent RFLP type and the prevalent spoligotype were identified in isolates from all animal species tested and had a wide geographic distribution. Isolates of some RFLP types and some spoligotypes were clustered in regions consisting of groups of adjoining counties. The PGRS probe gave better differentiation of strains than the IS6110 or DR probes. The majority of isolates from all species carried a single IS6110 copy. In four RFLP types IS6110 polymorphism was associated with deletion of fragments equivalent in size to one or two direct variable repeat sequences. The same range and geographic distribution of strains were found for the majority of isolates from cattle, badgers, and deer. This suggests that transmission of infection between these species is a factor in the epidemiology of M. bovis infection in Ireland.  相似文献   

15.
Mycobacterium tuberculosis isolates (n = 1,429) from 1,283 patients collected as part of an ongoing population-based tuberculosis epidemiology study in Houston, Texas, were analyzed by spoligotyping and IS6110 profiling. The isolates were also assigned to one of three major genetic groups on the basis of nucleotide polymorphisms located at codons 463 and 95 in the genes (katG and gyrA) encoding catalase-peroxidase and the A subunit of DNA gyrase, respectively. A total of 225 spoligotypes were identified in the 1,429 isolates. There were 54 spoligotypes identified among 713 isolates (n = 623 patients) assigned to 73 IS6110 clusters. In addition, among 716 isolates (n = 660 patients) with unique IS6110 profiles, 200 spoligotypes were identified. No changes were observed either in the IS6110 profile or in the spoligotype for the 281 isolates collected sequentially from 133 patients. Five instances in which isolates with slightly different spoligotypes had the same IS6110 profile were identified, suggesting that in rare cases isolates with different spoligotypes can be clonally related. Spoligotypes correlated extremely well with major genetic group designations. Only three very similar spoligotypes were shared by isolates from genetic groups 2 and 3, and none was shared by group 1 and group 2 organisms or by group 1 and group 3 organisms. All organisms belonging to genetic groups 2 and 3 failed to hybridize with spacer probes 33 to 36. Taken together, the results support the existence of three distinct genetic groups of M. tuberculosis organisms and provide new information about the relationship between IS6110 profiles, spoligotypes, and major genetic groups of M. tuberculosis.  相似文献   

16.
In order to achieve a better knowledge of Mycobacterium bovis epidemiology in Italy, 42 clinical isolates from humans were genotyped. Predominant molecular patterns were found in one cluster of 15 isolates sharing spoligotype (ST482), variable-number tandem repeat (VNTR), and IS6110-based restriction fragment length polymorphism (one 1.9-kb band) profiles and in two clusters of 6 and 3 Mycobacterium bovis BCG isolates differing by one VNTR character. The remaining 18 isolates yielded unique profiles. Our results confirm the potential utility of spoligotyping and VNTR typing as a major typing system of M. bovis isolates.  相似文献   

17.
Spoligotyping, a method based on the variability of distribution of the 43 inter-direct repeat (DR) spacers of Mycobacterium tuberculosis and Mycobacterium bovis BCG, is useful to study the molecular epidemiology of bovine and human tuberculosis. Recently, a major family of M. tuberculosis clinical isolates named the Haarlem family, which did not contain spacers 31 and 33 to 36, was reported in a multicenter study. Independently, a data bank containing all the published spoligotypes showed that the two most prevalent spoligotypes in the world differed only by the presence or absence of spacer 31. A careful analysis of the DR locus sequence led us to hypothesize that spacer 31 may not have been amplified in some isolates with the primer sets DRa and DRb currently used for spoligotyping. Consequently, a modified spoligotyping method based on different combinations of the 36-bp DR and IS6110 primers was devised that was able to discriminate between the left and the right parts of the DR locus and demonstrated the presence of the previously unamplified spacer 31 for some of the clinical isolates. By analogy, we suggest that a single-spacer difference in some epidemiologically linked cases of tuberculosis may simply arise due to the insertion of an extra copy of IS6110 within the DR locus, leading to its asymmetrical disruption and subsequent lack of the DRa or DRb targets. The influence of the IS6110 preferential insertion sites within the DR locus on spoligotyping results should be further investigated.  相似文献   

18.
A preliminary investigation of the genetic biodiversity of Mycobacterium tuberculosis complex strains in Cameroon, a country with a high prevalence of tuberculosis, described a group of closely related M. tuberculosis strains (the Cameroon family) currently responsible for more than 40% of smear-positive pulmonary tuberculosis cases. Here, we used various molecular methods to study the genetic characteristics of this family of strains. Cameroon family M. tuberculosis strains (i) are part of the major genetic group 2 and lack the TbD1 region like other families of epidemic strains, (ii) lack spacers 23, 24, and 25 in their direct repeat (DR) region, (iii) have an identical number of repeats in 8 of 12 variable-number tandem repeats of mycobacterial interspersed repetitive unit (MIRU-VNTR) loci, (iv) have similar IS6110-restriction fragment length polymorphism (RFLP) multiband patterns (10 to 15 copies) with seven common IS6110 bands, (v) do not have an IS6110 element in their DR locus, and (vi) have four IS6110 elements in open reading frames (adenylate cyclase, phospholipase C, moeY, and ATP binding genes). Analysis by spoligotyping, MIRU-VNTR, and IS6110-RFLP typing methods revealed differences not observed in previous studies; polymorphism as assessed by MIRU-VNTR typing was lower than suggested by spoligotyping, and in rare cases, strains with identical IS6110-RFLP patterns had spoligotypes differing by as much as 15 spacers. Our findings confirm the recent expansion of this family in Cameroon and indicate that the interpretation of molecular typing results has to be adapted to the characteristics of the strain population within each setting. The knowledge of this particular genotype, with its large involvement in tuberculosis in Cameroon, allows greater refinement of tuberculosis transmission studies by interpreting data in the context of this geographic area.  相似文献   

19.
The direct repeat (DR) region has been determined to be an important chromosomal domain for studying the evolution of Mycobacterium tuberculosis. Despite this, very little is known about microevolutionary events associated with clonal expansion and how such events influence the interpretation of both restriction fragment length polymorphism (RFLP) and spoligotype data. This study examined the structure of the DR region in three independently evolving lineages of M. tuberculosis with a combination of DR-RFLP, spoligotyping, and partial DNA sequencing. The results show that the duplication of direct variable repeat (DVR) sequences and single-nucleotide polymorphisms is rare; conversely, the deletion of DVR sequences and IS6110-mediated mutation is observed frequently. Deletion of either single or contiguous DVR sequences was observed. The deletion of adjacent DVR sequences occurred in a dependent manner rather than as an accumulation of independent events. Insertion of IS6110 into either the direct repeat or spacer sequences influenced the spoligotype pattern, resulting in apparent deletion of DVR sequences. Homologous recombination between adjacent IS6110 elements led to extensive deletion in the DR region, again demonstrating a dependent evolutionary mechanism. Different isolates from the same strain family and isolates from different strain families were observed to converge to the same spoligotype pattern. In conclusion, the binary data of the spoligotype are unable to provide sufficient information to accurately establish genotypic relationships between certain clinical isolates of M. tuberculosis. This has important implications for molecular epidemiologic strain tracking and for the application of spoligotype data to phylogenetic analysis of M. tuberculosis isolates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号