首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brains of Alzheimer's disease (AD) patients have large numbers of plaques that contain amyloid beta (Abeta) peptides which are believed to play a pivotal role in AD pathology. Several lines of evidence have established the inhibitory role of Abeta peptides on hippocampal memory encoding, a process that relies heavily on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function. In this study the modulatory effects of the two major Abeta peptides, Abeta(1-40) and Abeta(1-42), on synaptic AMPA receptor function was investigated utilizing the whole cell patch clamp technique and analyses of single channel properties of synaptic AMPA receptors. Bath application of Abeta(1-42) but not Abeta(1-40) reduced both the amplitude and frequency of AMPA receptor mediated excitatory postsynaptic currents in hippocampal CA1 pyramidal neurons by approximately 60% and approximately 45%, respectively, in hippocampal CA1 pyramidal neurons. Furthermore, experiments with single synaptic AMPA receptors reconstituted in artificial lipid bilayers showed that Abeta(1-42) reduced the channel open probability by approximately 42% and channel open time by approximately 65% and increased the close times by several fold. Abeta(1-40), however, did not show such inhibitory effects on single channel properties. Application of the reverse sequence peptide Abeta(42-1) also did not alter the mEPSC or single channel properties. These results suggest that Abeta(1-42) but not Abeta(1-40) closely interacts with and exhibits inhibitory effects on synaptic AMPA receptors and may contribute to the memory impairment observed in AD.  相似文献   

2.
The role of amyloid metabolism in the pathophysiology of frontotemporal lobar degeneration (FTLD) has yet to be elucidated. We compared CSF levels of amyloid beta 1-40 (Abeta40) and amyloid beta 1-42 (Abeta42) in patients with FTLD (n = 21) versus patients with Alzheimer's disease (AD, n = 39) and in control subjects (n = 30). While in AD cases Abeta42 levels were lower and CSF Abeta40 levels equal to those in controls, a significant decrease in Abeta40 and increase in the CSF Abeta42/Abeta40 ratio was observed in FTLD compared with AD and control subjects. These findings favour a differential involvement of amyloid beta peptides in FTLD compared with AD.  相似文献   

3.
An inflammatory response involving activated microglia in neuritic beta-amyloid plaques is found in Alzheimer's disease (AD) brain. Because HDL lipoproteins have been shown to carry the beta-amyloid peptide (Abeta) in plasma and CSF, we have investigated the influence of plasma high-density lipoprotein (HDL) and lipidated ApoE and ApoJ particles on the interaction of cultured rat microglia with Abeta1-42. Microglia degraded Abeta via a pathway sensitive to cytochalasin D and the scavenger receptor inhibitor, fucoidan. HDL increased the degradation of Abeta and the ratio of multimeric/monomeric Abeta in a dose-dependent manner. In contrast, lipidated ApoJ and ApoE decreased the degradation of Abeta, and the effects were ApoE isoform-dependent. Immuno-electron microscopy revealed internalized Abeta in endosomes and lysosomes as well as cell-associated Abeta in deep invaginations, which may be related to caveolae and surface-connected compartments. These data suggest that lipoprotein-dependent Abeta trafficking to microglia could be relevant to plaque pathogenesis in AD.  相似文献   

4.
The accumulation of amyloid beta-peptide (Abeta) in the brain is a critical pathological process in Alzheimer's disease (AD). Recent studies have implicated intracellular Abeta in neurodegeneration in AD. To investigate the generation of intracellular Abeta, we established human neuroblastoma SH-SY5Y cells stably expressing wild-type amyloid precursor protein (APP), Swedish mutant APP, APP plus presenilin 1 (PS1) and presenilin 2 (PS2; wild-type or familial AD-associated mutant), and quantified intracellular Abeta40 and Abeta42 in formic acid extracts by sensitive Western blotting. Levels of both intracellular Abeta40 and Abeta42 were 2-3-fold higher in cells expressing Swedish APP, compared with those expressing wild-type APP. Intracellular Abeta42/Abeta40 ratios were approximately 0.5 in these cells. These ratios were increased markedly in cells expressing mutant PS1 or PS2 compared with those expressing their wild-type counterparts, consistent with the observed changes in secreted Abeta42/Abeta40 ratios. High total levels of intracellular Abeta were observed in cells expressing mutant PS2 because of a marked elevation of Abeta42. Immunofluorescence staining additionally revealed more intense Abeta42 immunoreactivity in mutant PS2-expressing cells than in wild-type cells, which was partially colocalized with immunoreactivity for the trans-Golgi network and endosomes. The data collectively indicate that PS mutations promote the accumulation of intracellular Abeta42, which appears to be localized in multiple subcellular compartments.  相似文献   

5.
Amyloid beta-protein ending at 42 (Abeta42) is the major peptide deposited in Alzheimer's disease (AD) brain. In immunocytochemical studies, formic acid treatment is used to dramatically enhance Abeta immunoreactivity. Recently, Abeta42 has been reported to accumulate in AD neurons. Since heating is known to enhance intracellular protein immunoreactivity, we used an autoclaving protocol to enhance intraneuronal Abeta42 immunoreactivity. Using this protocol, both anti-Abeta42 N-terminal and C-terminal antibodies, but not anti-Abeta40 C-terminal antibody, labeled AD neurons. Moreover, formic acid treatment counteracted such effects of autoclaving. Thus, intraneuronal Abeta42 accumulation may have been underestimated by conventional methods using formic acid only.  相似文献   

6.
Various C-terminally truncated amyloid beta peptides (Abeta) are linked to Alzheimer's disease (AD) pathogenesis. Cerebrospinal fluid (CSF) concentrations of Abeta38, Abeta40, and Abeta42 were measured by enzyme-linked immunosorbent assay in 30 patients with AD and 26 control subjects. CSF Abeta42 levels was decreased in patients with AD, whereas CSF Abeta38 and Abeta40 levels were similar in patients with AD and control subjects. All three Abeta peptides were interrelated, particularly CSF Abeta38 and Abeta40. Diagnostic accuracy of CSF Abeta42 concentrations was not improved by applying the ratios of CSF Abeta42 to Abeta38 or Abeta40.  相似文献   

7.
BACKGROUND: Persons with Down syndrome (DS) (40 years and older) have neuropathological changes characteristic of Alzheimer disease (AD). Soluble forms of amyloid beta (Abeta) peptide generated from amyloid precursor protein (APP) end at C-terminal residues 40 and 42. The presence of the apolipoprotein E (ApoE) epsilon4 allele is a significant risk factor for the development of sporadic AD. Although preliminary studies have shown an association of plasma Abeta42 and ApoE epsilon4 allele in older persons with DS who have dementia, the relationship between plasma Abeta40 and Abeta42 levels and ApoE phenotypes in children with DS has not been examined. Inflammation might play a role in the growth of DS brains. Neopterin is an immune activation marker for the cell-mediated immune response. OBJECTIVE: To examine the levels of plasma Abeta40, Abeta42, and neopterin in children or adolescents with DS or controls. MATERIALS AND METHODS: Blood was collected from DS (N=35; 7+/-3.8 years old) and their siblings (N=34; 10+/-4.5). Plasma Abeta40 and Abeta42, and neopterin levels were quantitated by sandwich ELISA. RESULTS: Abeta40 and Abeta42 levels were higher in DS than controls. The ratio of Abeta42/Abeta40 was lower in DS than in controls. There were significant negative correlations between age and Abeta40 in DS and controls, and between age and Abeta42 levels in DS but not in controls. There was no association of Abeta40 or Abeta42 levels with Apo E in either group. Neopterin levels were higher in DS than controls, and the levels were not correlated with Abeta40 and Abeta42 levels in DS or controls. CONCLUSIONS: The over expression of APP gene in DS leads to increases in plasma Abeta40 and Abeta42 levels before plaque formation in DS brain. Higher neopterin concentrations in DS reflect inflammatory cell activation. Further studies are needed to determine whether DS children with lower plasma Abeta42/Abeta40 ratios are at increased risk of developing AD during aging than those with higher ratios.  相似文献   

8.
One pathogenic characteristic of Alzheimer's disease (AD) is the formation of extracellular senile plaques with accumulated microglia. According to the amyloid hypothesis, the increase or accumulation of amyloid-beta (Abeta) peptides in the brain parenchyma is the primary event that influences AD pathology. Although the role of microglia in AD pathology has not been clarified, their involvement in Abeta clearance has been noted. High mobility group box protein-1 (HMGB1) is an abundant nonhistone chromosomal protein. We reported recently that HMGB1 was associated with senile plaques and the total protein level significantly increased in AD brain. In this study, diffuse HMGB1 immunoreactivity was observed around dying neurons in the kainic acid- and Abeta1-42 (Abeta42)-injected rat hippocampi. HMGB1 also colocalized with Abeta in the Abeta42-injected rats but not in transgenic mice, which show massive Abeta production without neuronal loss in their brains. Furthermore, coinjection of HMGB1 delayed the clearance of Abeta42 and accelerated neurodegeneration in Abeta42-injected rats. These results suggest that HMGB1 released from dying neurons may inhibit microglial Abeta42 clearance and enhance the neurotoxicity of Abeta42. HMGB1 may thus be another target in the investigation of a therapeutic strategy for AD.  相似文献   

9.
Cerebral amyloid angiopathy is one of the characteristics of Alzheimer's disease (AD) and this accumulation of fibrillar amyloid-beta (Alphabeta) in the vascular wall is accompanied by marked vascular damage. In vitro, Abeta1-40 carrying the 'Dutch' mutation (DAbeta1-40) induces degeneration of cultured human brain pericytes (HBP). To identify possible intracellular mediators of Abeta-induced cell death, a comparative cDNA expression array was performed to detect differential gene expression of Abeta-treated vs. untreated HBP. Messenger RNA expression of cyclin D1, integrin beta4, defender against cell death-1, neuroleukin, thymosin beta10, and integrin alpha5 were increased in DAbeta1-40-treated HBP, whereas insulin-like growth factor binding protein-2 mRNA expression was decreased. Corresponding protein expression was investigated in AD and control brains to explore a potential role for these proteins in pathological lesions of the AD brain. Cyclin D1 expression was increased in cerebral amyloid angiopathy and cells in a perivascular position, suggesting that the cell cycle may be disturbed during Abeta-mediated degeneration of cerebrovascular cells. Moreover, cyclin D1 expression, but also that of integrin beta4, defender against cell death-1, neuroleukin and thymosin beta10 was found in a subset of senile plaques, suggesting a role for these proteins in the pathogenesis of senile plaques.  相似文献   

10.
Increasing evidence suggests that intraneuronal amyloid-beta (Abeta) accumulation may be an early event in Alzheimer's disease (AD) pathogenesis. However direct in vivo evidence regarding initial Abeta seeding is missing. Using an APP transgenic mouse model, our sensitive immunocytochemical procedures revealed a novel intraneuronal Abeta deposition in the somas of hippocampal CA1/subiculum neurons far in advance of the occurrence of extracellular Abetaplaques. These deposits increased exponentially with age and were elevated approximately 4-fold (p < 0.001) by high fat/high cholesterol diet. Abeta40 and Abeta42 were the major constituents of these deposits and were co-localized with lysosomal markers. Our results are consistent with the notion that the earliest Abeta deposition occurs intraneuronally, prior to extracellular amyloid plaque formation.  相似文献   

11.
BACKGROUND/AIMS: Alterations in the blood-brain barrier (BBB) may play an important role in the pathogenesis and treatment of Alzheimer's disease (AD). We investigated BBB disturbance and its influence on the equilibrium of amyloid-beta protein (Abeta) between plasma and cerebrospinal fluid (CSF) in AD patients. METHODS: We analyzed albumin ratio as a marker of the BBB permeability and correlated it with the severity of dementia, brain atrophy on MRI, apolipoprotein E isoform, CSF levels of total tau, CSF and plasma levels of Abeta 1-40 (Abeta40) and 1-42 (Abeta42), and CSF/plasma ratios of Abeta40 and Abeta42 in 42 AD patients. RESULTS: The albumin ratio was positively correlated with the severity of medial temporal lobe atrophy but not with the other parameters including CSF/plasma ratios of Abeta40 or Abeta42. CONCLUSION: Our results suggest that progression of medial temporal lobe atrophy is associated with increased BBB permeability and that the transport of Abeta across the BBB is not influenced by the BBB alteration in AD.  相似文献   

12.
A leading hypothesis on the pathophysiology of Alzheimer's disease (AD) is the mis-metabolism of amyloid precursor protein. This mis-metabolism causes the 42-amino acid form of A beta(Abeta42) to form oligomers that in turn start a chain of events leading to the accumulation of amyloid plaques. Vascular factors such as hypertension, hypercholesterolemia and diabetes as well as the inheritance of the epsilon4 allele of the ApoE gene are risk factors for AD. These risks are thought to promote the production of beta-amyloid (Abeta). An association between cholesterol and the development of AD was suggested in 1994 and since then, research has confirmed a link between cholesterol and the development of AD. A high cholesterol level in mid-life is a risk for AD and statins i.e. cholesterol-lowering drugs, reduce this risk. Statins inhibit enzymes involved in the endogenous synthesis of cholesterol and evidence is mounting that they also affect enzymes in Abeta metabolism i.e. beta-secretase. This normalises the breakdown of the precursor of Abeta, amyloid precursor protein, thereby promoting the nonamyloidogenic pathway. This review focusses on the link between cholesterol and Alzheimer's disease.  相似文献   

13.
The amyloid-beta (Abeta) peptide is a major constituent of the brain senile plaques that characterize Alzheimer's disease (AD). Converging observations led to the formulation of the amyloid hypothesis whereby the accumulation of soluble aggregates and insoluble Abeta deposits is the primary event in AD pathogenesis. Furthermore, the apoE4 isoform of apolipoprotein E, a major prevalent genetic risk factor of AD, is associated with increased Abeta deposition. To investigate the initial stages of the amyloid cascade in vivo and how this is affected by apoE4, we studied the effects of prolonged inhibition and subsequent reactivation of the Abeta-degrading enzyme, neprilysin, on aggregation and deposition of Abeta in apoE transgenic and control mice. The results revealed that Abeta deposition in vivo is initiated by aggregation of Abeta42, which is followed by reversible deposition of both Abeta42 and Abeta40, along with growth of the deposits, and by their subsequent irreversible fibrillization. The initiation of Abeta42 deposition is accelerated isoform-specifically by apoE4, whereas the growth and dissolution of the Abeta deposits as well as their fibrillization are similarly stimulated by the various apoE isoforms. Interestingly, Abeta deposition was associated with increased gliosis, which may reflect early pathological interactions of beta with the brain's parenchyma.  相似文献   

14.
An important event in the pathogenesis of Alzheimer's disease (AD) is the deposition of the amyloid beta (Abeta)1-40 and 1-42 peptides in a fibrillar form, with Abeta42 typically having a greater propensity to undergo this conformational change. A major risk factor for late-onset AD is the inheritance of the apolipoprotein E (apoE) 4 allele [3,14,31]. We previously proposed that apoE may function as a "pathological chaperone" in the pathogenesis of AD (i.e. modulate the structure of Abeta, promoting or stabilizing a beta-sheet conformation), prior to the discovery of this linkage [7,40,41,42]. Data from apoE knockout / AbetaPP^(V717F) mice, has shown that the presence of apoE is necessary for cerebral amyloid formation [1,2], consistent with our hypothesis. However, in betaPP^(V717F) mice expressing human apoE3 or E4 early Abeta deposition at 9 months is suppressed, but by 15 months both human apoE expressing mice had significant fibrillar Abeta deposits with the apoE4 expressing mice having a 10 fold greater amyloid burden [8,9]. This and other data has suggested that apoE, in addition to having a facilitating role in fibril formation, may also influence clearance of Abeta peptides. In order to address if apoE affects the clearance of Abeta peptides across the blood-brain barrier (BBB) and whether there are differences in the clearance of Abeta40 versus Abeta42, we performed stereotactic, intra-ventricular micro-injections of Abeta40, Abeta42 or control peptides in wild-type, apoE knock-out (KO) or human apoE3 or apoE4 expressing transgenic mice. We found that consistent with other studies [5], Abeta40 is rapidly cleared from the brain across the BBB; however, Abeta42 is cleared much less effectively. This clearance of exogenous Abeta peptides across the BBB does not appear to be affected by apoE expression. This data suggests that Abeta42 production may favor amyloid deposition due to a reduced clearance across the BBB, compared to Abeta40. In addition, our experiments support a role of apoE as a pathological chaperone, and do not suggest an isotype specific role of apoE in exogenous Abeta peptide clearance from the CSF across the BBB.  相似文献   

15.
Apolipoprotein E (ApoE) is a major apolipoprotein in the central nervous system (CNS) that plays an important role in Alzheimer's disease. It may also be involved in other CNS disorders including ischemic injury. We investigated the changes of ApoE protein and mRNA expression in the brain with middle cerebral artery occlusion (MCAO) to clarify its origin after focal ischemia in rats. Increased ApoE immunoreactivity was recognized in astrocytes 3-14 days after MCAO in the affected side of cortex, and in neurons 4-14 days after MCAO in the same area. ApoE immunoreactivity was also detected in macrophages in the ischemic core 3-14 days after MCAO. In contrast, ApoE mRNA was expressed in astrocytes and macrophages, but not in neurons. These results suggested that neuronal ApoE was not synthesized in neurons, but derived from astrocytes.  相似文献   

16.
N G Milton 《Neuroreport》2001,12(17):3839-3844
The amyloid-beta (Abeta) peptide has been implicated in the pathology of Alzheimer's disease (AD). Using an antisense peptide approach a novel interaction between Abeta and the human cdc2 kinase was identified. The Abeta 1-42, 1-40 and 25-35 peptides were shown to be substrates for the cdc2 kinase and phosphorylated on the Serine 26 residue. Phosphorylated Abeta (pSAbeta) was found in extracts from NT-2 neurons and AD brain. In NT-2 neurons the levels of pSAbeta were increased in the presence of exogenous Abeta and this increase was prevented by a cdc2 protein kinase inhibitor, olomoucine, that also prevented Abeta cytotoxicity. The results from this study suggest that Abeta phosphorylation by cdc2 could play a role in the brain pathology of AD.  相似文献   

17.
阿尔茨海默病实验性研究进展   总被引:1,自引:0,他引:1  
阿尔茨海默病(Alzheiwer's Disease,AD)是最常见的与年龄相关的痴呆性疾病。随着人类平均寿命的增长,AD病人不断增多,医疗消费逐渐增长。所以基础与临床都十分重视AD的研究。AD属进行神经变性疾病。临床特征为认知障碍。其病理学改变是临床诊断的最可靠根据,包括细胞外淀粉样变性斑块和细胞内神经元缠结形成。以病因学角度,AD 属基因异原性遗传性疾病。最近10年的研究显示APP,PS1,PS2以及ApoE基因与AD具有肯定的联系。目前认为前三为AD的致病性基因,而ApoE则是危险性基因。本报告了近10年的AD基础研究进展,着重于淀粉条变致源学说,危险因素ApoE以及其他基因学及危险因素的研究。  相似文献   

18.
BACKGROUND: The advent of new therapeutic avenues for Alzheimer's disease (AD) calls for an improved early and differential diagnosis. METHODS: With surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS), cerebrospinal fluid from patients with AD (n = 10) and nondemented control subjects (n = 9) was studied. RESULTS: Molecular mass signals were observed corresponding to three novel amyloid beta (Abeta) peptides that have not previously been described, in addition to those previously known, with molecular masses of 4525.1 d, 4846.8 d, and 7755.8 d. The signal-to-noise ratios (S/NR) of Abeta(4525.1) and Abeta(7758.8+2H) were significantly decreased in AD [Abeta(4525.1): median 2.2 and 4.3 in AD and control subjects, respectively, p <.01; Abeta(7758.8+2H): median 1.0 and 14.0 in AD and control subjects, respectively, p <.01], whereas the S/NR of Abeta(4846.8) was significantly increased in AD (median 3.6 and 2.5 in AD and control subjects, respectively, p <.05). The S/NR of two known AD biomarkers, Abeta1-42 and Abeta1-40, expectedly turned out to be significantly decreased (p <.01) and unaltered in AD, respectively. A moderate and highly significant correlation was observed between S/NR of Abeta1-42 and Abeta42 concentration as measured with enzyme-linked immunosorbent assay (R =.67, p <.01). CONCLUSIONS: We report evidence of three novel amyloid beta peptides that might play an important role in the diagnosis and pathophysiology of Alzheimer's disease.  相似文献   

19.
Alzheimer's disease pathogenesis and therapeutic interventions.   总被引:6,自引:0,他引:6  
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system associated with progressive cognitive and memory loss. Molecular hallmarks of the disease are characterized by extracellular deposition of the amyloid beta peptide (Abeta) in senile plaques, the appearance of intracellular neurofibrillary tangles (NFT), cholinergic deficit, extensive neuronal loss and synaptic changes in the cerebral cortex and hippocampus and other areas of brain essential for cognitive and memory functions. Abeta deposition causes neuronal death via a number of possible mechanisms including oxidative stress, excitotoxicity, energy depletion, inflammation and apoptosis. Despite their multifactorial etiopathogenesis, genetics plays a primary role in progression of disease. To date genetic studies have revealed four genes that may be linked to autosomal dominant or familial early onset AD (FAD). These four genes include: amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2) and apolipoprotein E (ApoE). Plaques are formed mostly from the deposition of Abeta, a peptide derived from APP. The main factors responsible for Abeta formation are mutation of APP or PS1 and PS2 genes or ApoE gene. All mutations associated with APP and PS proteins can lead to an increase in the production of Abeta peptides, specifically the more amyloidogenic form, Abeta42. In addition to genetic influences on amyloid plaque and intracellular tangle formation, environmental factors (e.g., cytokines, neurotoxins, etc.) may also play important role in the development and progression of AD. A direct understanding of the molecular mechanism of protein aggregation and its effects on neuronal cell death could open new therapeutic approaches. Some of the therapeutic approaches that have progressed to the clinical arena are the use of acetylcholinesterase inhibitors, nerve growth factors, nonsteroidal inflammatory drugs, estrogen and the compounds such as antioxidants, neuronal calcium channel blockers or antiapoptotic agents. Inhibition of secretase activity and blocking the formation of beta-amyloid oligomers and fibrils which may inhibit fibrilization and fibrilization-dependent neurotoxicity are the most promising therapeutic strategy against the accumulation of beta-amyloid fibrils associated with AD. Furthermore, development of immunotherapy could be an evolving promising therapeutic approach for the treatment of AD.  相似文献   

20.
Accumulating evidence points to an important role of intraneuronal beta-amyloid (Abeta) in the development of Alzheimer's disease (AD), with its typical clinical symptoms like memory impairment and changes in personality. We have previously reported on the Abeta precursor protein and presenilin-1 knock-out (APP/PS1KI) mouse model with abundant intraneuronal Abeta(42) accumulation and a 50% loss of CA1 neurons at 10 months of age. In addition, we observed reduced short- and long-term synaptic plasticity, hippocampal neuron loss, and reduced performance in a working memory task. These observations support a pivotal role of intraneuronal Abeta accumulation as a principal pathological trigger in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号