首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indirect-forcing immersed boundary method for solving the incompressible Navier-Stokes equations involving the interfaces and irregular domains is developed. The rigid boundaries and interfaces are represented by a number of Lagrangian control points. Stationary rigid boundaries are embedded in the Cartesian grid and singular forces at the rigid boundaries are applied to impose the prescribed velocity conditions. The singular forces at the interfaces and the rigid boundaries are then distributed to the nearby Cartesian grid points using the immersed boundary method. In the present work, the singular forces at the rigid boundaries are computed implicitly by solving a small system of equations at each time step to ensure that the prescribed velocity condition at the rigid boundary is satisfied exactly. For deformable interfaces, the forces that the interface exerts on the fluid are computed from the configuration of the elastic interface and are applied to the fluid. The Navier-Stokes equations are discretized using finite difference method on a staggered uniform Cartesian grid by a second order accurate projection method. The ability of the method to simulate viscous flows with interfaces on irregular domains is demonstrated by applying to the rotational flow problem, the relaxation of an elastic membrane and flow in a constriction with an immersed elastic membrane.  相似文献   

2.
In this study, we compare different diffuse and sharp interface schemes of direct-forcing immersed boundary — thermal lattice Boltzmann method (IB-TLBM) for non-Newtonian flow over a heated circular cylinder. Both effects of the discrete lattice and the body force on the momentum and energy equations are considered, by applying the split-forcing Lattice Boltzmann equations. A new technique based on predetermined parameters of direct forcing IB-TLBM is presented for computing the Nusselt number. The study covers both steady and unsteady regimes (20相似文献   

3.
In this paper, a diffuse-interface immersed boundary method (IBM) is proposed to treat three different thermal boundary conditions (Dirichlet, Neumann, Robin) in thermal flow problems. The novel IBM is implemented combining with the lattice Boltzmann method (LBM). The present algorithm enforces the three types of thermal boundary conditions at the boundary points. Concretely speaking, the IBM for the Dirichlet boundary condition is implemented using an iterative method, and its main feature is to accurately satisfy the given temperature on the boundary. The Neumann and Robin boundary conditions are implemented in IBM by distributing the jump of the heat flux on the boundary to surrounding Eulerian points, and the jump is obtained by applying the jump interface conditions in the normal and tangential directions. A simple analysis of the computational accuracy of IBM is developed. The analysis indicates that the Taylor-Green vortices problem which was used in many previous studies is not an appropriate accuracy test example. The capacity of the present thermal immersed boundary method is validated using four numerical experiments: (1) Natural convection in a cavity with a circular cylinder in the center; (2) Flows over a heated cylinder; (3) Natural convection in a concentric horizontal cylindrical annulus; (4) Sedimentation of a single isothermal cold particle in a vertical channel. The numerical results show good agreements with the data in the previous literatures.  相似文献   

4.
This paper aims to study the numerical features of a coupling scheme between the immersed boundary (IB) method and the lattice Boltzmann BGK (LBGK) model by four typical test problems: the relaxation of a circular membrane, the shearing flow induced by a moving fiber in the middle of a channel, the shearing flow near a non-slip rigid wall, and the circular Couette flow between two inversely rotating cylinders. The accuracy and robustness of the IB-LBGK coupling scheme, the performances of different discrete Dirac delta functions, the effect of iteration on the coupling scheme, the importance of the external forcing term treatment, the sensitivity of the coupling scheme to flow and boundary parameters, the velocity slip near non-slip rigid wall, and the origination of numerical instabilities are investigated in detail via the four test cases. It is found that the iteration in the coupling cycle can effectively improve stability, the introduction of a second-order forcing term in LBGK model is crucial, the discrete fiber segment length and the orientation of the fiber boundary obviously affect accuracy and stability, and the emergence of both temporal and spatial fluctuations of boundary parameters seems to be the indication of numerical instability. These elaborate results shed light on the nature of the coupling scheme and may benefit those who wish to use or improve the method.  相似文献   

5.
In the immersed interface method, an object in a flow is formulated as a singular force, and jump conditions caused by the singular force are incorporated into numerical schemes to compute the flow. Previous development of the method considered only smooth objects. We here extend the method to handle non-smooth rigid objects with sharp corners in 2D incompressible viscous flows. We represent the boundary of an object as a polygonal curve moving through a fixed Cartesian grid. We compute necessary jump conditions to achieve boundary condition capturing on the object. We incorporate the jump conditions into finite difference schemes to solve the flow on the Cartesian grid. The accuracy, efficiency and robustness of our method are tested using canonical flow problems. The results demonstrate that the method has second-order accuracy for the velocity and first-order accuracy for the pressure in the infinity norm, and is extremely efficient and robust to simulate flows around non-smooth complex objects.  相似文献   

6.
Coupling the immersed boundary (IB) method and the lattice Boltzmann (LB) method might be a promising approach to simulate fluid-structure interaction (FSI) problems with flexible structures and complex boundaries, because the former is a general simulation method for FSIs in biological systems, the latter is an efficient scheme for fluid flow simulations, and both of them work on regular Cartesian grids. In this paper an IB-LB coupling scheme is proposed and its feasibility is verified. The scheme is suitable for FSI problems concerning rapid flexible boundary motion and a large pressure gradient across the boundary. We first analyze the respective concepts, formulae and advantages of the IB and LB methods, and then explain the coupling strategy and detailed implementation procedures. To verify the effectiveness and accuracy, FSI problems arising from the relaxation of a distorted balloon immersed in a viscous fluid, an unsteady wake flow caused by an impulsively started circular cylinder at Reynolds number 9500, and an unsteady vortex shedding flow past a suddenly started rotating circular cylinder at Reynolds number 1000 are simulated. The first example is a benchmark case for flexible boundary FSI with a large pressure gradient across the boundary, the second is a fixed complex boundary problem, and the third is a typical moving boundary example. The results are in good agreement with the analytical and existing numerical data. It is shown that the proposed scheme is capable of modeling flexible boundary and complex boundary problems at a second-order spatial convergence; the volume leakage defect of the conventional IB method has been remedied by using a new method of introducing the unsteady and non-uniform external force; and the LB method makes the IB method simulation simpler and more efficient.  相似文献   

7.
A Newton/LU-SGS (lower-upper symmetric Gauss-Seidel) iteration implicit method was developed to solve two-dimensional Euler and Navier-Stokes equations by the DG/FV hybrid schemes on arbitrary grids. The Newton iteration was employed to solve the nonlinear system, while the linear system was solved with LU-SGS iteration. The effect of several parameters in the implicit scheme, such as the CFL number, the Newton sub-iteration steps, and the update frequency of Jacobian matrix, was investigated to evaluate the performance of convergence history. Several typical test cases were simulated, and compared with the traditional explicit Runge-Kutta (RK) scheme. Firstly the Couette flow was tested to validate the order of accuracy of the present DG/FV hybrid schemes. Then a subsonic inviscid flow over a bump in a channel was simulated and the effect of parameters was alsoinvestigated. Finally, the implicit algorithm was applied to simulate a subsonic inviscid flow over a circular cylinder and the viscous flow in a square cavity. The numerical results demonstrated that the present implicit scheme can accelerate the convergence history efficiently. Choosing proper parameters would improve the efficiency of the implicit scheme. Moreover, in the same framework, the DG/FV hybrid schemes are more efficient than the same order DG schemes.  相似文献   

8.
The objective of this paper is to seek an alternative to the numerical simulation of the Navier-Stokes equations by a method similar to solving the BGK-type modeled lattice Boltzmann equation. The proposed method is valid for both gas and liquid flows. A discrete flux scheme (DFS) is used to derive the governing equations for two distribution functions; one for mass and another for thermal energy. These equations are derived by considering an infinitesimally small control volume with a velocity lattice representation for the distribution functions. The zero-order moment equation of the mass distribution function is used to recover the continuity equation, while the first-order moment equation recovers the linear momentum equation. The recovered equations are correct to the first order of the Knudsen number (Kn); thus, satisfying the continuum assumption. Similarly, the zero-order moment equation of the thermal energy distribution function is used to recover the thermal energy equation. For aerodynamic flows, it is shown that the finite difference solution of the DFS is equivalent to solving the lattice Boltzmann equation (LBE) with a BGK-type model and a specified equation of state. Thus formulated, the DFS can be used to simulate a variety of aerodynamic and hydrodynamic flows. Examples of classical aeroacoustics, compressible flow with shocks, incompressible isothermal and non-isothermal Couette flows, stratified flow in a cavity, and double diffusive flow inside a rectangle are used to demonstrate the validity and extent of the DFS. Very good to excellent agreement with known analytical and/or numerical solutions is obtained; thus lending evidence to the DFS approach as an alternative to solving the Navier-Stokes equations for fluid flow simulations.  相似文献   

9.
In this work, a direct discontinuous Galerkin (DDG) method with artificial viscosity is developed to solve the compressible Navier-Stokes equations for simulating the transonic or supersonic flow, where the DDG approach is used to discretize viscous and heat fluxes. A strong residual-based artificial viscosity (AV) technique is proposed to be applied in the DDG framework to handle shock waves and layer structures appearing in transonic or supersonic flow, which promotes convergence and robustness. Moreover, the AV term is added to classical BR2 methods for comparison. A number of 2-D and 3-D benchmarks such as airfoils, wings, and a full aircraft are presented to assess the performance of the DDG framework with the strong residual-based AV term for solving the two dimensional and three dimensional Navier-Stokes equations. The proposed framework provides an alternative robust and efficient approach for numerically simulating the multi-dimensional compressible Navier-Stokes equations for transonic or supersonic flow.  相似文献   

10.
In this work, we proposed a diffuse-interface model for the dendritic growth with thermosolutal convection. In this model, the sharp boundary between the fluid and solid dendrite is firstly replaced by a thin but nonzero thickness diffuse interface, which is described by the order parameter, and the diffuse-interface based governing equations for the dendritic growth are presented. To solve the model for the dendritic growth with thermosolutal convection, we also developed a diffuse-interface multi-relaxation-time lattice Boltzmann (LB) method. In this method, the order parameter in the phase-field equation is combined into the force caused by the fluid-solid interaction, and the treatment on the complex fluid-solid interface can be avoided. In addition, four LB models are designed for the phase-field equation, concentration equation, temperature equation and the Navier-Stokes equations in a unified framework. Finally, we performed some simulations of the dendritic growth to test the present diffuse-interface LB method, and found that the numerical results are in good agreements with some previous works.  相似文献   

11.
In this study, a numerical technique based on the Lattice Boltzmann method is presented to model viscoelastic fluid interaction with complex boundaries which are commonly seen in biological systems and industrial practices. In order to accomplish numerical simulation of viscoelastic fluid flows, the Newtonian part of the momentum equations is solved by the Lattice Boltzmann Method (LBM) and the divergence of the elastic tensor, which is solved by the finite difference method, is added as a force term to the governing equations. The fluid-structure interaction forces are implemented through the Immersed Boundary Method (IBM). The numerical approach is validated for Newtonian and viscoelastic fluid flows in a straight channel, a four-roll mill geometry as well as flow over a stationary and rotating circular cylinder. Then, a numerical simulation of Oldroyd-B fluid flow around a confined elliptical cylinder with different aspect ratios is carried out for the first time. Finally, the present numerical approach is used to simulate a biological problem which is the mucociliary transport process of human respiratory system. The present numerical results are compared with appropriate analytical, numerical and experimental results obtained from the literature.  相似文献   

12.
In this paper we study optimal shape design problems for systems governed by the Navier-Stokes equations. Optimality conditions are presented. A numerical example for the design of an axisymmetric solid body surrounded by a Navier-Stokes flow is given.  相似文献   

13.
As arboreal primates move through the jungle, they are immersed in visual motion that they must distinguish from the movement of predators and prey. We recorded dorsal medial superior temporal (MSTd) cortical neuronal responses to visual motion stimuli simulating self-movement and object motion. MSTd neurons encode the heading of simulated self-movement in three-dimensional (3-D) space. 3-D heading responses can be evoked either by the large patterns of visual motion in optic flow or by the visual object motion seen when an observer passes an earth-fixed landmark. Responses to naturalistically combined optic flow and object motion depend on their relative directions: an object moving as part of the optic flow field has little effect on neuronal responses. In contrast, an object moving separately from the optic flow field has large effects, decreasing the amplitude of the population response and shifting the population's heading estimate to match the direction of object motion as the object moves toward central vision. These effects parallel those seen in human heading perception with minimal effects of objects moving with the optic flow and substantial effects of objects violating the optic flow. We conclude that MSTd can contribute to navigation by supporting 3-D heading estimation, potentially switching from optic flow to object cues when a moving object passes in front of the observer.  相似文献   

14.
We introduce and study a parallel domain decomposition algorithm for the simulation of blood flow in compliant arteries using a fully-coupled system of nonlinear partial differential equations consisting of a linear elasticity equation and the incompressible Navier-Stokes equations with a resistive outflow boundary condition. The system is discretized with a finite element method on unstructured moving meshes and solved by a Newton-Krylov algorithm preconditioned with an overlapping restricted additive Schwarz method. The resistive outflow boundary condition plays an interesting role in the accuracy of the blood flow simulation and we provide a numerical comparison of its accuracy with the standard pressure type boundary condition. We also discuss the parallel performance of the implicit domain decomposition method for solving the fully coupled nonlinear system on a supercomputer with a few hundred processors.  相似文献   

15.
A robust immersed boundary-lattice Boltzmann method (IB-LBM) is proposed to simulate fluid-structure interaction (FSI) problems in this work. Compared with the conventional IB-LBM, the current method employs the fractional step technique to solve the lattice Boltzmann equation (LBE) with a forcing term. Consequently, the non-physical oscillation of body force calculation, which is frequently encountered in the traditional IB-LBM, is suppressed greatly. It is of importance for the simulation of FSI problems. In the meanwhile, the no-slip boundary condition is strictly satisfied by using the velocity correction scheme. Moreover, based on the relationship between the velocity correction and forcing term, the boundary force can be calculated accurately and easily. A few test cases are first performed to validate the current method. Subsequently, a series of FSI problems, including the vortex-induced vibration of a circular cylinder, an elastic filament flapping in the wake of a fixed cylinder and sedimentation of particles, are simulated. Based on the good agreement between the current results and those in the literature, it is demonstrated that the proposed IB-LBM has the capability to handle various FSI problems effectively.  相似文献   

16.
An iterative solver based on the immersed interface method is proposed to solve the pressure in a two-fluid flow on a Cartesian grid with second-order accuracy in the infinity norm. The iteration is constructed by introducing an unsteady term in the pressure Poisson equation. In each iteration step, a Helmholtz equation is solved on the Cartesian grid using FFT. The combination of the iteration and the immersed interface method enables the solver to handle various jump conditions across two-fluid interfaces. This solver can also be used to solve Poisson equations on irregular domains.  相似文献   

17.
A genuine finite volume method based on the lattice Boltzmann equation (LBE) for nearly incompressible flows is developed. The proposed finite volume lattice Boltzmann method (FV-LBM) is grid-transparent, i.e., it requires no knowledge of cell topology, thus it can be implemented on arbitrary unstructured meshes for effective and efficient treatment of complex geometries. Due to the linear advection term in the LBE, it is easy to construct multi-dimensional schemes. In addition, inviscid and viscous fluxes are computed in one step in the LBE, as opposed to in two separate steps for the traditional finite-volume discretization of the Navier-Stokes equations. Because of its conservation constraints, the collision term of the kinetic equation can be treated implicitly without linearization or any other approximation, thus the computational efficiency is enhanced. The collision with multiple-relaxation-time (MRT) model is used in the LBE. The developed FV-LBM is of second-order convergence. The proposed FV-LBM is validated with three test cases in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the Blasius boundary layer; and (c) the steady flow past a cylinder at the Reynolds numbers Re=10, 20, and 40. The results verify the designed accuracy and efficacy of the proposed FV-LBM.  相似文献   

18.
We have introduced a fully second order IMplicit/EXplicit (IMEX) time integration technique for solving the compressible Euler equations plus nonlinear heat conduction problems (also known as the radiation hydrodynamics problems) in Kadioglu et al., J. Comp. Physics [22,24]. In this paper, we study the implications when this method is applied to the incompressible Navier-Stokes (N-S) equations. The IMEX method is applied to the incompressible flow equations in the following manner. The hyperbolic terms of the flow equations are solved explicitly exploiting the well understood explicit schemes. On the other hand, an implicit strategy is employed for the non-hyperbolic terms. The explicit part is embedded in the implicit step in such a way that it is solved as part of the non-linear function evaluation within the framework of the Jacobian-Free Newton Krylov (JFNK) method [8,29,31]. This is done to obtain a self-consistent implementation of the IMEX method that eliminates the potential order reduction in time accuracy due to the specific operator separation. We employ a simple yet quite effective fractional step projection methodology (similar to those in [11,19,21,30]) as our preconditioner inside the JFNK solver. We present results from several test calculations. For each test, we show second order time convergence. Finally, we present a study for the algorithm performance of the JFNK solver with the new projection method based preconditioner.  相似文献   

19.
In this paper, a novel implementation of immersed interface method combined with Stokes solver on a MAC staggered grid for solving the steady two-fluid Stokes equations with interfaces. The velocity components along the interface are introduced as two augmented variables and the resulting augmented equation is then solved by the GMRES method. The augmented variables and/or the forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines and are then applied to the fluid through the jump conditions. The Stokes equations are discretized on a staggered Cartesian grid via a second order finite difference method and solved by the conjugate gradient Uzawa-type method. The numerical results show that the overall scheme is second order accuracy. The major advantages of the present IIM-Stokes solver are the efficiency and flexibility in terms of types of fluid flow and different boundary conditions. The proposed method avoids solution of the pressure Poisson equation, and comparisons are made to show the advantages of time savings by the present method. The generalized two-phase Stokes solver with correction terms has also been applied to incompressible two-phase Navier-Stokes flow.  相似文献   

20.
Are extensions to continuum formulations for solving fluid dynamic problems in the transition-to-rarefied regimes viable alternatives to particle methods? It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations lose accuracy. These inaccuracies are attributed primarily to the linear approximations of the stress and heat flux terms in the Navier-Stokes equations. The inclusion of higher-order terms, such as Burnett or high-order moment equations, could improve the predictive capabilities of such continuum formulations, but there has been limited success in the shock structure calculations, especially for the high Mach number case. Here, after reformulating the viscosity and heat conduction coefficients appropriate for the rarefied flow regime, we will show that the Navier-Stokes-type continuum formulation may still be properly used. The equations with generalization of the dissipative coefficients based on the closed solution of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation, are solved using the gas-kinetic numerical scheme. This paper concentrates on the non-equilibrium shock structure calculations for both monatomic and diatomic gases. The Landau-Teller-Jeans relaxation model for the rotational energy is used to evaluate the quantitative difference between the translational and rotational temperatures inside the shock layer. Variations of shear stress, heat flux, temperatures, and densities in the internal structure of the shock waves are compared with, (a) existing theoretical solutions of the Boltzmann solution, (b) existing numerical predictions of the direct simulation Monte Carlo (DSMC) method, and (c) available experimental measurements. The present continuum formulation for calculating the shock structures for monatomic and diatomic gases in the Mach number range of 1.2 to 12.9 is found to be satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号