首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptophan hydroxylase (TPH) catalyzes the 5-hydroxylation of tryptophan, which is the first step in the biosynthesis of indoleamines (serotonin and melatonin). Serotonin functions mainly as a neurotransmitter, whereas melatonin is the principal hormone secreted by the pineal gland. TPH belongs to the family of the aromatic amino acid hydroxylases, including phenylalanine hydroxylase (PAH) and tyrosine hydroxylase (TH), which all have a strict requirement for dioxygen, non-heme iron (II) and tetrahydrobiopterin (BH4). During the last three years there has been a formidable increase in the amount of structural information about PAH and TH, which has provided new insights into the active site structure, the binding of substrates, inhibitors and pterins, as well as on the effect of disease-causing mutations in these hydroxylases. Although structural information about TPH is not yet available, the high sequence homology between the three mammalian hydroxylases, notably at the catalytic domains, and the similarity of the reactions that they catalyze, indicate that they share a similar 3D-structure and a common catalytic mechanism. Thus, we have prepared a model of the structure of TPH based on the crystal structures of TH and PAH. This structural model provides a frame for understanding the specific interactions of TPH with L-tryptophan and substrate analogues, BH4 and cofactor analogues, L-DOPA and catecholamines. The interactions of these ligands with the enzyme are discussed focusing on the physiological and pharmacological regulation of serotonin biosynthesis, notably by tryptophan supplementation therapy and substitution therapy with tetrahydrobiopterin analogues (positive effects), as well as the effect of catecholamines on TPH activity in L-DOPA treated Parkinson's disease patients (enzyme inhibition).  相似文献   

2.
Phenylketonuria (PKU) and mild hyperphenylalaninemia (HPA) are genetic disorders characterized by a deficiency in phenylalanine hydroxylase (PAH), resulting in intellectual impairment if not treated with dietary restriction of phenylalanine intake. Sapropterin dihydrochloride (Kuvan) is an orally active synthetic form of (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4; a cofactor for PAH) that has received Orphan Drug status and Fast Track designation for the treatment of PKU. Phase II and III clinical data demonstrated that Kuvan was a safe and effective therapy in selected patients with HPA and mild-to-moderate PKU who responded to a BH4 loading test. Based on the clinical data, BioMarin Pharmaceutical Inc has estimated that Kuvan could be a potential treatment option for 30 to 50% of the estimated 50,000 patients in the developed world who have been diagnosed with PKU. According to Thomson Scientific's Strategic Drugs Database (SDdb), the worldwide consensus forecast values for Kuvan are approximately US $120, 190 and 260 million for 2008, 2009 and 2010, respectively.  相似文献   

3.
Hydroxylation of the aromatic amino acids phenylalanine, tyrosine and tryptophan is carried out by a family of non-heme iron and tetrahydrobiopterin (BH4) dependent enzymes, i.e. the aromatic amino acid hydroxylases (AAHs). The reactions catalyzed by these enzymes are important for biomedicine and their mutant forms in humans are associated with phenylketonuria (phenylalanine hydroxylase), Parkinson's disease and DOPA-responsive dystonia (tyrosine hydroxylase), and possibly neuropsychiatric and gastrointestinal disorders (tryptophan hydroxylase 1 and 2). We attempt to rationalize current knowledge about substrate and inhibitor specificity based on the three-dimensional structures of the enzymes and their complexes with substrates, cofactors and inhibitors. In addition, further insights on the selectivity and affinity determinants for ligand binding in the AAHs were obtained from molecular interaction field (MIF) analysis. We applied this computational structural approach to a rational analysis of structural differences at the active sites of the enzymes, a strategy that can help in the design of novel selective ligands for each AAH.  相似文献   

4.
Sapropterin dihydrochloride, 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is being introduced in the US for treatment of phenylketonuria (PKU). This compound has been in use in Europe to treat mild forms of PKU. Tetrahydrobiopterin is the cofactor in the hydroxylation reaction of the three aromatic amino acids phenylalanine, tyrosine and tryptophan. It is also involved in other reactions, which are not the focus of this review. The cofactor BH4 is synthesized in many tissues in the body. The pathway of BH4 biosynthesis is complex, and begins with guanosine triphosphate (GTP). The first reaction that commits GTP to form pterins is GTP cyclohydrolase. Several reactions follow resulting in the active cofactor BH4. During the hydroxylation reaction BH4 is oxidized to quinonoid-BH2, which is recycled by dihydropteridine reductase, resulting in the active cofactor. It was discovered that some patients with PKU had a decline in blood phenylalanine after oral intake of BH4. This response to BH4 is not the result of change in the synthesis or regeneration of the cofactor, but rather an effect on the mutant enzyme phenylalanine hydroxylase either by accommodating the higher K(m) of the mutant enzyme or by acting as a chaperone for the mutant enzyme. This response has become of intense interest in the treatment of PKU.  相似文献   

5.
Sapropterin dihydrochloride, 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is being introduced in the US for treatment of phenylketonuria (PKU). This compound has been in use in Europe to treat mild forms of PKU. Tetrahydrobiopterin is the cofactor in the hydroxylation reaction of the three aromatic amino acids phenylalanine, tyrosine and tryptophan. It is also involved in other reactions, which are not the focus of this review. The cofactor BH4 is synthesized in many tissues in the body. The pathway of BH4 biosynthesis is complex, and begins with guanosine triphosphate (GTP). The first reaction that commits GTP to form pterins is GTP cyclohydrolase. Several reactions follow resulting in the active cofactor BH4. During the hydroxylation reaction BH4 is oxidized to quinonoid-BH2, which is recycled by dihydropteridine reductase, resulting in the active cofactor. It was discovered that some patients with PKU had a decline in blood phenylalanine after oral intake of BH4. This response to BH4 is not the result of change in the synthesis or regeneration of the cofactor, but rather an effect on the mutant enzyme phenylalanine hydroxylase either by accommodating the higher Km of the mutant enzyme or by acting as a chaperone for the mutant enzyme. This response has become of intense interest in the treatment of PKU.  相似文献   

6.
Nitric oxide synthesized from l-arginine by nitric oxide synthase isoforms (NOS-I-III) is physiologically important but also can be deleterious when overproduced. Selective NOS inhibitors are of clinical interest, given their differing pathophysiological roles. Here we describe our approach to target the unique NOS (6R,1'R,2'S)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) binding site. By a combination of ligand- and structure-based design, the structure-activity relationship (SAR) for a focused set of 41 pteridine analogues on four scaffolds was developed, revealing selective NOS-I inhibitors. The X-ray crystal structure of rat NOS-I dimeric-oxygenase domain with H(4)Bip and l-arginine was determined and used for human isoform homology modeling. All available NOS structural information was subjected to comparative analysis of favorable protein-ligand interactions using the GRID/concensus principal component analysis (CPCA) approach to identify the isoform-specific interaction site. Our interpretation, based on protein structures, is in good agreement with the ligand SAR and thus permits the rational design of next-generation inhibitors targeting the H(4)Bip binding site with enhanced isoform selectivity for therapeutics in pathology with NO overproduction.  相似文献   

7.
Tetrahydrobiopterin is the reduced unconjugated pterin that serves as an essential cofactor for the normal enzymatic function of the aromatic amino acid hydroxylases and for the nitric oxide synthases (NOS). Its role in the latter biochemistry is being increasing appreciated, as depletion or oxidation of BH4 results in a condition of NOS uncoupling, resulting in a nitroso-oxidative imbalance. Recent experimental studies support an important pathophysiologic role of BH4 deficiency as well as the therapeutic potential of BH4 repletion for hypertension, endothelial dysfunction, atherosclerosis, diabetes, cardiac hypertrophic remodeling, and heart failure. In addition to BH4, studies are also examining the potential role of folic acid therapy, because folic acid can enhance BH4 levels and the NOS coupling state. This review summarizes these recent studies focusing on the biochemistry and pharmacology of BH4 and its potential role for treating cardiovascular disease.  相似文献   

8.
6R l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes including phenylalanine hydroxylase and the nitric oxide synthases (NOS). Oral supplementation of BH4 has been successfully employed to treat subsets of patients with hyperphenylalaninaemia. More recently, research efforts have focussed on understanding whether BH4 supplementation may also be efficacious in cardiovascular disorders that are underpinned by reduced nitric oxide bioavailability. Whilst numerous preclinical and clinical studies have demonstrated a positive association between enhanced BH4 and vascular function, the efficacy of orally administered BH4 in human cardiovascular disease remains unclear. Furthermore, interventions that limit BH4 bioavailability may provide benefit in diseases where nitric oxide over production contributes to pathology. This review describes the pathways involved in BH4 bio-regulation and discusses other endogenous mechanisms that could be harnessed therapeutically to manipulate vascular BH4 levels.  相似文献   

9.
Structure and energetics of the Src Src Homology 2 (SH2) domain binding with the recognition phosphopeptide pYEEI and its mutants are studied by a hierarchical computational approach. The proposed structure prediction strategy includes equilibrium sampling of the peptide conformational space by simulated tempering dynamics with the simplified, knowledge-based energy function, followed by structural clustering of the resulting conformations and binding free energy evaluation of a single representative from each cluster, a cluster center. This protocol is robust in rapid screening of low-energy conformations and recovers the crystal structure of the pYEEI peptide. Thermodynamics of the peptide-SH2 domain binding is analyzed by computing the average energy contributions over conformations from the clusters, structurally similar to the predicted peptide bound structure. Using this approach, the binding thermodynamics for a panel of studied peptides is predicted in a better agreement with the experiment than previously suggested models. However, the overall correlation between computed and experimental binding affinity remains rather modest. The results of this study show that small differences in binding free energies between the Ala and Gly mutants of the pYEEI peptide are considerably more difficult to predict than the structure of the bound peptides, indicating that accurate computational prediction of binding affinities still remains a major methodological and technical challenge.  相似文献   

10.
The family of homodimeric nitric oxide synthases (NOS I-III) catalyzes the generation of the cellular messenger nitric oxide (NO) by oxidation of the substrate L-arginine. The rational design of specific NOS inhibitors is of therapeutic interest in regulating pathological NO levels associated with sepsis, inflammatory, and neurodegenerative diseases. The cofactor (6R)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) maximally activates all NOSs and stabilizes enzyme quaternary structure by promoting and stabilizing dimerization. Here, we describe the synthesis and three-dimensional (3D) quantitative structure-activity relationship (QSAR) analysis of 65 novel 4-amino- and 4-oxo-pteridines (antipterins) as inhibitors targeting the H(4)Bip binding site of the neuronal NOS isoform (NOS-I). The experimental binding modes for two inhibitors complexed with the related endothelial NO synthase (NOS-III) reveal requirements of biological affinity and form the basis for ligand alignment. Different alignment rules were derived by building other compounds accordingly using manual superposition or a genetic algorithm for flexible superposition. Those alignments led to 3D-QSAR models (comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)), which were validated using leave-one-out cross-validation, multiple analyses with two and five randomly chosen cross-validation groups, perturbation of biological activities by randomization or progressive scrambling, and external prediction. An iterative realignment procedure based on rigid field fit was used to improve the consistency of the resulting partial least squares models. This led to consistent and highly predictive 3D-QSAR models with good correlation coefficients for both CoMFA and CoMSIA, which correspond to experimentally determined NOS-II and -III H(4)Bip binding site topologies as well as to the NOS-I homology model binding site in terms of steric, electrostatic, and hydrophobic complementarity. These models provide clear guidelines and accurate activity predictions for novel NOS-I inhibitors.  相似文献   

11.
Endocrine-disrupting compounds (EDCs) accumulating in nature are known to interact with nuclear receptors. Especially important is the human estrogen receptor alpha (hERalpha), and several EDCs are either known or suspected to influence the activity of the ligand-binding domain (LBD). We here present a comparative docking study of both well-known hERalpha ligands and small organic compounds, including selected polychlorinated biphenyls (PCBs), plasticizers, and pesticides, that are all potentially endocrine-disrupting,into different conformations of the hERalpha LBD. Three newly found quasi-stable structures of the hERalhpa LBD are examined along with three crystallographic conformations of the protein, either theapo structure or using a protein structure with a bound agonist or antagonist ligand. The possible interactions between the protein and the potentially EDCs are described. It is found that most suspected EDCs can bind in the steroid binding cavity, interacting with at least one of the two hydrophilic ends of the steroid binding site. DDE, DDT, and HPTE are predicted to bind most strongly to the hERalpha LBD. It is predicted that these compounds can interact with the three conformations of hERalpha LBD with comparable affinities.The metabolic hydroxylation of aromatic compounds is found to lead to an increase in the binding affinity of PCBs as well as DDT. Docking into the quasi-stable conformations of the hERalpha LBD leads to computed binding affinities similar to or better than those calculated for the three X-ray structures, revealing that the new structures may be of importance for assessing the function of the influence of EDCs on nuclear receptors.  相似文献   

12.
Dysfunction of the endothelium in large- and medium-sized arteries plays a central role in atherogenesis. The insulin resistance syndrome encompasses more than a subnormal response to insulin-mediated glucose disposal. Patients with this syndrome also frequently display elevated blood pressure, hyperlipidemia, and dysfibinolysis, even without any clinically manifested alteration in plasma glucose concentrations. Of note endothelial dysfunction and atherosclerosis also have been demonstrated in patients with hypertension, which is one of the features of the syndrome of insulin resistance. Insulin-induced vasodilation, which is mediated by the release of nitric oxide (NO) release, is impaired in obese individuals who display insulin resistance. Although it is tempting to speculate that loss of endothelium-dependent vasodilation and increased vasoconstriction might be etiological factors of elevated blood pressure, the factors contributing to NO-mediated endothelial dysfunction in the insulin-resistant state are not fully defined. Experimental evidences suggest that (6R)-5,6,7,8-tetrahydrobiopterin (BH(4)), the natural and essential cofactor of NO synthases (NOS), plays a crucial role not only in increasing the rate of NO generation by NOS but also in controlling the formation of superoxide anion (O(2)(-)) in the endothelial cells. Under insulin-resistant conditions where BH(4) levels are suboptimal, in addition to a reduced synthesis of NO, an accelerated inactivation of NO by O(2)(-) within the vascular wall was observed. Furthermore, oral supplementation of BH(4) restored endothelial function and relieved oxidative tissue damage, through activation of eNOS in the aorta of insulin-resistant rats. These results indicate that abnormal pteridine metabolism contributes to causing endothelial dysfunction and the enhancement of vascular oxidative stress in the insulin-resistant state.  相似文献   

13.
Candida albicans and Candida glabrata cause fungal bloodstream infections that are associated with significant mortality. As part of an effort to develop potent and selective antifolates that target dihydrofolate reductase (DHFR) from Candida species, we report three ternary crystal structures of C. albicans DHFR (CaDHFR) bound to novel propargyl‐linked analogs. Consistent with earlier modeling results, these structures show that hydrophobic pockets in the binding site may be exploited to increase ligand potency. The crystal structures also confirm that loop residues Thr 58‐ Phe 66, which flank the active site and influence ligand potency and selectivity, adopt multiple conformations. To aid the development of a dual Candida spp. inhibitor, three new crystal structures of C. glabrata DHFR (CgDHFR) bound to similar ligands as those bound in the ternary structures of CaDHFR are also reported here. Loop residues 58–66 in CgDHFR and human DHFR are 1 and 3 Å closer to the folate binding site, respectively, than loop residues in CaDHFR, suggesting that a properly size ligand could be a potent and selective dual inhibitor of CaDHFR and CgDHFR.  相似文献   

14.
Empirical energy calculations are carried out to study the binding of the substrates N-acetyl-L-phenylalanine amide, N-acetyl-L-tyrosine amide, N-formyl-L-tyrosine α-mide, and N-acetyl-L-tryptophan amide to the enzyme molecule α-chymotrypsin. As an initial probe of the active-site surface, the low-energy conformations of the phenylalanine substrate (see Part I) are allowed to approach the enzyme by overall rotational and translational motion until a minimum is achieved in the enzyme-substrate interaction energy. Four regions of good binding are found near the active site, the one of lowest energy being that in which the ring is oriented in the cleft of the enzyme. This cleft binding site is the same as the binding position found by X-ray diffraction for the virtual substrate N-formyl-L-tryptophan; the other three favorable binding regions might not be detected by X-ray analysis, possibly because they are blocked in the dimer structure of the crystalline enzyme. Further investigation of the most favorable (cleft) binding site indicates that left-handed α-helical backbone conformations of the substrate do not form stable enzyme-substrate complexes, while the equatorial seven-membered ring, as well as the right-handed α-helical and β and γ backbone conformations (the latter three of which commonly occur in proteins) bind well. The calculated binding energies of all four substrates correlate with experimental binding constants.  相似文献   

15.
The recent availability of X-ray structures for diverse ligand-bound Family A G protein-coupled receptors (GPCRs) in multiple conformations (inactive form with an antagonist/inverse agonist bound and active form with an agonist bound) now enables rational drug design efforts that have historically been applied to soluble enzyme targets. Here, we review properties of these GPCR binding sites, using a unique combination of calculated physicochemical properties and water energetics (GRID, WaterMap and SZMAP) to provide a new perspective and rational assessment of druggability for each GPCR target binding site. Examples are described from several well-studied enzyme systems to support this advanced structure-based approach to assessing druggability and to contrast their properties with those of GPCRs. Changes in receptor conformations between the GPCR inactive and active forms evident from the protein structures are discussed, yielding important pointers for rational drug design of antagonists and agonists and a better understanding of GPCR activation.  相似文献   

16.
Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO(-)). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4) ) is highly sensitive to oxidation by this ONOO(-). In BH(4) deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential.  相似文献   

17.
We have investigated various nitric oxide (NO) synthase inhibitors for their affinity and selectivity toward the three human isoenzymes in radioligand binding experiments. Therefore, we developed the new radioligand [(3)H]2-amino-4-picoline to measure binding of these compounds to the three human NO synthase (NOS) isoenzymes. Aminopicoline is a potent and nonselective inhibitor of all three isoforms. [(3)H]2-amino-4-picoline bound saturably and with high affinity to human NOSs. Affinity constants (K(D) values) of 59, 111, and 136 nM were obtained for the inducible, neuronal, and endothelial NOS isoforms (iNOS, nNOS, eNOS). Binding of [(3)H]2-amino-4-picoline was competitive with the substrate arginine. From all the inhibitors tested, AMT (2-amino-5, 6-dihydro-6-methyl-4H-1,3-thiazine hydrochloride) showed the highest affinity and no selectivity. L-NIL [L-N(6)-(1-Iminoethyl)lysine hydrochloride] and aminoguanidine were moderately iNOS-selective while L-NA (N(G)-nitro-L-arginine) and L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride) showed selectivity toward the constitutive isoforms. High iNOS versus eNOS selectivity was found for 1400W, whereas several isothiourea derivatives and 1400W displayed moderate n- versus eNOS selectivity. To relate the affinity of these compounds to their inhibitory potency, we measured the inhibitory potency under almost identical conditions using a new microtiter plate assay. The inhibitory potency of selective and nonselective NOS inhibitors was almost exactly mirrored by their affinity toward the different isoenzymes. Highly significant correlations were obtained between the potency of enzyme inhibition and the inhibition of [(3)H]2-amino-4-picoline binding for all three isoenzymes. These data show that the potency and selectivity of NOS inhibitors are solely determined by their affinity toward the different isoforms. Furthermore, these data identify the new radioligand [(3)H]2-amino-4-picoline as a very useful radiolabel for the investigation of the substrate binding site of all three isoforms.  相似文献   

18.
19.
The A2A adenosine receptor (A2AAR) is a G protein‐coupled receptor that is pharmacologically targeted for the treatment of inflammation, sepsis, cancer, neurodegeneration, and Parkinson's disease. Recently, we applied long‐timescale molecular dynamics simulations on two ligand‐free receptor conformations, starting from the agonist‐bound (PDB ID: 3QAK) and antagonist‐bound (PDB ID: 3EML) X‐ray structures. This analysis revealed four distinct conformers of the A2AAR: the active, intermediate 1, intermediate 2, and inactive. In this study, we apply the fragment‐based mapping algorithm, FTMap, on these receptor conformations to uncover five non‐orthosteric sites on the A2AAR. Two sites that are identified in the active conformation are located in the intracellular region of the transmembrane helices (TM) 3/TM4 and the G protein‐binding site in the intracellular region between TM2/TM3/TM6/TM7. Three sites are identified in the intermediate 1 and intermediate 2 conformations, annexing a site in the lipid interface of TM5/TM6. Five sites are identified in the inactive conformation, comprising a site in the intracellular region of TM1/TM7 and in the extracellular region of TM3/TM4 of the A2AAR. We postulate that these sites on the A2AAR be screened for allosteric modulators for the treatment of inflammatory and neurological diseases.  相似文献   

20.
Tetrahydrobiopterin (H4-biopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, i.e. the hydroxylases of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan, of ether lipid oxidase, and of the three nitric oxide synthase (NOS) isoenzymes. As a consequence, H4-biopterin plays a key role in a vast number of biological processes and pathological states associated with neurotransmitter formation, vasorelaxation, and immune response. In mammals, its biosynthesis is controlled by hormones, cytokines and certain immune stimuli. This review aims to summarize recent developments concerning regulation of H4-biopterin biosynthetic and regulatory enzymes and pharmacological effects of H4-biopterin in various conditions, e.g. endothelial dysfunction or apoptosis of neuronal cells. Also, approaches towards gene therapy of diseases like the different forms of phenylketonuria or of Parkinson's disease are reviewed. Additional emphasis is given to H4-biopterin biosynthesis and function in non-mammalian species such as fruit fly, zebra fish, fungi, slime molds, the bacterium Nocardia as well as to the parasitic protozoan genus of Leishmania that is not capable of pteridine biosynthesis but has evolved a sophisticated salvage network for scavenging various pteridine compounds, notably folate and biopterin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号