首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Learning and memory in agmatine-treated rats   总被引:4,自引:0,他引:4  
Agmatine, a noncompetitive N-methyl-D-aspartate (NMDA) antagonist, was examined for its role in water maze place learning, contextual and auditory-cued (discrete) fear learning and conditioned taste aversion learning, when administered systemically. Male Wistar rats were given saline or 1, 5, 10 or 50 mg/kg agmatine ip 20 min prior to or 30 min following daily training sessions in a hidden-platform (place learning) water maze task. Agmatine did not affect latencies to find the hidden platform or preference for the training quadrant during probe trials. When administered 20 min prior to contextual or auditory-cued fear-conditioning sessions, these doses of agmatine evoked a linear dose-dependent impairment in the magnitude of learned fear to the contextual stimuli when assessed during extinction trials 24 h later, but had no effect on the magnitude of learned fear to the auditory stimulus. Inferences of baseline motor activity and ability to respond to the presentation of footshock stimuli were not affected by the treatment. Injections of 50 mg/kg agmatine concurrently with a malaise-evoking agent following presentations to a novel sucrose solution abolished learned taste aversions; this agent did not evoke conditioned taste aversions alone. These studies indicate that systemically administered agmatine selectively impairs behavioral inferences of specific types of learning and memory.  相似文献   

2.
Rationale The polyamines putrescine, spermine, and spermidine are a group of aliphatic amines that physiologically modulate the N-methyl-d-aspartate (NMDA) receptor, a glutamate receptor implicated in memory formation. Objectives Given the potential application of these drugs in the treatment of memory disorders, we investigated whether agonists and/or antagonists of the NMDA receptor polyamine binding site alters the memory of fear conditioning and determined the time window in which fear conditioning is modulated by polyaminergic agents given by the systemic route. Results Post-training intraperitoneal administration of spermidine (10–100 mg/kg) immediately after training increased, whereas arcaine (10 mg/kg) and MK-801 (0.01–0.1 mg/kg) decreased contextual and auditory fear conditioning. Arcaine and MK-801, at doses that had no effect per se, reversed the facilitatory effect of spermidine. Memory of fear conditioning was impaired by polyaminergic blockade up to 180 min but not at 360 min after training. Conclusion These results provide evidence that systemic administration of polyamine binding site ligands modulate early consolidation of fear conditioning.  相似文献   

3.
The endocannabinoid system appears to have an important role in specific aspects of learning and memory, yet there has been no systematic study of the role of cannabinoid receptors in contextual fear conditioning. The present study examined the effects of cannabinoid CB(1) receptor blockade on the acquisition, consolidation, and expression of contextual fear using the selective cannabinoid CB(1) receptor antagonist AM251. AM251 produced a decrease in the expression of contextual fear when administered prior to training, testing, or both. This effect was observed when footshock was signaled by an auditory cue but not in an unsignaled shock version of the task. Moreover, blocking cannabinoid CB(1) receptors had no effect on consolidation of contextual memory regardless of the conditioning paradigm. These data indicate that inhibition of cannabinoid CB(1) receptors produces specific deficits in processing contextual information and that the effects of CB(1) antagonists on contextual learning may differ from effects on other types of learning.  相似文献   

4.
After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.  相似文献   

5.
In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (CoCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (10 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.  相似文献   

6.
The effects of pre-training or post-training subcutaneous injections of multiple doses of the non-competitive NMDA-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) on cued and contextual fear conditioning were examined in F344 rats. Pre-training injections of MK-801 (0.3 and 1.0 mg/kg) disrupted contextual fear conditioning but not cued fear conditioning. Post-training injections of MK-801 did not disrupt cued or contextual fear conditioning. In fact, the 0.3 mg/kg dose of MK-801 enhanced cued fear conditioning. Finally, rats were tested for MK-801-induced alterations in sensitivity to pain using the formalin test for nociception. MK-801 did not reduce sensitivity to pain. These results suggest that NMDA receptors are involved in acquisition of contextual fear conditioning but not in memory consolidation of the learned response.  相似文献   

7.
The dorsal portion of the hippocampus is a limbic structure that is involved in fear conditioning modulation in rats. Moreover, evidence shows that the local dorsal hippocampus glutamatergic system, nitric oxide (NO) and cGMP modulate behavioral responses during aversive situations. Therefore, the present study investigated the involvement of dorsal hippocampus NMDA receptors and the NO/cGMP pathway in contextual fear conditioning expression. Male Wistar rats were submitted to an aversive contextual conditioning session and 48 h later they were re-exposed to the aversive context in which freezing, cardiovascular responses (increase of both arterial pressure and heart rate) and decrease of tail temperature were recorded. The intra-dorsal hippocampus administration of the NMDA receptor antagonist AP7, prior to the re-exposure to the aversive context, attenuated fear-conditioned responses. The re-exposure to the context evoked an increase in NO concentration in the dorsal hippocampus of conditioned animals. Similar to AP7 administration, we observed a reduction of contextual fear conditioning after dorsal hippocampus administration of either the neuronal NO synthase inhibitor N-propyl-l-arginine, the NO scavenger c-PTIO or the guanylate cyclase inhibitor ODQ. Therefore, the present findings suggest the possible existence of a dorsal hippocampus NMDA/NO/cGMP pathway modulating the expression of contextual fear conditioning in rats.  相似文献   

8.
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.  相似文献   

9.
The effects of CB1 antagonist/inverse agonists on the acquisition and consolidation of conditioned fear remain uncertain. Recent studies suggest that the CB1 antagonist/inverse agonist AM251 affects acquisition or consolidation of both contextual and discretely cued fear memories. AM251 is frequently referred to as a CB1 antagonist; however in vitro signal transduction assays indicate that this drug also elicits inverse agonist activity at CB1 receptors. The present studies were undertaken to compare the effects of AM251 on conditioned fear with those produced by AM4113, a novel CB1 antagonist with minimal inverse agonist activity. All drugs were administered prior to conditioning. In retention tests conducted two weeks after conditioning, both AM251 (4.0 mg/kg) and AM4113 (6.0 mg/kg)-treated animals exhibited reduced freezing during a conditioned tone cue played within a novel context. In contextual fear retention tests, animals previously treated with 4.0 or 8.0 mg/kg AM251 exhibited enhanced freezing. By contrast, no dose of AM4113 had any significant effect on contextual fear memory, which is consistent with the lower signal transduction activity of AM4113 at CB1 receptors compared to AM251. These results suggest that CB1 neutral antagonists may be less likely than CB1 inverse agonists to facilitate the acquisition or consolidation of contextual fear that may contribute to some clinical disorders.  相似文献   

10.
Bupropion, a norepinephrine and dopamine reuptake inhibitor and nicotinic acetylcholine receptor antagonist, facilitates smoking cessation and reduces some symptoms of nicotine withdrawal. However, the effects of bupropion on nicotine withdrawal-associated deficits in learning remain unclear. The present study investigated whether bupropion has effects on contextual and cued fear conditioning following withdrawal from chronic nicotine or when administered alone. Bupropion was administered alone for a range of doses (2.5, 5, 10, 20 or 40 mg/kg), and dose-dependent impairments in contextual and cued fear conditioning were observed (20 or 40 mg/kg). Follow-up studies investigated if bupropion disrupted acquisition or expression of fear conditioning. Bupropion (40 mg/kg) administration on training day only produced deficits in contextual fear conditioning. Alternatively, bupropion (20 or 40 mg/kg) administration during testing dose-dependently produced deficits in contextual and cued fear conditioning. To test the effect of bupropion on nicotine withdrawal, mice were withdrawn from 12 days of chronic nicotine (6.3 mg/kg/day) or saline treatment. Withdrawal from chronic nicotine disrupted contextual fear conditioning; however, 5 mg/kg bupropion reversed this deficit. Overall, these results indicate that a low dose of bupropion can reverse nicotine withdrawal deficits in contextual fear conditioning, but that high doses of bupropion produce deficits in fear conditioning.  相似文献   

11.
Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.  相似文献   

12.
BackgroundThe reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnect the hippocampus and the medial prefrontal cortex. The hippocampus and medial prefrontal cortex are both involved in the acquisition of trace fear conditioning, in which a conditioned stimulus (tone) and an aversive unconditioned stimulus (footshock) are paired but separated in time with a trace interval. Earlier, we demonstrated that ReRh inactivation during trace conditioning impaired the acquisition of cued fear. In contrast, ReRh inactivation during both conditioning and test resulted in heightened fear to tones during retrieval. Because there was a generalized contextual fear on top of heightened fear to tones in the latter experiment, here we aimed to examine the specific importance of the functional ReRh in cued fear and contextual fear through introducing prolonged contextual exposure.MethodsThe ReRh were pharmacologically inactivated with muscimol (or saline as controls) before each experimental session.ResultsWe showed that although ReRh inactivation before trace fear conditioning impaired the acquisition of cued fear, the animals still acquired a certain level of fear to the tones. However, without the functional ReRh throughout the entire behavioral sessions, these animals showed heightened contextual fear that did not decline much with the passage of time, which generalized to the other context, and fear to tones reoccurred when the tones were presented.ConclusionsOur results suggested that functional ReRh are important for proper acquisition and expression of fear to context and tones acquired under trace procedure.  相似文献   

13.
Emotional-associative learning represents a translational model for the development, maintenance and treatment of anxiety disorders such as panic disorder (PD). The exact nature of the underlying fear learning and extinction deficits however, remains under debate. Using a three-day paradigm to separate the distinct learning and consolidation processes, we aimed to gain insights into the neurofunctional substrates of altered fear conditioning, extinction training and recall in PD. In contrast to studies employing one-session fear conditioning paradigms, a differential fear conditioning and delayed extinction task was conducted for the purpose of disentangling neural networks involved in fear acquisition, extinction training and recall of extinction memories. Using functional magnetic resonance imaging (fMRI), quality-controlled datasets from 10 patients with PD and 10 healthy controls were available from three consecutive days (day 1: acquisition; day 2: extinction training; day 3: extinction recall) with neutral faces serving as CSs and an aversive auditory stimulus (panic scream) as US.PD patients showed heightened fear circuitry (e.g. right amygdala and left insula) activation during early acquisition and prolonged activation in the right insula, left inferior frontal operculum and left inferior frontal gyrus during extinction recall compared to healthy controls.Stronger neural activation in structures conferring defensive reactivity during early acquisition and extinction recall may indicate the accelerated acquisition of conditioned responses, while extinction recall may be attenuated as a function of PD pathophysiology. Future studies should investigate the predictive value of experimental measures of extinction recall for clinical relapse.  相似文献   

14.
15.
Recently, disruption of the endogenous cannabinoid (endocannabinoid, eCB) system was found to impair extinction in delay and contextual fear conditioning models. However, conditioning procedures used in that work precluded investigation of possible eCB effects on acquisition of learned fear. We therefore examined the role of eCBs in modulating fear responses using multiple-trial versions of trace (hippocampal-dependent) and delay (amygdala-dependent) Pavlovian fear conditioning. By administering the CB1 receptor antagonist AM251 (5 mg/kg, i.p) to C57/Bl/6 mice at various times, we systematically identified the stages of learning and memory (i.e. acquisition, consolidation, recall and extinction) that are modulated by eCB signaling. During tone (CS) - footshock (US) conditioning, AM251 enhanced acquisition of freezing behavior for both trace- and delay-conditioning protocols. CB1 antagonism also enhanced generalized fear (baseline freezing) and cued (CS) freezing during memory recall tests in a state-dependent manner for both trace and delay conditioned animals. Furthermore, in trace-conditioned animals, AM251 impaired extinction performance of both cued and generalized fear. CB1 antagonism did not affect short-term memory (STM) or long-term memory (LTM) consolidation processes. Together, these results suggest that during acquisition and recall of aversive learning, eCBs prevent the expression and retention of inappropriate generalized and learned responses. These findings have important implications for the therapeutic use of CB1 antagonists.  相似文献   

16.
Ketamine, a non-selective inhibitor of NMDA (N-methyl-D-aspartate) channels is used in anesthetic or sub-anesthetic doses to induce analgesia, amnesia, to suppress fear, anxiety and depression. Although the ketamine's effect on memory acquisition is known, its effects on other aspects of memory are controversial. Morris water maze is a task which assesses spatial learning and memory. This study was aimed to assess the ketamine's differential effect on water maze memory acquisition, consolidation and retrieval. Male Sprague-Dawley rats (250-350 g) were trained in water maze single training session. 24h later a probe trial which was consisted of a single trial without platform was done. To assess the effect of ketamine on water maze memory acquisition it was administered before training; to assess its effect on memory consolidation it was administered immediately after training and to assess its effect on memory retrieval it was injected before probe trial. Ketamine both in sub-anesthetic and anesthetic doses impaired water maze memory acquisition, its anesthetic dose but not sub-anesthetic dose impaired memory consolidation and on retrieval stage, both doses deteriorated memory retrieval. It seems that NMDA receptor activity is not just necessary during water maze memory acquisition but also their post-learning reactivation is required to maintain memory consolidation and retrieval.  相似文献   

17.
Excessive fear is a hallmark of several emotional and mental disorders such as phobias and panic disorders. Considerable attention is focused on defining the neurobiological mechanisms of the extinction of conditioned fear memory in an effort to identify mechanisms that may hold clinical significance for remediating aberrant fear memory. Serotonin modulates the acquisition and retention of conditioned emotional memory, and the serotonin 2A receptor (5HT2AR) may be one of the postsynaptic targets mediating such effects. Here we tested the hypothesis that the 5HT2AR regulates the consolidation and extinction of fear memory in male C57BL/6J mice. The influence of 5HT2ARs on memory consolidation was further confirmed with a novel object recognition task. With a trace fear conditioning paradigm, administration of the 5HT2AR agonist TCB-2 (1.0?mg/kg, i.p.) before the extinction test facilitated the acquisition of extinction of fear memory as compared to vehicle treatment. In contrast, administration of the 5HT2AR antagonist MDL 11,939 (0.5?mg/kg, i.p.) delayed the acquisition of extinction of fear memory. Further, the post-conditioning administration of TCB-2 enhanced contextual and cued fear memory, possibly by facilitating the consolidation of fear memory. Administration of TCB-2 also facilitated the acquisition of extinction of fear memory in delay fear conditioned mice. Stimulation or blockade of 5HT2ARs did not affect the encoding or retrieval of conditioned fear memory. Finally, administration of TCB-2 right after training in an object recognition task enhanced the consolidation of object memory. These results suggest that stimulation of 5HT2ARs facilitates the consolidation and extinction of trace and delay cued fear memory and the consolidation of object memory. Blocking the 5HT2AR impairs the acquisition of fear memory extinction. The results support the view that serotonergic activation of the 5HT2AR provides an important modulatory influence on circuits engaged during extinction learning. Taken together these results suggest that the 5HT2AR may be a potential therapeutic target for enhancing hippocampal and amygdala-dependent memory. This article is part of a Special Issue entitled 'Cognitive Enhancers'.  相似文献   

18.

Rationale

One promising approach in the current ambition to maximise treatment benefit for anxiety disorders is the pharmacological enhancement of cognitive–behavioural treatment efficacy, which can be experimentally modelled by pharmacological enhancement of extinction learning/consolidation. Noradrenaline (NA) is involved in memory consolidation, and NAergic innervations are found in brain areas implicated in fear conditioning and extinction.

Objectives

Thus, to enhance extinction memory consolidation through boosted NAergic signalling, we administered 4 mg reboxetine (RBX) immediately after extinction learning (day 2, 24 h after conditioning on day 1) in a randomised, placebo (PLC)-controlled design. At a delayed memory test (day 8), we probed cued and contextual fear and extinction memories before and after a reinstatement manipulation.

Results

After reinstatement, we find significantly enhanced amygdala and posterior hippocampus activation in the RBX group, areas implicated in fear memory expression, while the PLC group exhibited enhanced activation in areas associated with extinction memory expression (vmPFC, anterior hippocampus). No group differences were found in skin conductance responses.

Conclusions

Thus, our data do not support our hypothesis that enhancement of NA signalling may facilitate extinction memory consolidation and provide preliminary evidence that this might rather enhance fear memories on a neural but not physiological (skin conductance responses) level.  相似文献   

19.
Glutamatergic neurotransmission in the CNS plays a predominant role in learning and memory. While NMDA receptors have been extensively studied, less is known about the involvement of group I metabotropic glutamate receptors in this area. The purpose of the present study was to evaluate the contribution of mGluR1 and mGluR5 to both acquisition and expression of behaviours in contextual and auditory fear conditioning models. The effects of both receptor types were tested using selective antagonists: (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM) for mGluR1, and [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) for mGluR5. Their effects on acquisition were compared to those of the NMDA receptor antagonist (+)MK-801, and the unselective muscarinic antagonist scopolamine, while diazepam and citalopram served as reference compounds in the expression experiments. EMQMCM (1.25 to 5 mg/kg) impaired acquisition of contextual fear conditioning (CFC), but not auditory fear conditioning (AFC). Similarly, administration of MTEP during the acquisition phase impaired learning in CFC at doses of 2.5 to 10 mg/kg, but was ineffective in AFC. When given before the retention test, both EMQMCM (1 and 3 mg/kg) and MTEP (3 mg/kg) impaired expression of CFC. In contrast, MTEP (2.5 and 5 mg/kg) blocked the expression of AFC, while EMQMCM was ineffective. In conclusion, group I mGlu receptors are shown to be involved in the acquisition of hippocampus-dependent CFC, but not hippocampus-independent AFC. Unlike mGluR5, mGluR1 does not seem be involved in expression of AFC.  相似文献   

20.
It has been known that environmental enrichment leads to better learning and memory in mice. However, the molecular mechanisms are not known. In this study, we used the 10th-12th of the NR2B transgenic (Tg) lines, in which the NMDA receptor function is enhanced via the NR2B subunit transgene in neurons of the forebrain, to test the hypothesis of the involvement of NMDA receptor function in enrichment-induced better learning and memory. Consistent with our previous results, both larger long-term potentiation (LTP) in the hippocampus and superior learning and memory were observed in naive NR2B Tg mice even after the 10th-12th generation of breeding. After enrichment, wild-type mice exhibited overall improvement in their performances in contextual and cued conditioning, fear extinctions, and novel object recognition tasks. Interestingly, the same enrichment procedures could not further increase the performance of NR2B Tg mice in contextual conditioning, cued conditioning, or fear extinction, thereby indicating that enhanced NMDA receptor function can occlude these enrichment effects. However, we found that in the novel object recognition task enriched NR2B Tg mice exhibited much longer recognition memory (up to 1 week), compared to that (up to 3 days) in naive NR2B Tg mice. Furthermore, our biochemical experiments showed that enrichment significantly increased protein levels of GluR1, NR2B, and NR2A subunits of glutamate receptors in both wild-type and NR2B Tg mice. Therefore, our results suggest an interactive nature of molecular pathways involved in both environmental and genetic NMDA receptor manipulations for enhancing learning and memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号