首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Among the nonsteroid antiinflammatory drugs there is generally a close correlation between the potency of their inhibition of arachidonate cyclooxygenase, and thus prostaglandin production, and their antiinflammatory activity. One anomaly in this generalization is that whereas aspirin and salicylate are equipotent as antiinflammatory agents, salicylate is less active than aspirin in inhibiting prostaglandin production in vitro. Using rats, we have now measured the concentrations of aspirin and salicylate in plasma and in inflammatory exudates after their oral administration and determined their effects on thromboxane B2 production in clotting blood and prostaglandin (PG) E2 concentrations in the exudates. We have also investigated the effects of both drugs, at concentrations achieved in the exudates, on PGE2 production by nonproliferative explants of acutely inflamed tissues. Aspirin is rapidly metabolized, resulting in peak concentrations of salicylate in the plasma and exudate that exceeded peak concentrations of aspirin by 30- to 50-fold. Furthermore, concentrations of aspirin rapidly declined, whereas high concentrations of salicylate persisted in the plasma and in the exudate for up to 6 hr after a single administration of aspirin. Both drugs reduced PGE2 concentrations in inflammatory exudates by 50-70%, but aspirin was considerably more potent than salicylate in inhibiting thromboxane B2 production in clotting blood. The concentration of salicylate found in inflammatory exudates 6 hr after the administration of aspirin was sufficient to reduce PGE2 production in explants by more than 50%. We conclude that the antiinflammatory action of both drugs depends on the inhibition of PGE2 synthesis by salicylate.  相似文献   

3.
The anti-inflammatory effects of high-dose salicylates are well recognized, incompletely understood and unlikely due entirely to cyclooxygenase (COX) inhibition. We have previously reported a role for activation of the kinase Erk in CD11b/CD18 integrin-dependent adhesiveness of human neutrophils, a critical step in inflammation. We now report the effects of salicylates on neutrophil Erk and adhesion. Exposure of neutrophils to aspirin or sodium salicylate (poor COX inhibitor) inhibited Erk activity and adhesiveness of formylmethionyl-leucyl-phenylalanine- and arachidonic acid-stimulated neutrophils, consistent with anti-inflammation but not COX inhibition (IC50s = 1–8 mM). In contrast, indomethacin blocked neither Erk nor adhesion. Inhibition of Mek (proximal activator of Erk) also blocked stimulation of Erk and adhesion by formylmethionyl-leucyl-phenylalanineand arachidonic acid. Salicylate inhibition of Erk was independent of protein kinase A activation and generation of extracellular adenosine. These data are consistent with a role for Erk in stimulated neutrophil adhesion, and suggest that anti-inflammatory effects of salicylates may be mediated via inhibition of Erk signaling required for integrin-mediated responses.  相似文献   

4.
Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was independent of cyclooxygenase (COX) inhibition. First, the non-COX inhibitor, sodium salicylate, was as potent as aspirin in inhibiting lipid body formation elicited by cis-fatty acids. Second, cis-fatty acid-induced lipid body formation was not impaired in macrophages from COX-1 or COX-2 genetically deficient mice. Finally, NSAIDs inhibited arachidonic acid-induced lipid body formation likewise in macrophages from wild-type and COX-1- and COX-2-deficient mice. An enhanced capacity to generate eicosanoids developed after 1 hr concordantly with cis-fatty acid-induced lipid body formation. Arachidonic and oleic acid-induced lipid body numbers correlated with the enhanced levels of leukotrienes B4 and C4 and prostaglandin E2 produced after submaximal calcium ionophore stimulation. Aspirin and NSAIDs inhibited both induced lipid body formation and the enhanced capacity for forming leukotrienes as well as prostaglandins. Our studies indicate that lipid body formation is an inducible early response in leukocytes that correlates with enhanced eicosanoid synthesis. Aspirin and NSAIDs, independent of COX inhibition, inhibit cis-fatty acid-induced lipid body formation in leukocytes and in concert inhibit the enhanced synthesis of leukotrienes and prostaglandins.  相似文献   

5.
The effect of salicylates on erythrocyte 2,3-diphosphoglycerate (2,3-DPG) and adenosine triphosphate (ATP) was studied in vivo in 3 groups of healthy subjects receiving acetylsalicylic acid (18 persons), sodium salicylate (5 persons) and salicylamide (7 persons) in therapeutic dosage. No effect was found on 2,3-DPG in any of the 3 groups. ATP was significantly decreased (p <0.05) when acetylsalicylic acid or sodium salicylate was given.  相似文献   

6.
Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A2 formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we report the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.  相似文献   

7.
Understanding of the antiinflammatory actions of nonsteroidal drugs is incomplete, but these actions are believed to occur in the periphery, without any contribution from the central nervous system. Recent research on the antipyretic antiinflammatory neuropeptide alpha-melanocyte-stimulating hormone indicates that it can act centrally to inhibit peripheral inflammation; this raises the possibility that other agents, such as nonsteroidal antiinflammatory drugs, may have similar activity. In the present research both lysine acetylsalicylate and sodium salicylate inhibited edema, induced in the mouse ear by topical application of picryl chloride, when injected into the lateral cerebral ventricle. This inhibitory activity on a measure of acute inflammation was not due to escape of the drugs into the periphery, because systemic injection of doses that were effective centrally did not affect inflammation. In contrast, central administration of a dose of indomethacin that was antiinflammatory when given intraperitoneally did not inhibit peripheral inflammation. Thus indomethacin apparently lacks the central antiinflammatory action of the salicylates. This observation, plus our inability to demonstrate either an antiinflammatory effect of intracerebroventricular dexamethasone, a prostaglandin inhibitor, or a pro-inflammatory influence of prostaglandin E2, suggests that prostaglandins are not important to central modulation of inflammation. The results indicate that, in addition to having central influences on fever and pain, salicylates can act within the brain to inhibit acute inflammation in the periphery.  相似文献   

8.
Glucocorticoids and nonsteroidal antiinflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory and immune diseases. Nitric oxide (NO) has a diversity of physiological functions, but its excess production has been implicated in the inflammatory process. The present study was designed to elucidate the mechanisms by which glucocorticoids and NSAIDs affect inducible nitric oxide synthase (iNOS) expression in cultured rat vascular smooth muscle cells (VSMCs). Both interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha potently stimulated nitrite/nitrate (NOx) production with a concomitant expression of iNOS mRNA and protein as demonstrated by Northern and Western blot analysis, respectively. Both IL-1beta and TNF-alpha activated nuclear factor (NF)-kappaB as demonstrated by electrophoretic mobility shift assay. Dexamethasone, salicylate and aspirin, but not indomethacin, dose dependently inhibited cytokine-stimulated NOx production and iNOS protein expression. Dexamethasone decreased cytokine-induced NF-kappaB activation and iNOS mRNA expression, but neither salicylate nor aspirin affected NF-kappaB activation or iNOS mRNA expression. IL-1beta caused a rapid increase in phosphorylated IkappaB-alpha levels and subsequent transient decrease in IkappaB-alpha levels, an inhibitor of NF-kappaB, as revealed by Western blot analysis using specific antibodies for phosphorylated and nonphosphorylated IkappaB-alpha. These effects were blocked by pretreatment with dexamethasone. Aspirin dose dependently inhibited iNOS enzymatic activity, whereas salicylate and dexamethasone had limited effect. The present study demonstrates that 1) inhibitory effect of dexamethasone on cytokine-induced iNOS expression and NO production in rat VSMCs, although potentially acting at multiple levels, is partly mediated by inhibition of NF-kappaB activation resulting from decreased phosphorylation and degradation of IkappaB-alpha, 2) both salicylate and aspirin inhibit cytokine-stimulated NO production at translational and/or posttranslational levels without affecting NF-kappaB- mediated iNOS gene expression, and 3) aspirin directly inhibits iNOS enzyme activity. These data suggest the differential inhibitory mechanisms of iNOS-mediated NO synthesis by glucocorticoids and NSAIDs in the vasculature.  相似文献   

9.
10.
It has been reported that salicylates (sodium salicylate and aspirin) inhibit the replication of flaviviruses, such as Japanese encephalitis virus and dengue virus. Therefore, we considered it important to test whether acetylsalicylic acid (ASA) had anti-hepatitis C virus (HCV) activity. To this end, we examined the effects of ASA on viral replication and protein expression, using an HCV subgenomic replicon cell culture system. We incubated Huh7 replicon cells with 2-8 mM ASA for different times and measured HCV-RNA and protein levels by northern blot, real-time polymerase chain reaction, and western analysis, respectively. We found that ASA had a suppressive effect on HCV-RNA and protein levels (nearly 58%). ASA-dependent inhibition of HCV expression was not mediated by the 5'-internal ribosome entry site or 3'-untranslated regions, as determined by transfection assays using bicistronic constructs containing these regulatory regions. However, we found that HCV-induced cyclooxygenase 2 (COX-2) messenger RNA and protein levels and activity and these effects were down-regulated by ASA, possibly by a nuclear factor kappa B-independent mechanism. We also observed that the ASA-dependent inhibition of viral replication was due in part to inhibition of COX-2 and activation of p38 and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2) mitogen-activated protein kinases (MAPKs). Inhibition of these kinases by SB203580 and U0126, respectively, and by short interfering RNA silencing of p38 and MEK1 MAPK prevented the antiviral effect of ASA. Taken together, our findings suggest that the anti-HCV effect of ASA in the Huh7 replicon cells is due to its inhibitory effect on COX-2 expression, which is mediated in part by the activation of MEK1/2/p38 MAPK. CONCLUSION: These findings suggest the possibility that ASA could be an excellent adjuvant in the treatment of chronic HCV infection.  相似文献   

11.
Constitutive cyclooxygenase (COX-1; prostaglandin-endoperoxide synthase, EC 1.14.99.1) is present in cells under physiological conditions, whereas COX-2 is induced by some cytokines, mitogens, and endotoxin presumably in pathological conditions, such as inflammation. Therefore, we have assessed the relative inhibitory effects of some nonsteroidal antiinflammatory drugs on the activities of COX-1 (in bovine aortic endothelial cells) and COX-2 (in endotoxin-activated J774.2 macrophages) in intact cells, broken cells, and purified enzyme preparations (COX-1 in sheep seminal vesicles; COX-2 in sheep placenta). Similar potencies of aspirin, indomethacin, and ibuprofen against the broken cell and purified enzyme preparations indicated no influence of species. Aspirin, indomethacin, and ibuprofen were more potent inhibitors of COX-1 than COX-2 in all models used. The relative potencies of aspirin and indomethacin varied only slightly between models, although the IC50 values were different. Ibuprofen was more potent as an inhibitor of COX-2 in intact cells than in either broken cells or purified enzymes. Sodium salicylate was a weak inhibitor of both COX isoforms in intact cells and was inactive against COX in either broken cells or purified enzyme preparations. Diclofenac, BW 755C, acetaminophen, and naproxen were approximately equipotent inhibitors of COX-1 and COX-2 in intact cells. BF 389, an experimental drug currently being tested in humans, was the most potent and most selective inhibitor of COX-2 in intact cells. Thus, there are clear pharmacological differences between the two enzymes. The use of such models of COX-1 and COX-2 activity will lead to the identification of selective inhibitors of COX-2 with presumably less side effects than present therapies. Some inhibitors had higher activity in intact cells than against purified enzymes, suggesting that pure enzyme preparations may not be predictive of therapeutic action.  相似文献   

12.
Stimulation of fetal hepatocytes with proinflammatory cytokines and lipopolysaccharide promotes the expression of cyclooxygenase-2 (COX-2) and nitric oxide synthase-2 (NOS-2), whereas the hepatoma cell line HepG2 exhibits a behavior similar to that described for adult hepatocytes and only expresses NOS-2. The effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the inflammatory onset was analyzed in these cells since in addition to the inhibition of cyclooxygenase activity, these drugs interfere with other signaling pathways related with the inflammatory response. Inhibition of nuclear factor kappaB (NF-kappaB) activation by aspirin and salicylate has been described in many cells. However, incubation of hepatic cells with salicylate, aspirin, indomethacin, ibuprofen, or 5,5-dimethyl-3(3-fluorophenyl)-4-(4-methylsulfonyl)phenyl-2(5H)-furanone (DFU), a fluorinated derivative of rofecoxib, failed to impair IkappaB kinase activity, the processing of NF-kappaB, and the expression of NF-kappaB-dependent genes, such as NOS-2. Moreover, selective COX-2 inhibitors did not promote apoptosis in hepatocytes under inflammatory conditions, suggesting that prostaglandins are not required to maintain cell viability. In conclusion, these data indicate that hepatocytes are not sensitive to NF-kappaB inhibition by NSAIDs and that these drugs, especially the COX-2 selective inhibitors, do not alter cell viability.  相似文献   

13.
Nonsteroidal antiinflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory diseases, but significant side effects such as gastrointestinal erosion and renal damage limit their use. NSAIDs inhibit the enzyme cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostaglandins (PGs) and thromboxane. Two forms of COX have been identified--COX-1, which is constitutively expressed in most tissues and organs, and the inducible enzyme, COX-2, which has been localized primarily to inflammatory cells and tissues. In an animal model of acute inflammation (injection of carrageenan into the footpad), edema was produced that was associated with marked accumulation of COX-2 mRNA and thromboxane. A selective inhibitor of COX-2 (SC-58125) inhibited edema at the inflammatory site and was analgesic but had no effect on PG production in the stomach and did not cause gastric toxicity. These data suggest that selective inhibition of COX-2 may produce superior antiinflammatory drugs with substantial safety advantages over existing NSAIDs.  相似文献   

14.
Glucocorticoids profoundly influence immune responses, and synthetic glucocorticoids are widely used clinically for their potent antiinflammatory effects. Endogenous glucocorticoid action is modulated by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD). In vivo, 11β-HSD1 catalyzes the reduction of inactive cortisone or 11-dehydrocorticosterone into active cortisol or corticosterone, respectively, thereby increasing intracellular glucocorticoid levels. 11β-HSD2 catalyzes the reverse reaction, inactivating intracellular glucocorticoids. Both enzymes have been postulated to modulate inflammatory responses. In the K/BxN serum transfer model of arthritis, 11β-HSD1-deficient mice showed earlier onset and slower resolution of inflammation than wild-type controls, with greater exostoses in periarticular bone and, uniquely, ganglion cysts, consistent with greater inflammation. In contrast, K/BxN serum arthritis was unaffected by 11β-HSD2 deficiency. In a distinct model of inflammation, thioglycollate-induced sterile peritonitis, 11β-HSD1-deficient mice had more inflammatory cells in the peritoneum, but again 11β-HSD2-deficient mice did not differ from controls. Additionally, compared with control mice, 11β-HSD1-deficient mice showed greater numbers of inflammatory cells in pleural lavages in carrageenan-induced pleurisy with lung pathology consistent with slower resolution. These data suggest that 11β-HSD1 limits acute inflammation. In contrast, 11β-HSD2 plays no role in acute inflammatory responses in mice. Regulation of local 11β-HSD1 expression and/or delivery of substrate may afford a novel approach for antiinflammatory therapy.  相似文献   

15.
OBJECTIVES: The aim of this study was to determine whether selective cyclooxygenase-2 (COX-2) inhibition with rofecoxib can modulate endothelial dysfunction and levels of circulating inflammatory markers in patients with established coronary artery disease (CAD). BACKGROUND: Expression of COX-2 is upregulated in atherosclerosis. Thus, it has been hypothesized that COX-2 may contribute to atherogenesis by producing eicosanoids, which mediate vascular inflammation and endothelial dysfunction. METHODS: In a randomized, double-blind, placebo-controlled, parallel-design trial, we studied the vascular effects of rofecoxib on brachial artery vasoreactivity and inflammatory markers in 60 patients with angiographically proven CAD who were taking concomitant low-dose aspirin. Patients were randomly assigned to receive either rofecoxib (25 mg/day; n = 30) or placebo (n = 30) for eight weeks. Brachial artery endothelium-dependent flow-mediated dilation (FMD), endothelium-independent nitroglycerin-mediated dilation (NMD), and inflammatory markers (i.e., high-sensitivity C-reactive protein [CRP], soluble intercellular adhesion molecule-1 [sICAM-1], and soluble interleukin-6 receptor [sIL-6r]) were measured at baseline and after eight-week follow-up. RESULTS: Baseline clinical characteristics were similar in the two groups. After eight weeks of treatment, FMD did not significantly change in either the rofecoxib or placebo group (4.0 +/- 3.0% to 4.0 +/- 3.8% vs. 2.7 +/- 2.7% to 3.1 +/- 2.7%, respectively; p = 0.6 by two-way analysis of variance). Similarly, NMD remained unchanged in both groups. Levels of CRP, sICAM-1, and sIL-6r were not significantly altered in either the rofecoxib or placebo group. CONCLUSIONS: The addition of selective COX-2 inhibition with rofecoxib did not appear to have any favorable or adverse effects on endothelial dysfunction or vascular inflammation in patients with CAD using concomitant low-dose aspirin.  相似文献   

16.
Decreased functional beta-cell mass in type 1 and type 2 diabetes is due to beta-cell apoptosis and impaired secretory function suggested to be mediated, in part, by immune- and/or high-glucose-induced production of IL-1beta acting through the nuclear factor kappaB (NFkappaB)/Fas pathway. The aim of this study was to determine whether two drugs believed to block NFkappaB activation, the thiazolidinedione (glitazone) pioglitazone and the nonsteroidal antiinflammatory drug sodium salicylate, can protect human beta-cells against the toxic effects of IL-1beta and high glucose in vitro. Human islets were maintained in culture 2-4 d at 100 mg/dl (5.5 mm) glucose with or without (control) IL-1beta or at 600 mg/dl (33.3 mm) glucose. IL-1beta and 600 mg/dl glucose increased beta-cell apoptosis and abolished short-term glucose-stimulated insulin secretion. Both drugs protected partially against loss of glucose-stimulated insulin secretion and prevented completely increased apoptosis caused by IL-1beta or 600 mg/dl glucose. IL-1beta secretion from islets was increased by 4-d culture at 600 mg/dl, and this was blocked by pioglitazone. Both drugs prevented activation of beta-cell NFkappaB by high glucose. Pioglitazone and sodium salicylate thus protect human islets against the detrimental effects of IL-1beta and high glucose by blocking NFkappaB activation and may therefore be useful in retarding the manifestation and progression of diabetes.  相似文献   

17.
18.
V Burke  M Gracey 《Gut》1980,21(8):683-688
This study was done to determine whether salicylate could affect alterations in intestinal absorption induced by preparations of enterotoxigenic micro-organisms. It was found in rats that salicylate increased intestinal monosaccharide uptake in vitro and reversed the inhibitory effects induced by cell-free preparations of Staphylococcus sp., Candida sp. and Klebsiella sp. In vivo, salicylates increased net water absorption in rat jejunum exposed to cell-free preparations of various micro-organisms. Increase in net fluid flux occurred after subcutaneous injection only with bacteria which stimulate adenylate cyclase activity. These observations suggest that the absorptive and anti-secretory effects of aspirin are cyclic nucleotide dependent. The potential clinical role of salicylates as anti-secretory agents in diarrhoeal diseases, particularly in children, requires further investigation.  相似文献   

19.
20.
BACKGROUND & AIMS: It has been variably suggested that nonselective NSAIDs and cyclooxygenase (COX)-2 selective inhibitors aggravate or ameliorate clinical disease activity in patients with inflammatory bowel disease. We assessed the effect of these drugs in patients with inflammatory bowel disease (n = 209) and the possible mechanisms. METHODS: First, patients with quiescent Crohn's disease and ulcerative colitis received the non-NSAID analgesic acetaminophen (n = 26) and the conventional NSAIDs naproxen (n = 32), diclofenac (n = 29), and indomethacin (n = 22) for 4 weeks. The Harvey-Bradshaw index was used to define relapse. Second, to assess the mechanism of relapse, intestinal inflammation was quantitated (fecal calprotectin) before and during treatment (20 patients/group) with acetaminophen, naproxen (topical effect, COX-1 and -2 inhibitor), nabumetone (COX-1 and -2 inhibitor), nimesulide (selective COX-2 inhibitor), and low-dose aspirin (selective COX-1 inhibition). RESULTS: Nonselective NSAIDs were associated with a 17%-28% relapse rate within 9 days of ingestion. No patient had an early relapse on acetaminophen, nimesulide, or aspirin, whereas those on naproxen and nabumetone (20%) experienced relapse. These clinical relapses were associated with escalating intestinal inflammatory activity. CONCLUSIONS: NSAID ingestion is associated with frequent and early clinical relapse of quiescent inflammatory bowel disease, and the mechanism appears to be due to dual inhibition of the COX enzymes. Selective COX-2 inhibition with nimesulide and COX-1 inhibition with low-dose aspirin appear to be well-tolerated in the short-term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号