首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 390 毫秒
1.
【目的】研究非病毒基因载体聚乙二醇(PEG)-聚乙烯亚胺(PEI)共聚物的组成对体外介导基因传递的影响。【方法】将含PEG不同分子量和接枝量的PEG-PEI共聚物,与DNA形成复合物。考察带正电荷的PEI与带负电荷的DNA的相互作用,测定了PEG-PEI/DNA复合物的粒径和Zeta电位,及对Hela细胞的毒性和转染率。【结果】PEG侧链并未明显影响PEI与DNA形成复合物的能力;连接PEG5000能够明显降低复合物的粒径;复合物的Zeta电位随着PEG接枝量的增加而降低;细胞毒性不依赖于PEG的分子量的变化,而是取决于PEG的接枝量;共聚物PEG-PEI(2-25-1)被证实为较有效的介导体外基因传递的复合物。【结论】共聚物的结构组成对DNA复合物的理化性质、毒性和转染率都产生较大的影响。  相似文献   

2.
目的 研究非病毒基因载体聚乙二醇单甲醚(MPEG)-聚-L-赖氨酸(PLL)共聚物的组成在体外介导基因传递的影响.方法 将含有不同量MPEG的MPEG-PLL共聚物,与DNA形成复合物.测定MPEG-PLL/DNA复合物的粒径、Zeta电位,并进行凝胶阻滞分析,观察其对Hela细胞的毒性和转染率.结果 MPEG侧链并未...  相似文献   

3.
目的:研究氮磷比(N/P值)对非病毒基因载体聚乙烯亚胺(polyethylenimine,PEI)介导骨形态发生蛋白-7(bone morphogenetic protein-7,BMP-7)基因转染骨髓间充质干细胞(bone mesenchymal stem cells,MSC)的影响,优化PEI/DNA复合物制备参数,为其应用于骨组织工程提供实验基础.方法:制备不同N/P值的含BMP-7基因的PEI/DNA复合物,测定复合物的粒径、Zeta电位以及PEI保护DNA抵御DNA酶消化的能力,检测复合物对MSC细胞的毒性以及转染表达BMP-7蛋白量.结果:当N/P值在3-30范围时,形成微粒粒径稳定在100 ~ 150 nm;当N/P值在5~ 30范围时,Zeta电位稳定在30 ~ 40 mV.当N/P值>3时,随着PEI的增加,PEI对DNA的保护功能增强.当N/P值为7~10时,可以获得最高的基因转染效率.当N/P值大于10时,细胞毒性明显增加.结论:N/P值为7~ 10时,含BMP-7基因的PEI/DNA复合物细胞毒性小,转染效率高.  相似文献   

4.
目的:构建一种能有效抑制肿瘤,且具有一定转染效率的基因载体.方法:在二氯甲烷溶液中将PEG与PEI 600偶联,加入四氯化铂的乙醇溶液进行配位反应,生成PEG-PEI-Pt复合物.通过XRD、UV-VIS 和FT-IR对配位化合物进行结构表征.凝胶电泳阻滞实验测定PEG-PEI-Pt复合物对DNA的浓缩能力,MTT法测定其在Hela、B16、A293和COS-7细胞上的毒性,体外细胞转染实验测定其在A293和B16细胞上的转染率.结果:XRD、UV-VIS和FT-IR测定结果表明PEI 600与PEG的偶联和四氯化铂的配位成功.凝胶电泳组织实验表明PEG-PEI-Pt复合物在与DNA的质量比为0.4∶1时完全阻滞DNA的迁移;MTT结果表明四氯化铂的配位增加了复合物的毒性;体外转染结果表明该复合物的转染率比PEI 600高.结论:实验成功构建了络合四氯化铂的PEG-PEI基因新载体.  相似文献   

5.
目的:研究合成的以聚乙烯亚胺(PEI)为内核、聚赖氨酸(PLL)为外围的星形嵌段共聚物PEI-g-PLL的基因载体性能。方法:将PEI-g-PLL与pDNA复合形成PEI-g-PLL/pDNA复合物,并用琼脂糖凝胶电泳和zeta电位粒径分析仪表征;CCK-8法检测聚合物的HEK293细胞毒性;检测复合物在HEK293转染后Luciferase表达量以评价其转染效率。结果:PEI-g-PLL能复合pDNA形成尺寸约为200 nm的复合物,在HEK293中有较高的转染效率和较低的细胞毒性。结论:合成的PEI-g-PLL可用作潜在的基因载体。  相似文献   

6.
目的: 考察聚乙烯亚胺(PEI)相对分子质量、氮磷比(N/P比)、溶剂、离子强度等对PEI/DNA复合物形成、表面性质以及细胞转染效率的影响。 方法: 制备不同相对分子质量PEI/DNA复合物,通过凝胶电泳和紫外吸收检测确定PEI与DNA的复合能力(N/P比),测定不同溶剂、离子强度下的粒径和Zeta电位,考察复合物在HepG2细胞中的转染情况。 结果: PEI与DNA的复合能力与PEI的相对分子质量呈正相关,不同溶剂、离子强度会影响复合物的表面性质,以磷酸盐缓冲液(PBS)为溶剂、PEI(25 kD)为载体、N/P比为12~15时,PEI/DNA复合物细胞转染效率明显优于质粒DNA,仅略低于阳性对照组。 结论: 经优化的PEI/DNA复合物可显著提高DNA在细胞中的转染效率。  相似文献   

7.
目的:合成以聚乙烯亚胺(PEI)为内核、聚赖氨酸(PLL)为内层、聚乙二醇(PEG)为外围的系列星形三嵌段共聚物(PEI-g-(PLL-b-PEG)),研究其作为基因载体的性能。方法:用超支化PEI表面氨基引发赖氨酸酸酐的开环聚合,再将活化的PEG以不同接枝率修饰得PEI-g-(PLL-b-PEG)。通过体外细胞实验测定系列共聚物对293T细胞毒性和转染效率。结果:成功合成PEI-g-(PLL-b-PEG)系列共聚物,在共聚物外围接入少量PEG时,不仅可降低细胞毒性,还可有效提高转染效率。结论:PEI-g-(PLL-b-PEG)可用作潜在的非病毒基因载体。  相似文献   

8.
目的 构建新型低相对分子质量聚乙烯亚胺(PEI)耦联载体,评估其对原代大鼠骨髓间充质干细胞(BMSCs)的细胞毒性及转染效率。方法 利用可降解的氨基甲酸酯化学键耦联相对分子质量为800的PEI 制备低相对分子质量的PEI (PEI 800)衍生物纳米非病毒载体,命名为PEI-Bu;进一步对PEI-Bu压缩DNA的能力、体外降解效率及对原代BMSCs的细胞毒性和基因转染效率进行生物学评价。结果 PEI-Bu能有效压缩质粒DNA并形成稳定的复合物,所形成的复合物粒径约50 nm。与实验室常用的已商品化的相对分子质量为25 000 的PEI (PEI 25 000)相比,PEI-Bu对大鼠原代BMSCs的细胞毒性较小,且基因转染效率更高。结论 作为一种新型的非病毒纳米载体,PEI-Bu能有效转染BMSCs,且安全性较高,具有进一步研发的价值。  相似文献   

9.
目的合成一种生物可降解与低细胞毒性的两亲性嵌段共聚物PLGA-b-(PEI-co-PEG),并研究其胶束化行为。方法采用 开环聚合法合成PLGA;使用低相对分子质量的聚乙烯亚胺(PEI1800)与聚乙二醇(PEG2000)相互交联合成水溶性PEI-co-PEG共聚 物;采用脱水缩合法,合成PLGA-b-(PEI-co-PEG)。根据PEI-co-PEG在37 ℃ PBS中孵育不同时间的相对分子质量变化情况, 评估其生物降解性。通过MTT法测定PLGA-b-(PEI-co-PEG)与PEI-co-PEG对MCF-7的细胞毒性。采用标准透析法制备电正 性PLGA-b-(PEI-co-PEG)胶束,使用马尔文激光粒度分析仪测定其粒径分布与Zeta电位;采用简单混合法制备PLGA-b-(PEIco- PEG)胶束/胰岛素复合物;使用透射电镜表征胶束及胶束/胰岛素复合物的形貌。采用荧光猝灭法,测定胶束/胰岛素复合物 在不同浓度盐离子溶液中的稳定性。结果成功合成了两亲性嵌段共聚物PLGA-b-(PEI-co-PEG)。PEI-co-PEG在37 ℃ PBS 溶液中的降解半衰期约为48 h。PLGA-b-(PEI-co-PEG)与PEI-co-PEG对MCF-7的半数抑制浓度(IC50)分别为1375.7 μg/mL与 425.1 μg/mL。PLGA-b-(PEI-co-PEG)胶束(粒径:99.5±2.61 nm,Zeta电位:52.9±2.38 mV)可与胰岛素形成纳米尺寸的胶束/胰 岛素复合物;胶束/胰岛素复合物在150 mmol/L NaCl溶液中的解离率为27.6%。结论PEI-co-PEG在体外条件下展现了较好的 降解性。PLGA-b-(PEI-co-PEG)的细胞毒性显著低于PEI-co-PEG(P<0.05)。PLGA-b-(PEI-co-PEG)胶束/胰岛素复合物在生 理条件下具有良好的盐离子稳定性。  相似文献   

10.
梁兵  袁芳  杨宁  殷建瑞  蒲蜀湘  解龙昌  高庆春  高聪 《重庆医学》2012,41(18):1792-1794,1798
目的应用3种不同类型基因导入系统携带能表达绿色荧光蛋白的pAAV-EGFP质粒转染两类神经元细胞株,并对细胞毒性和转染效果进行比较。方法 LipofectAMINE 2000、聚乙烯亚胺(polyethylenimine,PEI,相对分子质量为25×103)及该课题组合成的PEI-聚乙二醇(polyethyleneglycol,PEG)4.6在SH-SY5Y神经母细胞瘤细胞和C6胶质瘤细胞中的转染效果,通过MTT法检测细胞存活率,倒置显微镜荧光观察法和流式细胞仪法检测转染效果。结果 MTT检测发现,在C6胶质瘤细胞中,PEG-PEI 4.6的细胞存活率为83%,比PEI(70%)和LipofectAMINE 2000(73%)的细胞存活率要高(P<0.05);但Lipo-fectAMINE 2000和PEI的细胞存活率比较,差异无统计学意义(P>0.05);在SH-SY5Y神经母细胞瘤细胞中的检测结果与C6胶质瘤细胞类似。倒置显微镜观察发现,在C6胶质瘤细胞中,PEG-PEI 4.6的细胞荧光表达效果比LipofectAMINE2000和PEI要好;而在SH-SY5Y神经母细胞瘤细胞中,LipofectAMINE 2000的荧光表达效果比另外两种复合物的效果好,同时PEG-PEI 4.6的荧光表达效果比PEI要好。流式细胞仪检测发现在C6胶质瘤细胞中,PEG-PEI 4.6的转染效率最好,为23.2%;Lipo-fectAMINE2000其次,为16.9%;PEI最差,为12.6%,三者两两比较差异有统计学意义(P<0.05)。在SH-SY5Y神经母细胞瘤细胞中则是LipofectAMINE 2000的转染效率最好,PEG-PEI 4.6其次,PEI最差,转染效率分别为22.3%、17.2%、10.6%,三者两两比较差异有统计学意义(P<0.05)。结论 LipofectAMINE 2000和PEG-PEI 4.6都可作为目前神经系统基因转染的传输载体。  相似文献   

11.
目的 制备聚乙烯亚胺载基因纳米颗粒并研究其理化性质和体外转染活性.方法 通过自由基聚合法制备出聚乙烯亚胺空载纳米粒后,用绿色荧光蛋白(PEGFP-C1)质粒做报告基因,以静电吸附的方式将PEGFP-C1质粒DNA和聚乙烯亚胺结合形成聚乙烯亚胺裁基因纳米粒,用透射电镜观察其形态特征,激光粒度分析仪测定其粒度分布、表面电位(Zeta电位),MTT试验检测聚乙烯亚胺纳米载体HepG2和L-02的细胞毒作用,用体外基因转染实验评价纳米粒的转染活性,用流式细胞仪测定转粢效率.结果 聚乙烯亚胺与聚甲基丙烯酸甲酯形成表面带正电荷的纳米粒,呈单分散球形,平均粒径为102.62 nm,Zeta电位为+46.2 mV.当PEGFP-C1质粒DNA与纳米粒的N/P为3.2:1以上时,两者方可完全结合形成复合物.PEI纳米粒可携带质粒DNA进入COS7细胞,并突破吞噬小泡释放质粒于细胞质,最终质粒聚集于细胞核内进行表达.结论 聚乙烯亚胺纳米粒可以用作基因递送的非病毒栽体系统,值得进一步研究.  相似文献   

12.
用于基因递送的普朗尼克化聚酰胺-胺树状聚合物研究   总被引:1,自引:1,他引:0  
目的合成P123修饰的聚酰胺-胺(PAMAM)聚合物,并研究其作为基因递送载体的可行性。方法合成及表征了普朗尼克P123修饰的PAMAM树状聚合物,选择A375、293T及HepG2细胞对其进行毒性实验(MTT法),选择HepG2细胞对其与质粒DNA形成的复合物进行转染实验,并与聚乙烯亚胺(PEI)以及未修饰的PAMAM进行比较。结果聚合物有较高的纯度,粒径电位结果表明复合物符合基因递送的要求,P123修饰PAMAM可以降低细胞毒性,增加细胞体外转染效率。结论 P123修饰的PAMAM是一种适用于基因递送的新型的聚合物载体。  相似文献   

13.
目的结合重组低分子量PEI 和PEG结构修饰两种手段合成出新型可生物降解的非病毒基因载体聚乙二醇-b-(聚谷氨
酸-g-聚乙烯亚胺)。方法用相对分子质量600 的聚乙烯亚胺氨解嵌段聚合物PEG-b-PBLG,合成非病毒基因载体聚乙二
醇-b-(聚谷氨酸-g-聚乙烯亚胺);利用核磁共振氢谱、凝胶渗透色谱、激光粒度分析仪、zeta电位仪和凝胶电泳对载体及其与DNA
复合物进行了表征,并通过体外细胞实验考察了载体的细胞毒性与转染效率。结果我们成功合成出窄分布的非病毒基因载体
聚乙二醇-b-(聚谷氨酸-g-聚乙烯亚胺);凝胶电泳测定结果表明当N/P比大于5时载体能很好地包裹DNA;载体与DNA形成的
复合物粒径为120 nm,zeta电位25 mV;通过MTT实验和体外质粒转染实验显示出载体在测量范围内具有极低的细胞毒性和
很高的转染效率。结论聚合物聚乙二醇-b-(聚谷氨酸-g-聚乙烯亚胺)有望作为非病毒基因传递载体。
  相似文献   

14.
目的:制备疏水基修饰的聚阳离子高分子基因载体PEG-P[Asp(DET)]-10chole,对其复合miRNA的理化能力和细胞摄取能力进行研究。方法:开环聚合合成PEG-P[Asp(DET)],再采用氯甲酸胆甾醇基进行疏水修饰,核磁验证其结构;使其与hsa-miR-15a形成胶束复合物,对该胶束复合物的粒径,Zeta电位,包封率以及细胞毒性进行考察;以白血病细胞K562细胞系为模型细胞进行体外细胞实验对其摄取进行考察。结果:合成的PEG113-P[Asp(DET)]94-10%chole具有良好的溶解性,可与miRNA形成稳定的胶束复合物)形成的胶束复合物,细胞对其摄取能力明显强于商品化试剂脂质体lipo2000组。结论:PEG113-P[Asp(DET)]94-10%chole是一种优良的高分子基因传递系统载体,在体外实验中可有效实现细胞对于miRNA 的稳定摄取。  相似文献   

15.
The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号