首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的探讨体外直接诱导HSF6人胚胎干细胞(humanem bryonic stem cells,hESCs)分化为神经细胞的方法。方法采用直接的方法,在1%血清培养条件下,顺序添加bFGF、RA和Forskolin,诱导HSF6人ESCs分化为神经细胞。结果细胞发生神经样形态学改变,免疫荧光细胞化学分析结果显示,分化细胞表达神经干细胞特异性标志分子——巢蛋白(nestin),以及神经元标志分子——β微管蛋白Ⅲ(neuron-specific class Ⅲ beta-tubulin,TuJ1)。实验组nestin阳性细胞数占(95.2±3.03)%,明显高于未添加诱导因子组的(31.6±4.93)%,差异有统计学意义(P〈0.05)。结论本研究直接诱导hESCs分化为神经细胞,减少了常规经胚胎体(embryoid body,EB)的诱导方法而产生其它胚层细胞的机会,为进一步探索hESCs源性神经细胞的功能,以及为细胞替代治疗提供高纯度的hESCs源性神经细胞奠定了基础。  相似文献   

2.
Human embryonic stem cells (hESCs) have extensive self-renewal capacity and are competent to differentiate into any cell type of the body. They are valuable not only for the study of early human development but also for regenerative medicine. However, how to direct differentiation of hESCs along a particular lineage pathway to a specific cell type remains a challenge. Although hESCs have been shown to differentiate in vitro into neural progenitors, the factors controlling their differentiation are poorly understood. In this study, we report the development of an in vitro adherent culture system to efficiently generate neural progenitors in which neither multicellular aggregates nor stromal cells are required. We show that inhibition of bone morphogenetic protein signaling by its antagonist noggin is sufficient to block extraembryonic cell fate, transiently sustain Oct4 gene expression, and result in robust production of neural progenitors. Our findings will provide a platform for studying the molecular mechanism controlling neural differentiation.  相似文献   

3.
Human embryonic stem cells (hESCs) have been directed to differentiate into neuronal cells using many cell-culture techniques. Central nervous system cells with clinical importance have been produced from hESCs. To date, however, there have been no definitive reports of generation of peripheral neurons from hESCs. We used a modification of the method of Sasai and colleagues for mouse and primate embryonic stem cells to elicit neuronal differentiation from hESCs. When hESCs are cocultured with the mouse stromal line PA6 for 3 weeks, neurons are induced that coexpress (a) peripherin and Brn3a, and (b) peripherin and tyrosine hydroxylase, combinations characteristic of peripheral sensory and sympathetic neurons, respectively. In vivo, peripheral sensory and sympathetic neurons develop from the neural crest (NC). Analysis of expression of mRNAs identified in other species as NC markers reveals that the PA6 cells induce NC-like cells before neuronal differentiation takes place. Several NC markers, including SNAIL, dHAND, and Sox9, are increased at 1 week of coculture relative to naive cells. Furthermore, the expression of several NC marker genes known to be downregulated upon in vivo differentiation of NC derivatives, was observed to be present at lower levels at 3 weeks of PA6-hESC coculture than at 1 week. Our report is the first on the expression of molecular markers of NC-like cells in primates, in general, and in humans, specifically. Our results suggest that this system can be used for studying molecular and cellular events in the almost inaccessible human NC, as well as for producing normal human peripheral neurons for developing therapies for diseases such as familial dysautonomia.  相似文献   

4.
5.
Here, we examine the ability of undifferentiated human embryonic stem cells (hESCs) to reprogram the nuclei of hESC-derived myeloid precursors following cell-cell fusion. Using an OP9 coculture system, we produced CD45+ CD33+ myeloperoxidase+ myeloid precursors from an Oct4-enhanced green fluorescent protein (EGFP) knock-in hESC line and demonstrated that Oct4-EGFP expression was extinguished in these precursors. Upon fusion with undifferentiated hESCs, EGFP expression from the endogenous Oct4 promoter/regulatory region was re-established, ESC-specific surface antigens and marker genes were expressed, and myeloid precursor-specific antigens were no longer detectable. When the hybrid cells were formed into embryoid bodies, upregulation of genes characteristic of the three germ layers and extraembryonic tissues occurred, indicating that the hybrid cells had the potential to differentiate into multiple lineages. Interestingly, the hybrid cells were capable of redifferentiating into myeloid precursors with efficiency comparable with that of diploid hESCs despite their neartetraploid chromosome complement. These results indicate that hESCs are capable of reprogramming nuclei from differentiated cells and that hESC hybrid cells provide a new model system for studying the mechanisms of nuclear reprogramming.  相似文献   

6.
Human embryonic stem cells (hESCs) represent a promising source of tissues of different cell lineages because of their high degree of self-renewal and their unique ability to give rise to most somatic cell lineages. In this article, we report on a new approach to differentiate hESCs into neural stem cells that can be differentiated further into neuronal restricted cells. We have rapidly and efficiently differentiated hESCs into neural stem cells by presenting the cell adhesion molecule, E-cadherin, to undifferentiated hESCs via E-cadherin transfected fibroblast monolayers. The neural restricted progenitor cells rapidly express nestin and beta-III-tubulin, but not glial fibrillary acidic protein (GFAP) during the 1-week E-cadherin induction phase, suggesting that E-cadherin promotes rapid neuronal differentiation. Further, these cells are able to achieve enhanced neuronal differentiation with the addition of exogenous growth factors. Cadherin-induced hESCs show a loss in Oct4 and nestin expression associated with positive staining for vimentin, neurofilament, and neural cell adhesion molecule. Moreover, blocking by functional E-cadherin antibody and failure of paracrine stimulation suggested that direct E-cadherin engagement is necessary to induce neural restriction. By providing hESCs with molecular cues to promote differentiation, we are able to utilize a specific cell-cell adhesion molecule, E-cadherin, to influence the nature and degree of neural specialization.  相似文献   

7.
目的:研究肝细胞生长因子(HGF)诱导人胚胎干细胞(hESCs)定向分化为神经前体细胞(NPs)的作用。方法:诱导拟胚体(EBs)生成,随机将EBs分为正常对照组、G5 supplement组、HGF组和HGF+G5 supple-ment组,悬浮培养诱导7d,转移至多聚赖氨酸/层黏连蛋白(20mg/L)包被的24孔培养板中继续培养7-10d。免疫荧光染色鉴定NPs和体外分化能力,流式细胞仪检测各组巢蛋白(nestin)阳性细胞的比例,RT-PCR检测音猥因子(Shh)对NPs的脑区标记基因表达的影响。结果:HGF+G5可诱导hESCs定向分化为NPs,HGF+G5组的nestin阳性的NPs比例(87.3%±3.9%)显著高于其它组(P0.05),NPs具有分化成神经元、少突和星形胶质细胞的能力;HGF+G5诱导时间对于NPs的分化有影响,7d时nestin+细胞比例达到最大;Shh可使NPs表达腹侧化基因,后脑标记表达上调,而前脑标记表达下调。结论:含HGF和G5的无血清神经分化体系可有效诱导hESCs神经分化,是研究神经诱导的良好体系。  相似文献   

8.
The derivation of human embryonic stem cells (hESCs), whose in vitro differentiation might be directed toward different cell types, has raised the hope for cell replacement therapies. Despite the emerging reports to differentiate hESCs into specific lineages and then to distinct mature cell subsets, there are still several issues that need to be resolved before transplantation of these cells can be realized. In this context, immune rejection by the host immune system has been considered to be one of the greatest hurdles for cellular transplantation. However, recent data support the concept that hESCs and/or their differentiated derivatives possess immune-privileged properties, suggesting that cells derived from hESC may provide a potential tool for induction of immunetolerance. Currently, our understanding of the tolerogenic potential of hESCs is limited to assessment by in vitro assays or xenogenic transplantation approaches in vivo. Human ESCs express low levels of major histocompatability complex (MHC)-I antigens and lack expression of MHC-II antigens and costimulatory molecules, and are not recognized by natural killer cells and inhibit T-cell induced-stimulation by third-party antigen-presenting cells. Upon injection into immunocompetent mice, hESCs are unable to induce an immune response as demonstrated by their inability to induce an inflammatory response. Based on these initial observations, further studies in hESCs immunobiology are warranted and may reveal unique mechanisms that account for the immunological properties of hESCs. Here, we explore the prospect of using hESCs and their derivatives for immunomodulation and tolerance induction.  相似文献   

9.
NTera2, a human embryonal carcinoma (EC) stem cell line, shares many characteristics with human embryonic stem cells (hESCs). To determine whether NTera2 can serve as a useful surrogate for hESCs, we compared global gene expression between undifferentiated NTera2, multiple undifferentiated hESC cell lines, and their differentiated derivatives, and we showed that NTera2 cells share multiple markers with hESCs. Similar to hESCs, NTera2 cells differentiated into TH-positive cells that express dopaminergic markers including AADC, DAT, Nurr1, TrkB, TrkC, and GFRA1 when co-cultured with PA6 cells. Flow cytometry analysis showed that tyrosine hydroxylase (TH) and neural cell adhesion molecule (NCAM) expression increased, whereas SSEA4 expression decreased as cells differentiated. Medium conditioned by PA6 cells stimulated differentiation of NTera2 cells to generate TH-positive cells that expressed dopaminergic markers. Flow cytometry selected polysialylated (PSA-NCAM) cells responded to medium conditioned by PA6 cells by differentiating into TH-positive cells and expressed dopaminergic markers. Sorted cells differentiated for 4 weeks in PA6 cell conditioned media included functional neurons that responded to neurotransmitters and exhibited electronic excitability. Therefore, NTera2 cell dopaminergic neuronal differentiation and PSA-NCAM enrichment provides a useful system for the future study of hESCs.  相似文献   

10.
11.
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that have the capacity to differentiate into a wide variety of cell types. This potentiality represents a promising source to overcome many human diseases by providing an unlimited supply of all cell types, including cells with neural characteristics. Therefore, this review summarizes early neural development and the potential of hESCs to differentiate under in vitro conditions, examining at the same time the potential use of differentiated hESCs for therapeutic applications for neural tissue and cell regeneration.  相似文献   

12.
Human embryonic stem cells (hESCs) possess unique properties for studying mechanisms controlling cell fate commitment during early mammalian development. Gain of function is a common strategy to study the function of specific genes involved in these mechanisms. However, transgene toxicity can be a major limitation, especially with factors influencing proliferation or differentiation. Here, we describe an efficient method based on the inducible recombinase Cre-ERT2 for conditional gene expression in hESCs and their differentiated derivatives. Using this approach, we have established several hESC sublines inducible for the expression of the enhanced green fluorescent protein and the transforming growth factor beta family member Nodal. Together, these results demonstrate that Cre-ERT2 can be used to control gene expression in undifferentiated and differentiated cells, thereby providing the first conditional transgene expression system that works effectively in hESCs. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

13.
Human embryonic stem cells (hESCs) have great potential as a source of cells for therapeutic uses, but their culture requires the support of mouse or human cells, either directly as a feeder cell layer or indirectly as a source of conditioned medium in feeder-free culture systems. Unfortunately, the risks of cross-transfer of pathogens from xenogeneic or allogeneic feeders or cell by-products limit their medical applications. In addition, not all human feeders support the growth of hESCs equally well, and ethical concerns have been raised regarding the derivation of feeder cells from aborted human fetuses. We report here the culture of hESCs on a novel feeder cell system, comprising fibroblast-like cells derived from the spontaneous differentiation of hESCs. Isogenicity of the hESCs and hESC-derived fibroblasts was confirmed by micro satellite analysis. The nature of the hESC-derived fibroblasts was identified by the expression of specific markers. This feeder system permits continuous growth of undifferentiated and pluripotent hESCs, as demonstrated by the expression of specific hESC markers, by the formation of teratomas after injection of hESCs into severely combined immunodeficient mice, and by in vitro differentiation of hESCs into differentiated cells of ectodermal, endodermal, and mesodermal origin. Feeder cells derived from hESCs offers a potentially more secure autogeneic and genotypically homogenous system for the growth of undifferentiated hESCs.  相似文献   

14.
Human embryonic stem cells (hESCs) are pluripotent. They have the potential to differentiate into every cell type of an organism. Since many human somatic cell types have the ability to support the growth of hESCs, cells differentiated from hESCs may also be able to support the growth of themselves. We tested this hypothesis by growing hESCs on feeders derived from themselves and demonstrated that such feeders did constitute an environment suitable for the derivation and long-term growth of hESCs. hESCs maintained in this system expressed all the markers indicative of the undifferentiated state and gave rise to cell types representative of all three primary germ layers upon differentiation. By modifying the genome of hESCs, feeders with special features can be derived and mass produced. The system will facilitate large-scale production of hESCs in a standardized animal pathogen-free environment.  相似文献   

15.
16.
17.
Efficient derivation of neural cells from human embryonic stem cells (hESCs) remains an unmet need for the treatment of neurological disorders. The limiting factors for current methods include being labor-intensive, time-consuming and expensive. In this study, we hypothesize that the substrate topography, with optimal geometry and dimension, can modulate the neural fate of hESCs and enhance the efficiency of differentiation. A multi-architectural chip (MARC) containing fields of topographies varying in geometry and dimension was developed to facilitate high-throughput analysis of topography-induced neural differentiation in vitro. The hESCs were subjected to “direct differentiation”, in which small clumps of undifferentiated hESCs were cultured directly without going through the stage of embryoid body formation, on the MARC with N2 and B27 supplements for 7 days. The gene and protein expression analysis indicated that the anisotropic patterns like gratings promoted neuronal differentiation of hESCs while the isotropic patterns like pillars and wells promoted the glial differentiation of hESCs. This study showed that optimal combination of topography and biochemical cues could shorten the differentiation period and allowed derivation of neurons bearing longer neurites that were aligned along the grating axis. The MARC platform would enable high-throughput screening of topographical substrates that could maximize the efficiency of neuronal differentiation from pluripotent stem cells.  相似文献   

18.
Human parthenogenetic embryonic stem cells (hpESCs) established from artificially activated oocytes have a wider immune-matching ability because of their homozygosity in the major histocompatibility complex alleles. Whether these cells possess the differentiation capacity similar to regular human embryonic stem cells (hESCs) derived from fertilized eggs is unclear. The aims of this study were to determine whether hpESCs could be differentiated into multipotent mesenchymal stem cell (MSC)-like cells in vitro and then compare these cells with those derived from hESCs. MSC-like cells were obtained from both hpESCs and hESCs, which exhibited similar cell surface marker expression profiles. Further analyses revealed that cells derived from hpESCs possessed stronger osteogenic but weaker adipogenic potentials compared with cells derived from hESCs. This is the first work that demonstrates the differentiation of hpESCs into multipotent MSC-like cells. These hpESCs could be a potential source for cell-based therapies.  相似文献   

19.
Phosphorylation can reveal essential cell functions, such as cell differentiation, signal transduction, metabolic maintenance and cell division. The aim of this study was to investigate phosphorylated protein expression changes during neuronal lineage differentiation from hESCs. To measure the phosphorylated protein expression change during neuronal differentiation, we performed a comparative phosphoproteome analysis using 2-DE after MALDI-TOF MS and an MS/MS protein identification method, making a comparison between neural lineage differentiating cells and normal embryoid bodies (EBs) differentiated from human embryonic stem cells (hESCs) and profiling constituent phosphorylated proteins. Of 36 differentially expressed protein spots, 12 spots were shown to be up-regulated in differentiating neural cells. Specifically, the 7 up-regulated proteins of the 12 have potential roles in neuronal differentiation or neuronal damage recovery, including ACTB, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1), heterogeneous nuclear ribonucleoprotein L (hnRNP L), SET, chaperonin-containing TCP-1, vimentin and voltage-dependent anion channel protein 1 (VDAC1). These proteins are discussed further below.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号