首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen street-dust samples were collected from Hamedan, western Iran. Street-dust samples received different amounts of heavy-metal pollution. The samples were analyzed for total cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), and binding forms of heavy metal were determined in five fractions. The results showed Cd was the only metal present appreciably, 25.21% and 25.92%, in the exchangeable and carbonates fractions, respectively, and Cu was the only metal predominantly associated, 31.77%, with organic fraction. Zn, 45.84%, was present mainly in the Fe–Mn oxide fraction, and the residual fraction was the most dominant solid phase pool of Ni and Pb, respectively, with 42.56% and 41.31%. The order of apparent mobility and potential metal bioavailability for these contaminated street-dust samples is Cd > Zn > Cu > Pb > Ni. The risk-assessment code results showed very high risk for Cd; medium risk for Cu, Pb, and Zn; and low risk for Ni.  相似文献   

2.
A soil-sampling campaign was conducted to identify and map heavy-metal contamination in the Ballarat-Creswick area of Central Victoria, Australia, with respect to mining activities and natural background levels in soils. The distribution and concentrations of both lithology- (Fe, Al, and Mn) and pollution-sensitive elements (Zn, As, Pb, Cu, Cr, Ni, and Co) were documented in surface soils (approximately 0 to 10 cm, fraction <2 mm, n = 85). The total heavy-metal and metalloid contents in soils decreased in the order Fe >> Al >> Zn > Mn >> As > Pb > Cu ≈ Ni ≈ Cr > Co. Mean levels of Zn (273 mg/kg) and As (39 mg/kg) in soils were well above normal global ranges and could be of local importance as a source of contamination. Extreme soil levels of Ni, Cr, Pb, and Fe were found in old mining waste material and pointed to the anthropogenic influence on the environment. Most of the measured elements showed marked spatial variations except Co. As contents were significantly higher than the tolerable level (ANZECC (1992) guidelines), with values up to 395.8 mg/kg around the mine tailings site. Mn soil contents were strongly associated with Co and Ni contents in most soils. High Fe contents (average approximately 41,465 mg/kg) in soils developed on basalt bedrock were correlated with Zn contents (average 400 mg/kg), and it is highly likely that Fe-oxides serve as sinks for Zn under near-neutral soil pH (6.3) conditions. Between the two major bedrock lithologic units, Ordovician sediments and Tertiary basalt, a clear enrichment of metals was found in the latter that was reflected in high background levels of elements. Among the various size fractions, silt (average approximately 45.1%) dominated most of the soils. In general and with a few exceptions, the concentrations of measured elements did not show significant correlations to other measured soil parameters, e.g., clay, silt and sand size fractions, organic matter, soil pH, and cation exchange capacity.  相似文献   

3.
A pot trial was conducted to assess the efficiency of P-induced metal immobilization in soils. Natural hydroxyapatite (HA), phosphate rock (PR), triple-superphosphate (TSP), and diammonium phosphate (DAP) were evaluated for their ability to reduce cadmium (Cd), lead (Pb), and zinc (Zn) bioavailability in an artificially metal-contaminated soil with three addition levels: T0 (without metals added), T1 (Cd/Pb/Zn:0.6/100/66 mgkg(-1)), and T2 (Cd/Pb/Zn: 1.5/300/200 mgkg(-1)). Phosphate compounds were applied at 2500 mg P(2)O(5) kg(-1) soil for each metal level with five treatments: CK (control), TSP, DAP, PR, and HA, respectively. The immobilization and bioavailability of Cd, Pb, and Zn were determined by plant (Brassica campestris L.) uptake, scanning electron microscope (SEM), and sequential extraction. The results showed that HA was superior to all other materials for reducing Pb, Zn, and Cd uptake in shoot with reductions of 34.6-53.3% for Pb, 31.2-47.3% for Zn, and 39.1-42.4% for Cd, respectively, as compared with the control treatment. The mechanisms of Pb immobilization in the soil and the decreased Pb translocation from the plant root to shoot induced by added phosphate were identified with scanning electron microscope (SEM) equipped with energy dispersive X-ray elemental spectrometry (EDS). Sequential extraction results indicated that the phosphate amendments converted significant amounts of the soil Pb, Zn, and Cd from exchangeable (EX), organic bound (OC), carbonate bound (CB), amorphous Fe and Al oxides-bound (OX) (non-residual (RES) fractions) to RES fraction. In general, the effect of different phosphates on plant uptake of Pb, Zn, and Cd followed the order: HA>PR>DAP>TSP. The results suggested that HA and PR amendments could significantly reduce the bioavailability and increase the geochemical stability of soil Pb, Zn, and Cd in contaminated soils.  相似文献   

4.
To asses the geomobility of cadmium, copper, iron, manganese, nickel, lead, and zinc in marine sediments near the Santa Rosalía copper smelter, which is located on the eastern coast of the Baja California Peninsula, sequential leaching was applied to sediment samples containing different levels of Cu: (1) uncontaminated or slightly contaminated (<55 mg kg−1 Cu); (2) moderately contaminated (55–500 mg kg−1 Cu); and (3) heavily contaminated (>500 mg kg−1 Cu). Concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in four fractions of the leachate (mobile fraction F1, relatively mobile fraction F2, associated with organic matter/sulphides fraction F3, and residual fraction F4) were measured by atomic absorption spectrophotometry (AAS). The sediments with Cu concentration <500 mg kg−1 displayed prevalence of mobile acid-leachable fraction F1 and reducible fraction F2 for Cd, Cu, Mn, and Pb, whereas the relative contribution of fraction F3 was relatively low for all of the examined metals. Residual fraction F4 was highest (>65%) for Fe and Ni because both metals are associated with the crystalline matrix of natural sediments. The sediments heavily contaminated with Cu (>500 mg kg−1) had dramatically increased percentages of Cu, Mn, Pb, and Zn, ranging on average from 63 to 81%, in the residual fraction. In the case of Cu, for example, the relative abundances of this element in the different fractions of such sediments followed this sequence: residual fraction F4 (76 ± 5%) >absorbed form and carbonates fraction F1 (15 ± 5%) >Fe and Mn oxyhydroxides fraction F2 (5 ± 2%) >fraction associated with organic matter and sulphides F3 (4.5 ± 3.9%). Copper, Pb, and Zn contents in each geochemical fraction of all samples were compared with sediment-quality guideline values (“effects range low” [ERL] and “effects range medium” [ERM]) to assess their possible negative effects on biota. Copper contents in mobile fractions F1 and F2, which were moderately contaminated with Cu, were higher than ERL but lower than ERM guideline values. For heavily contaminated sediments, Zn contents of mobile fractions F1 and F2 were higher than ERL but lower than ERM guideline values. The Cu content of fraction F1 was higher than ERM guideline values, whereas for fractions F2 and F3 copper content was higher than ERL guidelines but still lower than ERM guideline values.  相似文献   

5.
The oribatid mite Oppia nitens has been suggested as a test species for ecotoxicological assessment of contaminated boreal soils. Knowledge of the ecotoxicity of pollutants of different modes of action to this species is necessary to assess its relative sensitivity in comparison with other invertebrates. The toxicity of four metals and two organic chemicals to O. nitens was evaluated over a 28- or 35-d period. Mite survival, reproduction, and tissue accumulation were assessed at the end of the test. Reproduction was a more sensitive endpoint than survival for all of the compounds except geraniol. The reproduction median inhibitory concentration (IC50) values for Cu, Zn, Cd, and Pb were 2,896, 1,562, 137, and 1,678 mg/kg, respectively, whereas those for benzo[a]pyrene and geraniol were greater than 1,600 and 283 mg/kg. The median lethal concentration (LC50) values for Cu, Zn, Cd, and Pb were 3,311, 2,291, 603, and 6,761 mg/kg, respectively, whereas those for benzo[a]pyrene and geraniol were greater than 1,600 and 251 mg/kg. When effects on reproduction are compared with those of other soil invertebrates, O. nitens appears less sensitive to Cu and Zn but within the same order of magnitude of sensitivity as that for Cd and Pb. Despite its lower sensitivity to Cu and Zn, O. nitens is a member of a group underrepresented in ecotoxicological evaluations and should therefore be included in test battery for risk assessment of contaminated boreal and other northern soils.  相似文献   

6.
The muscles of some important marine fishes collected in and around Hooghly estuarine coastal areas were analyzed for the heavy metals Cu, Zn, Ni, Cd, Cr and Pb. The concentration range of Cu (16.22–47.97 ppm), Pb (12.40–19.96 ppm) and Zn (12.13–44.74 ppm) were recorded comparatively higher and were similar to that found in contaminated areas. On the other hand the ranges of Ni (2.20–3.69 ppm), Cr (0–3.89 ppm) and Cd (0.62–1.20 ppm) were almost equal to those carried out over a wide range of geographical areas. The degree of bioaccumulations was metal-specific as well as species-specific in nature. The toxic groups of metals (Pb and Cd) showed higher variability than the essential metals (Cu, Zn and Ni). The calculated intake value of metals (week−1 kg−1 body wt) varied from 14.88 to 27.60 of Pb, 0.87 to 1.68 of Cd, 0.0 to 5.45 of Cr, 22.70 to 137.16 of Cu, 3.08 to 5.17 of Ni and 16.98 to 62.60 of Zn through human consumption of these fishes and were compared with those of standard Provisional Tolerable Weekly Intake value (PTWI) per kg body weight as stipulated by WHO. The PTWICal values of Pb in some of the fishes recorded marginally excess values and may indicate a health risk through consumption of successive 7 days in a week.  相似文献   

7.
This investigation reports temporal and spatial variations in heavy metal concentration in street dusts in the State of Bahrain. Monitoring sites were chosen to include an urban area with high traffic density, commercial, industrial, and remote areas. The overall mean levels for Pb, Zn, Ni, Cu and Cd were 395, 80, 40, 20 and 1.5 mg kg‐1, respectively. The general pattern of occurrence in order of decreasing concentration was Pb > Zn > Ni > Cu > Cd. The highest levels of Pb, Zn and Cu were found in the high traffic density area, and strong positive correlations were found between these metals, suggesting that automobiles exhaust are the dominant source of these metals. The results did not reveal statistically significant differences on the levels of Pb, Zn and Cu between months. Summer average values for Pb, Zn and Cu exceeded corresponding winter values. In cold regions opposite patterns were observed. In general Ni and Cd followed different patterns than that reported for Pb, Zn and Cu. Our results reveal relatively widespread contamination of heavy metals, and that all sites studied were statistically not different from each other, except a high traffic density site, indicating that Bahrain can be considered as one big urban center.  相似文献   

8.
Details of the interference due to Ca, Mg, Na, K, and Al on the estimation, by atomic absorption spectrophotometry, of Cu, Pb, Co, Cd, Ni, Cr, and Zn in digests of natural materials is reported. The general order in which cations affect the estimate is Ca > Al > Mg K ? Na; and the general order in which the metals are affected is Pb > Co > Ni . Cu > Cd ? Cr ? Zn. The errors are approximately linear and additive within the ranges encountered in the digests. Examination of percentage errors in samples of plant leaves, soils, and marine animals indicate that for routine purposes correction of interference due to Ca and Na in marine samples and Ca in terrestrial samples is sufficient. In all species of plant leaves tested the error on the uncorrected estimates of Pb, Co, and Cd was high: in marine and soil samples the error was high on all elements tested, except Zn.  相似文献   

9.
Concentrations of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe (Zambia), which is ranked among the 10 worst polluted places on earth, were compared with other Zambian towns. Metal concentrations were measured in the liver and kidneys of 51 cattle from Kabwe and other Zambian towns. The maximum metal concentrations, expressed in mg/kg and dry weight, in the liver or kidneys were 398.4 (Cu), 252.6 (Zn), 77.81 (Cr), 19.37 (Cd), 7.57 (Ni), 1.8 (Pb), 1.04 (Co), 0.112 (Hg), and 0.05 (As). Concentrations of Pb and Cd in Kabwe cattle were higher than levels in other Zambian towns. The mean concentration of Cd exceeded benchmark values in offal destined for human consumption. Levels of Ni and Cr may also pose public health concerns. Concentrations of Pb and Cr, Pb and Cu, Cd and Zn, Cd and Hg, Zn and Cu, Cu and Co, as well as Co and Ni were positively correlated. The present study also highlighted the dangers of exposure of animals and humans to a mixture of toxic metals.  相似文献   

10.
Heavy metals composition of foods is of immense interest because of its essential or toxic nature. In view of this, we determined concentrations of select heavy metals from food items such as, potato chips and biscuits that were obtained from Nagpur City, India. The present study revealed preferred digestion method for different heavy metal recovery. The accumulation trend for Potato chips was in following order Fe > Al > Zn > Ni > Cu > Mn > Co > Cr > Pb and Cd, while for Biscuits it was Al > Fe > Zn > Ni > Mn > Co > Cr > Pb > Cu and Cd.  相似文献   

11.
The accumulation of six heavy metals (Cr, Cd, Cu, Zn, Pb and Ni) in sediment, water and in tissue parts of Mugil cephalus and Crassostrea madrasensis was studied in two locations of Pulicat lake, Southeast coast of India, which receives considerable quantity of effluents from industries located in North Chennai coastal region. The results reveal that the metal concentration in water is decreasing in the following order of Zn > Ni > Cu > Cr > Pb > Cd both in lake and barmouth and highest concentration was observed for Zn (32.5 μg L(-1) in lake and 25.2 μg L(-1) in bar mouth). Metals were highly concentrated in sediments when compared to water and biota. Metals abundance in sediments has following sequential order of Cr > Ni > Zn > Cu > Pb > Cd and the accumulation pattern in barmouth showed minor variation indicating the following pattern of Zn > Ni > Cr > Cu > Pb > Cd. The geoaccumulation index (I(geo)) for Pulicat lake sediments indicate that the sediments are extremely contaminated with Cd and moderately contaminated with Cu and Ni. Bioaccumulation of heavy metals in Mugil cephalus and Crassostrea madrasensis showed marked differences in the accumulation patterns. It is observed that Zn, Cu and Pb are accumulated in elevated concentrations in various parts of the fish and oyster when compared with other metals.  相似文献   

12.
Six heavy metals (chromium [Cr], nickel [Ni], copper [Cu], arsenic [As], cadmium [Cd], and lead [Pb]) were measured in sediments and soft tissues of eleven commonly consumed fish species collected from an urban river in the northern part of Bangladesh. The abundance of heavy metals in sediments varied in the decreasing order of Cr > Ni > Cu > Pb > As > Cd. The ranges of mean metal concentrations in fish species, in mg/kg wet weight (ww), were as follows: Cr, 0.11–0.46; Ni, 0.77–2.6; Cu, 0.57–2.1; As, 0.43–1.7; Cd, 0.020–0.23; and Pb, 0.15–1.1. Target hazard quotients (THQs) and target carcinogenic risk (TR) showed the intake of As and Pb through fish consumption were higher than the recommended values, indicating the consumption of these fish species is associated with noncarcinogenic and carcinogenic health risks.  相似文献   

13.
The present study investigates the accumulation of heavy metals [copper (Cu), lead (Pb), zinc (Zn), magnesium (Mn), cadmium (Cd), nickel (Ni), and chromium (Cr)] in tadpoles inhabiting the metalliferous streams flowing within the Asprolakkas River basin (northeast Chalkidiki peninsula, Greece) and the effect of potentially harmful elements in stream water and sediment on the corresponding levels in their tissue. Animals were collected from six sampling sites influenced by a wide range of surface water and stream sediment trace element concentrations. The results of the chemical analyses showed that tadpoles accumulated significant levels of all of the examined metals. The range of whole-body mean measured concentrations were (in dry mass) as follows: Cu (46-182?mg/kg), Pb (103-4,490?mg/kg), Zn (494-11,460?mg/kg), Mn (1,620-13,310?mg/kg), Cd (1.2-82?mg/kg), Ni (57-163?mg/kg), and Cr (38-272?mg/kg). The mean concentrations of Pb, Zn, Mn, Ni, Cr, and Cd in Kokkinolakkas stream, which drains a currently active mining area, were the highest ever reported in tadpoles. Our results indicate that whole-body levels of Pb, Zn, Cu, and Cd increase with stream sediment concentrations and that these organisms tend to accumulate metals bound to Fe and Mn oxides. In addition, high dissolved concentrations and significant concentrations associated with more labile geochemical phases of sediments for specific metals were contributing factors determining whole-body levels. Given the observed bioconcentration factors, as well as the correlation with sediment concentrations, it is proposed that these organisms could be considered as bioindicators of environmental contamination and may be used for monitoring purposes within this metal-rich zone and, perhaps, within other rivers affected by metal mining.  相似文献   

14.
Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.  相似文献   

15.
Previous research by the National Contaminant Biomonitoring Program found fish from Manoa Stream, Hawaii, to have the highest concentrations of Pb in the nation. To explore possible source linkages we sampled background (uncontaminated) soil, roadside soil, and road deposited sediment in Manoa watershed and analyzed them for total and extractable concentrations of Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn. Our concentration and enrichment ratio data indicate that Al, Co, Fe, Mn, and Ni were controlled by natural source variations, and Cu, Zn, and particularly Pb were anthropogenically enhanced. Labile Pb concentrations, extracted with either dilute HCl or EDTA, reached a maximum of 3,560 mg/kg compared to background values of <10 mg/kg. Additionally, 25% of the 169 contaminated samples analyzed had EDTA-extractable Pb enrichment ratios ≥11.5, where a value of 1 separates uncontaminated from contaminated media. Given the proximity of most samples to roadways it is reasonable to conclude that automotive emissions plus vehicle wear were the primary contributors of trace metals to the roadside system. These data are discussed in context with previous work on the fluvial bed sediments in this watershed in an attempt to examine the potential linkage with the biological accumulation of Pb in fish from Manoa watershed. Received: 21 September 1999/Accepted: 30 November 1999  相似文献   

16.
Our aim were to establish the metal (Cu, Ni, Zn, Co, Cd, and Pb) levels of red fox liver and the kidney samples (n = 10) deriving from central part of Hungary and compare the results with other countries’ data. According to our results the concentrations of residues of the targeted elements (mg/kg dry weight) in liver and kidney samples were, respectively in liver: Cu: 21.418, Zn: 156.928, Ni: 2.079, Co: 1.611, Pb: 1.678 and Cd: 0.499; and kidney samples: Cu: 9.236; Zn: 87.159; Ni: 2.514; Co: 2.455; Pb: 2.63 and Cd: 0.818. Pb levels of Hungarian red fox liver samples significantly exceed the values of Italian specimens’ samples, whilst the same element’s concentrations of Hungarian red fox kidney samples were higher than the results published in Germany.  相似文献   

17.
The total metal concentrations in soil samples from polluted area (roadside soils) ranged from 13.87 to 195.76 mg/kg for Cu; 13.56–310.17 mg/kg for Pb and 18.43–894.11 mg/kg for Zn and they were, respectively about 5, 2 and 13 times above the corresponding values in soil samples from country area. The mean values of EDTA-extractable concentrations in soil samples at unpolluted sites were: 2.47 mg/kg for Cu, 6.33 mg/kg for Pb and 4.94 mg/kg for Zn. The highest concentrations of Cu, Pb and Zn in grass were measured in soils from polluted area. Higher values of proportions of EDTA-extractable metals (24% for Cu, 40% for Pb and 38% for Zn) indicate that anthropogenic metals were more mobile and bioavailable than the same metals in soils from unpolluted area (20, 16 and 20% for Cu, Pb and Zn, respectively). The availability of Cu, Pb and Zn are affected by soil properties such as pH, organic matter content and cation exchange capacity. Correlation between the EDTA-extractable forms concentrations of metals and the total concentration in the various soils was observed. The coefficients of determination (R2) varied between 0.809 for Cu; 0,709 for Pb and 0.930 for Zn in polluted soils and they are higher than corresponding values in unpolluted soils.  相似文献   

18.
The distributions of trace metals (Pb, Cd, Cr Mn, Zn and Cu) in water, sediment, plankton and four fish species (Labeo rohita, Catla catla, Pangasius pangasius and Cirrhinus mrigala) from fishponds of Kolleru Lake, India were determined using atomic absorption spectroscopy. The concentrations of lead (0.01–0.03 mg/l) and copper (0.01–0.08 mg/l) in water and cadmium (3.0–9.0 mg/kg), chromium (47–211 mg/kg) and copper (10–64 mg/kg) in sediment were above the EPA threshold effects level (TEL) and are of biological concern. The abundance orders of metals were Mn>Cd>Cu>Pb in water, Mn>Cr>Zn>Cu >Pb>Cd in sediment and Cu>Mn>Cr>Zn>Pb>Cd in plankton. The concentrations of the metals in the muscles of these four fish species apparently decrease in the order Zn>Cu>Cr>Mn=Pb>Cd and were well below WHO permissible limits that were safe for human consumption.  相似文献   

19.
Comparisons of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in marine sediments from coast areas in Southeast and East Asian countries during the years 2000-2010 are studied and discussed in this paper. The results indicate that the average compositions of Cd ranged from 0.13 to 0.89 mg/kg, and the average compositions of Cr ranged from 0.09 to 96.0 mg/kg. Moreover, the average compositions of Cu ranged from 3.00 to 148 mg/kg, and the average compositions of Ni ranged from 1.00 to 37.4 mg/kg. In addition, the average compositions of Pb ranged from 1.00 to 111 mg/kg. Finally, the average compositions of Zn ranged from 4.00 to 595 mg/kg. From the point of view of metals distribution areas for this study, the average highest metal of Ni occurred in East Asia, while the highest metals of Cd, Cr, Cu, Pb, and Zn occurred in Southeast Asian countries.  相似文献   

20.
The concentrations of mercury and 13 other trace metals in 104 canned fish samples purchased within the states of Georgia and Alabama (United States of America) were determined using the direct mercury analyzer (DMA) and the inductively coupled plasma-optical emission spectrometer (ICP-OES). The ranges obtained for the elements analyzed in mg/kg (wet weight) are as follows: Hg (0.02–0.74), Ag (0.0–0.20), As (0.0–1.72), Cd (0.0–0.05), Cr (0.0–0.30), Fe (0.01–88.4), Pb (0.0–0.03), Mn (0.01–2.55), Ni (0.0–0.78), Co (0.0–0.10), Cu (0.01–5.33), Sn (0.04–28.7), V (0.0–0.31) and Zn (0.14–97.8). Three tuna samples had Hg level above the European dietary limit of 0.5 mg Hg/kg. The mean Hg concentrations in the tuna (285 μg/kg) and sardine (107 μg/kg) brands were higher than the averages posted by the pink salmon (36.1 μg/kg), red salmon (32.8 μg/kg) and mackerel (36.4 μg/kg) brands. Two tuna samples and a sardine sample exceeded the Australian permissible limit of 1 μg/g inorganic arsenic (wet weight). Two samples (brand 15: herring) had zinc levels exceeding the Food and Agriculture Organization (FAO) recommended limit of 40 mg/kg and two pink salmons also exceeded the Brazilian regulatory limit of 0.1 mg Cr/kg. One tuna sample had a cadmium level slightly exceeding the Codex Committee on Food Additives and Contaminants draft guideline of 0.50 mg Cd/kg. However, the concentrations of lead, cadmium and copper were below the corresponding MAFF guidelines of 2.0, 1.0 and 30 mg/kg, respectively. Also, based on the United States Environmental Protection Agency (US EPA) health criteria for carcinogens, there are no health risks with respect to Pb, Cr, Cu and Zn concentrations in canned fishes analyzed. The result of the one-way analysis of variance (ANOVA) conducted on the data suggested that significant variations (P<0.05) existed in the concentrations of Hg, As, Co, Cr, Cu, Fe, Mn, Sn, V, and Zn across the various fish species and canned fish brands analyzed. The estimated weekly intakes of Hg, As, Cd, Pb, Sn, Fe, Cu and Zn for a 60 kg adult consuming 350 g of fish/week were below the respective provisional tolerable weekly intakes (PTWI) in μg/kg body weight for: Hg: 5; As: 15; Cd: 7; Pb: 25; Sn: 14000; Fe: 5600; Cu: 3500; and Zn: 7000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号