首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND PURPOSE: To our knowledge, diffusion abnormality of the unaffected deep gray matter during striatocapsular hemorrhage has not been previously described in the literature. We report the presence of the diffusion abnormality separated from hematoma in patients with external capsular (lateral striatocapsular) hemorrhage and suggest the plausible mechanisms of diffusion signal intensity change. METHODS: We retrospectively reviewed MR images in 28 consecutive patients with spontaneous striatocapsular hemorrhage and evaluated signal intensity changes at sites separated from the hemorrhage and the lesions on diffusion-weighted (DW) images. Apparent diffusion coefficients (ADCs) of the lesions were measured, and volume changes in the deep gray matter were assessed at follow-up. RESULTS: On DW images, hyperintensity of deep gray matter was found in nine patients (25%). In all patients with DW imaging abnormality, the hemorrhage was located in the external capsule, and the interval from hemorrhagic ictus to MR imaging study was 8-54 days. Hyperintensity of the deep gray matter was seen in the caudate (n = 8), putamen (n = 7), thalamus (n = 5), and substantia nigra (n = 2). Mean relative ADC ratios of the diffusion abnormality were 0.76 +/- 0.10 in the caudate, 0.79 +/- 0.07 in the putamen, and 0.85 +/- 0.11 in the thalamus. DW imaging abnormality disappeared with mild atrophy in two patients who underwent follow-up imaging. CONCLUSION: External capsular hemorrhage may be uncommonly accompanied by diffusion abnormality in the striatum or thalamus at follow-up, and the lesion should not be misdiagnosed as new-onset infarction. Secondary neuronal degeneration may play an important role in the development of diffusion abnormality.  相似文献   

2.
BACKGROUND AND PURPOSE: Recent neuropathologic research suggests thalamic involvement in sporadic Creutzfeldt-Jakob disease (sCJD), which has been disregarded in imaging studies. Diffusion-weighted (DW) MR imaging has the highest sensitivity for the detection of signal intensity (SI) abnormalities in CJD. We hypothesized that pathologic changes in the thalamus in sCJD can be detected by using a subtle analysis of DW MR imaging. METHODS: Six sCJD patients and nine healthy controls were examined with a 1.5-T system by using DW single-shot spin-echo echo planar (b = 0, 1000 s/mm(2)), T2-weighted turbo spin-echo, and fluid-attenuated inversion recovery sequences. One patient was examined serially (3, 4, and 8 months after onset of symptoms). MR images were reviewed for SI changes in the striatum, hippocampus, mediodorsal thalamic nucleus (MD), and pulvinar thalami. Apparent diffusion coefficients (ADCs) were measured in these areas. RESULTS: All sCJD patients showed increased SI on DW images in the striatum bilaterally. ADCs in these areas were significantly reduced. Four of six sCJD patients showed increased SI on DW images in the pulvinar thalami, whereas ADCs were significantly reduced in all patients (mean ADC +/- SEM: in patients with SI changes, 701 +/- 38; in patients without SI changes, 684 +/- 37; in controls, 853 +/- 15 [P <.0001]). No patient showed SI changes in the MD on DW images, whereas ADCs were significantly reduced in all (664 +/- 28 as compared with 800 +/- 24 in controls [P =.0011]). Serial measurements in one sCJD patient showed ADC reduction in the pulvinar thalami preceding the SI changes on DW images. CONCLUSION: A quantitative analysis of DW images with ADC measurements shows slight MR imaging changes in the thalamus in sCJD when abnormal SI may not be present.  相似文献   

3.
Our objective was to investigate brain MR imaging findings and the utility of diffusion-weighted (DW) imaging in organ transplant patients who developed neurologic symptoms during tacrolimus therapy. Brain MR studies, including DW imaging, were prospectively performed in 14 organ transplant patients receiving tacrolimus who developed neurologic complications. In each patient who had abnormalities on the initial MR study, a follow-up MR study was performed 1 month later. Apparent diffusion coefficient (ADC) values on the initial MR study were correlated with reversibility of the lesions. Of the 14 patients, 5 (35.7%) had white matter abnormalities, 1 (7.1%) had putaminal hemorrhage, and 8 (57.1%) had normal findings on initial MR images. Among the 5 patients with white matter abnormalities, 4 patients (80.0%) showed higher than normal ADC values on initial MR images, and all showed complete resolution on follow-up images. The remaining 1 patient (20.0%) showed lower than normal ADC value and showed incomplete resolution with cortical laminar necrosis. Diffusion-weighted imaging may be useful in predicting the outcomes of the lesions of tacrolimus-induced neurotoxicity. Electronic Publication  相似文献   

4.
BACKGROUND AND PURPOSE: Apart from cases studies, little is known regarding diffusion-weighted imaging of brain lesions associated with human cerebral venous thrombosis (CVT). Our aim was to describe the initial diffusion-weighted imaging patterns observed in brain areas with MR signal changes associated with CVT and to compare them with those of follow-up imaging. METHODS: The cases of nine patients with brain lesions associated with CVT who underwent CT and diffusion-weighted imaging 3 hours to 4 days after sudden neurologic onset were retrospectively reviewed. The apparent diffusion coefficient (ADC) in abnormal brain was compared with that of contralateral normal regions using z score analysis. MR images obtained during 3 to 6 months of follow-up were available for seven patients. RESULTS: All patients had nonhemorrhagic T2-hyperintense brain regions. These were associated with partially hemorrhagic areas on the CT scans of four patients. In nonhemorrhagic edematous areas, ADC was heterogeneous (coexistence of increased, normal, or decreased ADC) in five patients and homogeneous in four. In the latter four patients, ADC values were within normal range in three, whereas a large homogeneous hyperintensity with decreased ADC values (0.3-0.4 10(-3)mm2/s, <-3 z scores) was observed in one. When available, follow-up images always showed hemorrhagic sequelae in initially hemorrhagic areas. Nonhemorrhagic edematous areas with initially increased ADC values returned to normal. Initially normal or decreased ADC values were predictive of reversibility, although imaging sequelae were rarely observed. CONCLUSION: The diffusion-weighted imaging/ADC pattern of venous stroke is more heterogeneous than previously thought. Large brain regions of reduced ADC values that are not predictive of ultimate infarction in cases of CVT can be observed.  相似文献   

5.
BACKGROUND AND PURPOSE: Susac syndrome is a rare disorder consisting of encephalopathy, hearing loss, and retinal arteriolar occlusions. The purpose of this study was to evaluate the evolution of lesions in this disease by using serial MR imaging with diffusion-weighted imaging (DWI) and apparent diffusion coefficients (ADCs). Abnormalities in the nonlesional white matter (NLWM) were also analyzed. METHODS: Serial MR and DWI findings in two patients with Susac syndrome were reviewed retrospectively. ADCs of the lesions and the NLWM were compared with values of the corresponding anatomical regions in 16 control subjects. RESULTS: T2-weighted images, DWIs, and fluid-attenuated inversion-recovery (FLAIR) images demonstrated diffuse small hyperintense lesions predominantly involving the corpus callosum, white matter, cerebral cortex, and deep gray structures. During the whole course in the two patients, 437, 295, and 113 lesions were depicted on FLAIR images, T2-weighted images, and DWIs, respectively. With the aggravation and mitigation of the clinical symptoms, the size and number of the lesions changed over time. Of 65 lesions with measured ADCs, six had restricted ADCs (5.29-6.91 x 10(-4) mm(2)/s), and 29 had elevated ADCs (8.02-13.5 x 10(-4) mm(2)/s). With disease progression, ADCs in the NLWM changed from normal to elevated; this corresponded to the diffuse signal-intensity change seen in the white matter. CONCLUSION: FLAIR imaging is the most sensitive sequence for detecting lesions of Susac syndrome. DWI is useful in demonstrating the heterogeneous nature of lesions, depicting occult abnormalities in the white matter, elucidating underlying pathologic processes, and conducting patient follow-up.  相似文献   

6.
BACKGROUND AND PURPOSE: MR imaging may help in predicting hemorrhagic transformation (HT) in acute ischemic stroke. Our purpose was to determine whether the lesion volumes on diffusion-weighted (DW) imaging, apparent diffusion coefficient (ADC) values, and early parenchymal enhancement are predictive of HT and to investigate the mechanism of the enhancement. METHODS: We retrospectively examined 55 patients with acute ischemic stroke who underwent gadolinium-enhanced MR imaging within 6 hours of symptom onset and follow-up CT or MR imaging within 72 hours. Intravenous thrombolysis was performed in 15 patients. DW imaging lesion volumes and ADC values were compared between patients with and those without HT. ADCs and perfusion parameters were compared between lesions with and those without parenchymal enhancement. RESULTS: Nineteen (34.5%) patients had HT (14 with hemorrhagic infarction, five with parenchymal hematoma). Patients with HT had decreased mean ADCs and large lesion volumes on DW imaging, but differences were not significant (P > .05). HT occurred in five patients (100%) with parenchymal enhancement, which corresponded to the site of HT. In enhancing lesions, the ADC ratio (0.76 +/- 0.06) was slightly higher and the delay in time to peak (0.10 +/- 2.79) was less than respective values in the rest of the ischemic lesion (0.66 +/- 0.06 and 8.79 +/- 4.86, respectively; P = .068). CONCLUSION: Early parenchymal enhancement is highly specific for HT and may be associated with early reperfusion and damage to the blood-brain barrier in ischemic tissue. DW imaging lesion volumes and ADC values had no strong relationship with HT.  相似文献   

7.
BACKGROUND AND PURPOSE: Loss of neurons results in a relative increase in extracellular space that may lead to altered apparent diffusion coefficient (ADC) values in the hippocampi of patients with seizures. Our purpose was to determine if ADC values along the long axis of hippocampi are useful in evaluating patients with partial complex seizures. METHODS: Hippocampi of 23 patients with partial complex seizures and 25 healthy volunteers were evaluated with MR imaging and ADC maps. MR images were evaluated for loss of volume and/or high signal intensity on T2-weighted images and compared with ADC maps. ADCs were compared between patients and controls, as were ADCs along the length of each hippocampus. Mean and SDs were obtained for each measurement, and level of significance was determined (P <.05). The relationship between clinical lateralization and MR imaging and ADCs was studied. RESULTS: No significant variations were found in the ADCs in controls (side to side and along hippocampi). In patients, abnormalities were seen with MR imaging alone in 16, with ADC in 14, and with both in 21. Of 23 hippocampi with an abnormal MR appearance, 14 had abnormal ADCs. Nine hippocampi with a normal MR appearance had abnormal ADCs. Normal MR appearance and ADCs were seen in 13 hippocampi. Most abnormal ADCs were seen in the anterior aspect of the hippocampi. All differences were statistically significant. Of 19 patients who underwent clinical testing, unequivocal lateralization was established in 10. Concordance between clinical tests and MR imaging, ADC, and MR imaging plus ADC was found in five, five, and seven patients, respectively. CONCLUSION: Visual assessment was better than ADCs alone for detection of abnormal hippocampi. MR imaging plus ADCs was better than either technique alone. ADCs may be abnormal when MR images are unremarkable. Concordance with clinical lateralization was better when MR imaging and ADC were jointly evaluated than when either technique was evaluated separately.  相似文献   

8.
PURPOSE: To prospectively determine the relationship between serum phenylalanine levels and apparent diffusion coefficient (ADC) values in the cerebral white matter of patients with phenylketonuria (PKU). MATERIALS AND METHODS: Institutional review board approval was obtained, and participants provided informed consent. Magnetic resonance (MR) imaging, which included T1- and T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and diffusion-weighted examinations, was performed in 21 patients with PKU (nine male and 12 female patients; age range, 3-44 years; mean age, 19.4 years). ADC values in deep cerebral white matter were calculated for each patient. Serum phenylalanine levels were obtained in all patients within 12 days after MR imaging. Serum phenylalanine levels were measured in 16 patients 1 year before MR imaging. ADC values in cerebral white matter and serum phenylalanine levels were compared. A total of 21 control subjects (12 male and nine female patients; age range, 3-33 years; mean age, 20.6 years) underwent MR imaging. ADC values in cerebral white matter were compared with serum phenylalanine levels by using the Pearson correlation. RESULTS: Abnormal high signal intensity in white matter on T2-weighted and FLAIR MR images was noted in patients with PKU who had serum phenylalanine levels of more than 8.5 mg/dL (514.2 micromol/L). Diffusion in posterior deep cerebral white matter tended to be restricted in patients when increased serum phenylalanine levels were measured after MR imaging (r = -0.62). There was a correlation between ADC values in posterior cerebral white matter and serum phenylalanine levels measured 1 year before MR imaging (r = -0.77). ADCs of control subjects were significantly higher than ADCs of patients with PKU (P < .005). CONCLUSION: Posterior deep white matter in patients with PKU and a serum phenylalanine level of more than 8.5 mg/dL showed high signal intensity in white matter on T2-weighted and FLAIR MR images and revealed decreased ADC. We suggest that to avoid brain-restricted diffusion due to hyperphenylalanemia, patients with PKU should maintain serum phenylalanine levels of less than 8.5 mg/dL (514.2 micromol/L).  相似文献   

9.
Diffusion-weighted MR imaging in the head and neck   总被引:1,自引:0,他引:1  
Thoeny HC  De Keyzer F  King AD 《Radiology》2012,263(1):19-32
Extracranial applications of diffusion-weighted (DW) magnetic resonance (MR) imaging are gaining increasing importance, including in head and neck radiology. The main indications for performing DW imaging in this relatively small but challenging region of the body are tissue characterization, nodal staging, therapy monitoring, and early detection of treatment failure by differentiating recurrence from posttherapeutic changes. Lower apparent diffusion coefficients (ADCs) have been reported in the head and neck region of adults and children for most malignant lesions, as compared with ADCs of benign lesions. For nodal staging, DW imaging has shown promise in helping detect lymph node metastases, even in small (subcentimeter) nodes with lower ADCs, as compared with normal or reactive nodes. Follow-up of early response to treatment is reflected in an ADC increase in the primary tumor and nodal metastases; whereas nonresponding lesions tend to reveal only a slight increase or even a decrease in ADC during follow-up. Optimization and standardization of DW imaging technical parameters, comparison of DW images with morphologic images, and increasing experience, however, are prerequisites for successful application of this challenging technique in the evaluation of various head and neck pathologic conditions.  相似文献   

10.
BACKGROUND AND PURPOSE: MR diffusion-weighted (DW) imaging with apparent diffusion coefficient (ADC) has had widespread use clinically in a variety of intracranial diseases; however, only a few studies report ADC changes in patients with hippocampal sclerosis. We sought to determine the ability of ADC to lateralize the epileptogenic lesion in patients with hippocampal sclerosis. METHODS: Nineteen healthy volunteers and 18 patients with intractable temporal lobe epilepsy whose MR imaging diagnosis was unilateral hippocampal sclerosis were examined prospectively with DW imaging and ADC mapping. DW images were obtained at 1.5 T with a spin-echo echo-planar sequence (6500/103 [TR/TE]) with variable diffusion gradients. ADCs were calculated from bilateral hippocampi. The ability of DW imaging and ADC to lateralize the lesion was evaluated visually and by comparing ADC values between healthy volunteers and patients with hippocampal sclerosis. RESULTS: In all patients, visual assessment of DW images failed to lateralize the lesion. However, the mean ADC value measured at the hippocampal area was significantly higher on the lesion side than on the contralateral side (P <.001). The overall correct lateralization rate of ADC was 100% (18 of 18 patients). Mean ADC in sclerotic hippocampi was also significantly higher than that in healthy volunteers. The normal-appearing hippocampus of the contralateral side in the patients had higher ADC values compared with those of healthy volunteers (P =.045). CONCLUSION: ADC can be used as a complementary tool in lateralizing the epileptogenic lesion in patients with hippocampal sclerosis, although the practical role of ADC value is yet to be determined in patients with inconclusive MR imaging findings.  相似文献   

11.
Jacobs MA  Herskovits EH  Kim HS 《Radiology》2005,236(1):196-203
PURPOSE: To prospectively determine the feasibility of using diffusion-weighted (DW) imaging and apparent diffusion coefficient (ADC) mapping before (baseline) and after treatment and at 6-month follow-up to monitor magnetic resonance (MR) image-guided focused ultrasound surgical ablation of uterine fibroids. MATERIALS AND METHODS: Informed consent was obtained from patients before treatment with our study protocol, as approved by the institutional review board, and the study complied with the Health Insurance Portability and Accountability Act. Fourteen patients (mean age, 46 years +/- 5 [standard deviation]) who underwent DW imaging were enrolled in this study, and 12 of 14 completed the inclusive MR examination with DW imaging at 6-month follow-up. Treatment was performed by one radiologist with a modified MR image-guided focused ultrasound surgical system coupled with a 1.5-T MR imager. Pre- and posttreatment and 6-month follow-up MR images were obtained by using phase-sensitive T1-weighted fast spoiled gradient-recalled acquisition, T1-weighted contrast material-enhanced, and DW imaging sequences. Total treatment time was 1-3 hours. Trace ADC maps were constructed for quantitative analysis. Regions of interest localized to areas of hyperintensity on DW images were drawn on postcontrast images, and quantitative statistics were obtained from treated and nontreated uterine tissue before and after treatment and at 6-month follow-up. Statistical analysis was performed with analysis of variance. Differences with P < .05 were considered statistically significant. RESULTS: T1-weighted contrast-enhancing fibroids selected for treatment had no hyperintense or hypointense signal intensity changes on the DW images or ADC maps before treatment. Considerably increased signal intensity changes that were localized within the treated areas were noted on DW images. Mean baseline ADC value in fibroids was 1504 mm(-6)/sec2 +/- 290. Posttreatment ADC values for nontreated fibroid tissue (1685 mm(-6)/sec2 +/- 468) differed from posttreatment ADC values for fibroid tissue (1078 mm(-6)/sec2 +/- 293) (P = .001). A significant difference (P < .001) between ADC values for treated (1905 mm(-6)/sec2 +/- 446) and nontreated (1437 mm(-6)/sec2 +/- 270) fibroid tissue at 6-month follow-up was observed. CONCLUSION: DW imaging and ADC mapping are feasible for identification of ablated tissue after focused ultrasound treatment of uterine fibroids.  相似文献   

12.
BACKGROUND AND PURPOSE: On diffusion-weighted (DW) images, primary hematomas are initially mainly hyperintense, and then hypointense during the first few days after stroke onset. As in other brain disorders, variations in the T2 relaxation time of the hematoma influence the DW imaging signal intensity. Our aim was to evaluate the contribution of the T2 signal intensity and apparent diffusion coefficient (ADC) changes to signal intensity displayed by DW imaging through the course of hematoma. METHODS: The MR images of 33 patients with primary intracranial hemorrhage were retrospectively reviewed. Variations in T2-weighted echo planar images, DW imaging signal intensity, and apparent diffusion coefficient (ADC) ratios (core of hematoma/contralateral hemisphere) were analyzed according to the putative stages of hematoma, as seen on T1- and T2-weighted images. RESULTS: On both T2-weighted echo planar and DW images, the core of the hematomas was hyperintense at the hyperacute (oxyhemoglobin, n = 11) and late subacute stages (extracellular methemoglobin, n = 4), while being hypointense at the acute (deoxyhemoglobin, n = 11) and early subacute stages (extracellular methemoglobin, n = 7). There was a positive correlation between the signal intensity ratio on T2-weighted echo planar and DW images (r = 0.93, P < .05). ADC ratios were significantly decreased in the whole population and in each of the first three stages of hematoma, without any correlation between DW imaging findings and ADC changes (r = 0.09, P = .6). CONCLUSION: Our results confirm that the core of hematomas is hyperintense on DW images with decreased ADC values at the earliest time point, and may thus mimic arterial stroke on DW images. T2 shine-through and T2 blackout effects contribute to the DW imaging findings of hyperintense and hypointense hematomas, respectively, while ADC values are moderately but consistently decreased during the first three stages of hematoma.  相似文献   

13.
PURPOSE: To compare diffusion-weighted echo-planar imaging (DW) with spin-echo (SE), and fluid-attenuated inversion recovery (FLAIR) sequences in the evaluation of epidermoid cysts (ECs), and to evaluate T2 shine-through effect. MATERIALS AND METHODS: Fifteen patients were imaged prospectively in two different 1.5 T magnetic resonance (MR) units with standard head coils with SE, FLAIR and DW echo planar imaging sequences. The qualitative and quantitative assessments were performed by two radiologists in consensus. Apparent diffusion coefficient (ADC) values were obtained from all ECs. Exponential DW images are obtained in 11 cases to eliminate T2 shine-through effects. The results are analyzed with variance analysis (ANOVA) and Bonferroni t method. RESULTS: FLAIR sequence was superior to T1- and T2-weighted sequences in showing ECs. In 13 cases, the borders of the lesions could be delineated from the surrounding structures with only DW imaging where ECs were markedly hyperintense. The ADC values of ECs are significantly lower than CSF (P < 0.001), and significantly higher than deep white matter (P < 0.01). On exponential DW images, ECs had similar intensity with brain parenchyma showing that the real cause of the hyperintensity of the lesions on trace images is the enhanced T2 effect of the tissue. CONCLUSION: FLAIR sequence is superior to the conventional MR sequences in demonstrating the ECs and DW imaging is superior to other MR sequences in delineating the borders of the ECs. Exponential DW images had shown that the hyperintensity in the trace images are caused by increased T2 effect of the lesion rather than the decrease in ADC values.  相似文献   

14.
BACKGROUND AND PURPOSE: Conventional imaging techniques cannot be used to unambiguously and reliably differentiate malignant from benign vertebral compression fractures. Our hypothesis is that these malignant and benign vertebral lesions can be better distinguished on the basis of tissue apparent diffusion coefficients (ADCs). The purpose of this study was to test this hypothesis by using a quantitative diffusion imaging technique. METHODS: Twenty-seven patients with known cancer and suspected metastatic vertebral lesions underwent 1.5-T conventional T1-weighted, T2-weighted, and contrast-enhanced T1-weighted imaging to identify the lesions. Diffusion-weighted images of the areas of interest were acquired by using a fast spin-echo diffusion pulse sequence with b values of 0-250 s/mm(2). The abnormal regions on the diffusion-weighted images were outlined by using the conventional images as guides, and the ADC values were calculated. On the basis of pathologic results and clinical findings, the cases were divided into two categories: benign compression fractures and metastatic lesions. The ADC values for each category were combined and plotted as histograms; this procedure was followed by statistical analysis. RESULTS: The patient group had 12 benign fractures and 15 metastases. The mean ADC values, as obtained from the histograms, were (1.9 +/- 0.3) x 10(-4) mm(2)/s and (3.2 +/- 0.5) x 10(-4) mm(2)/s for metastases and benign fractures, respectively. CONCLUSION: Our results indicate that quantitative ADC mapping, instead of qualitative diffusion-weighted imaging, can provide valuable information in differentiating benign vertebral fractures from metastatic lesions.  相似文献   

15.
OBJECTIVE: Relative hypointensity on T1-weighted MR imaging has been suggested as a putative disability marker. The purpose of our study was to determine if there are quantifiable diffusion differences among focal multiple sclerosis lesions that appear differently on conventional T1-weighted MR images. We hypothesized that markedly hypointense lesions on unenhanced T1-weighted images would have significantly increased diffusion compared with other lesions, and enhancing portions of lesions would have different diffusion compared with nonenhancing lesions. SUBJECTS AND METHODS: Average apparent diffusion coefficient (ADC) was calculated for 107 lesions identified on T2-weighted images in 16 patients with multiple sclerosis and was compared with the ADC of normal white matter in 16 age- and sex-matched control subjects. Seventy-five nonenhancing lesions (29 isointense, 46 hypointense) and 32 enhancing lesions (6 isointense, 26 hypointense) were categorized on the basis of unenhanced T1-weighted MR imaging. RESULTS: Hypointense and isointense nonenhancing lesions both showed significantly higher ADC than normal white matter (p < 0.0001). Hypointense nonenhancing lesions showed higher ADC values than isointense nonenhancing lesions (p < 0.0001). Diffusion in enhancing portions of enhancing lesions was decreased when compared with nonenhancing portions. CONCLUSION: Quantitative diffusion data from MR imaging differ among multiple sclerosis lesions that appear different from each other on T1-weighted images. These quantitative diffusion differences imply microstructural differences, which may prove useful in documenting irreversible disease.  相似文献   

16.
BACKGROUND AND PURPOSE: Recent experience suggests that diffusion-weighted MR imaging may be decisive in the differential diagnosis of ring-enhancing cerebral lesions. Whether restricted diffusion within a ring-enhancing cerebral mass lesion is pathognomonic for abscess was studied. METHODS: Seventeen patients with ring-enhancing cerebral lesions (three abscesses, six glioblastomas, eight metastases) on conventional contrast-enhanced T1-weighted images were examined with echo-planar diffusion-weighted MR imaging. Apparent diffusion coefficient (ADC) maps and the ADCs were calculated for all lesions. Lesions with signs of intralesional hemorrhage on unenhanced T1-weighted images were excluded. RESULTS: The central portion of all six glioblastomas and seven of eight metastases showed unrestricted diffusion, whereas two of three abscesses showed restricted diffusion (low ADC values) in their cavity. However, restricted diffusion also was found in one metastasis, and one abscess within a postoperative cavity showed unrestricted diffusion within a larger nondependent portion. CONCLUSION: In patients with ring-enhancing cerebral mass lesions, restricted diffusion might be characteristic but is not pathognomonic for abscess, as low ADC values also may be found in brain metastases.  相似文献   

17.
Diffusion-weighted images in children with meningoencephalitis   总被引:1,自引:0,他引:1  
PURPOSE: The objective of the study was to evaluate the maps of apparent diffusion coefficients (ADCs) and diffusion-weighted (DW) images in demonstrating meningoencephalitic lesions in children. MATERIALS AND METHODS: Between May 1998 and May 2000, 18 infants and children (4.5-190 months old) suffering from meningoencephalitis were included in the study. The diagnoses were bacterial meningoencephalitis in 8 and aseptic or viral in 10 patients. All 18 patients had brain MRI examinations. In the axial plane, three pulse sequences were performed on all patients: (1) FSE T2W images; (2) fast FLAIR images; (3) single-shot echoplanar DW images were acquired. Another 18 patients from the control group also received DW image examination. ADCs were computed for all regions on each DW image. RESULTS: The absolute values of CNRs of lesions on T2W (7.27+/-5.51), FLAIR (5.56+/-5.03) and DW (13.36+/-16.64) images were significantly greater than those on ADC maps (0.42+/-0.30) in the study group of patients (P<.01). In addition, absolute CNRs on DW images were significantly greater than on T2W and FLAIR images (P<.01). However, lesions on ADC maps in the study group have significantly greater CNRs than in the control group (0.13+/-0.12) (P<.01). CNRs on initial DW images from patients with atrophy or swelling of meningoencephalitic lesions were significantly different from the CNRs of those patients without significant changes in meningoencephalitic lesions (P=.02<.05). CONCLUSION: The DW image is a sensitive tool for detecting meningoencephalitic lesions and is better than FSE T2W and fast FLAIR images in CNRs. Diffusion MR techniques provides new ways to possibly predict the outcome of intracranial infectious diseases in children.  相似文献   

18.
Brain in eclampsia: MR imaging with clinical correlation   总被引:4,自引:0,他引:4  
Cranial magnetic resonance (MR) imaging was performed on eight consecutive patients with generalized tonic-clonic seizures caused by eclampsia. Each patient underwent serial neurologic examinations until all symptoms resolved. Six of those eight patients underwent follow-up MR imaging. These patients were compared with those in previous case reports of MR imaging abnormalities of the brain in eclampsia. MR imaging typically demonstrates bilateral hyperintense lesions on T2-weighted images and iso- to hypointense lesions on T1-weighted images. MR imaging abnormalities are most commonly located in the distribution of the posterior cerebral circulation and are associated with visual disturbances. Basal ganglia and deep white matter lesions are less common and are associated with mental status changes. Most lesions seen at MR imaging in patients with eclampsia are reversible.  相似文献   

19.
CT perfusion parameter values in regions of diffusion abnormalities   总被引:4,自引:0,他引:4  
BACKGROUND AND PURPOSE: Dynamic CT perfusion imaging is a rapid and widely available method for assessing cerebral hemodynamics in the setting of ischemia. Nevertheless, little is known about perfusion parameters within regions of diffusion abnormality. Since MR diffusion-weighted (DW) imaging is widely considered the most sensitive and specific technique to examine the ischemic core, new knowledge about CT perfusion findings in areas of abnormal diffusion would likely provide valuable information. The purpose of our study was to measure the CT-derived perfusion values within acute ischemic lesions characterized by 1) increased signal intensity on DW images and 2) decreased apparent diffusion coefficient (ADC) and compare these values with those measured in contralateral, normal brain tissue. METHODS: Analysis was performed in 10 patients with acute middle cerebral artery territory stroke of symptom onset less than 8 hours before imaging who had undergone both CT perfusion and DW imaging within 2 hours. After registration of CT perfusion and DW images, measurements were made on a pixel-by-pixel basis in regions of abnormal hyperintensity on DW images and in areas of decreased ADC. RESULTS: Significant decreases in cerebral blood flow and cerebral blood volume with elevated mean transit times were observed in regions of infarct as defined by increased signal intensity on DW images and decreased ADC. Comparison of perfusion parameters in regions of core infarct differed significantly from those measured in contralateral normal brain. CONCLUSION: CT perfusion findings of decreased cerebral blood flow, mean transit time, and cerebrovascular volume correlate with areas of abnormal hyperintensity on DW images and regions of decreased ADC. These findings provide important information about perfusion changes in acute ischemia in areas of diffusion abnormality.  相似文献   

20.
BACKGROUND AND PURPOSE: Carbon monoxide intoxication has delayed effects on the cerebral white matter characterized by bilateral, confluent lesions that reflect diffuse demyelination. To increase our understanding of this process, we assessed the diffusion characteristics of these lesions. METHODS: Five consecutive patients with delayed encephalopathy of CO intoxication were examined with diffusion MR imaging. Diffusion-weighted images (DWIs) were obtained 25-95 days after their exposure to CO and during a relapse of neuropsychiatric symptoms, which occurred after an initial recovery. Imaging was performed at 1.5 T by using a spin-echo echo-planar sequence with diffusion gradients of 0, 500, and 1000 s/mm(2). DWIs and apparent diffusion coefficient (ADC) maps were visually evaluated, and mean ADCs were calculated from the periventricular white matter and the centrum semiovale, where confluent hyperintensity was seen on T2-weighted images. Findings were compared with those of normal-looking white matter. RESULTS: In all five patients, both T2-weighted images and DWIs showed the white matter lesions as bilateral, diffuse, confluent areas of hyperintensity in the periventricular white matter and centrum semiovale. On ADC maps, these lesions were isointense, with focal areas of hypointensity (n = 4) or diffuse hypointensity (n = 1). Mean ADC values of the white matter lesions were significantly lower than those of normal-looking white matter, regardless of their isointensity or hypointensity on ADC maps (P <.05). CONCLUSION: Bilateral, confluent, white matter lesions in patients with delayed encephalopathy of CO intoxication show decreased diffusivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号