首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To probe the effect of glutamine and GABA on metabolism of [U-(13)C]glutamate, cerebellar astrocytes were incubated with [U-(13)C]glutamate (0.5 mM) in the presence and absence of glutamine (2.5 mM) or GABA (0.2 mM). It could be shown that consumption of [U-(13)C]glutamate was decreased in the presence of glutamine and release of labeled aspartate and [1,2,3-(13)C]glutamate decreased as well, whereas the concentrations of these metabolites increased inside the cells. Glutamine decreased energy production from [U-(13)C]glutamate presumably by substituting for glutamate as an energy substrate. No additional effect was seen in the presence of both glutamine and GABA. When cerebellar granule neurons were incubated with [U-(13)C]glutamate (0.25 mM) and GABA (0.05 mM), less [U-(13)C]glutamate was used for energy production than in controls. Because the barbiturate thiopental did not elicit such response (Qu et al., 2000, Neurochem Int 37:207-215) it appears that GABA also has a metabolic function in the glutamatergic cerebellar granule neurons in contrast to the astrocytes.  相似文献   

2.
The ability of cultured astrocytes to metabolize [U-13C]glutamate in the absence of glucose was investigated by utilizing 13C nuclear magnetic resonance spectroscopy to identify 13C-labeled metabolites. Control cultures (3 mM glucose), hypoglycemic cultures (glucose-deprived), severe hypoglycemic cultures (glucose-deprived, 0.5 mM iodoacetate as an inhibitor of glycolysis), hypoglycemic/hypoxic cultures, and cultures deprived of all additional substrates were incubated for 2 hr in medium containing 0.5 mM glutamate (50% [U-13C]glutamate). Glucose deprivation alone had little effect on removal of glutamate from the culture medium, but the presence of iodoacetate or incubating cultures in a low-oxygen atmosphere decreased glutamate clearance. Only the withdrawal of all substrates other than glutamate decreased glutamine synthesis. Metabolism of glutamate through the tricarboxylic acid (TCA) cycle was evident by the appearance of [1,2,3-13C]glutamate and [U-13C]aspartate in cell extracts and [U-13C]lactate in cell media. Lactate derived from TCA cycle intermediates was significantly reduced after glucose deprivation and even more so after severe hypoglycemia. Release of glutamate from astrocytes was observed under all incubation conditions. [U-13C]Aspartate was not detected in control media but was released from glucose-deprived cells when oxygen was available. Increased release was observed in the presence of iodoacetate. After withdrawal of all substrates other than glutamate, [U-13C]aspartate was the only metabolite observed intracellularly, whereas aspartate, glutamine, and 5-oxoproline were detected in the incubation medium. The present results indicate that glutamate-to-aspartate conversion is preferentially utilized by astrocytes when oxygen is available but glycolysis is impaired. J. Neurosci. Res. 51:636–645, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Primary cultures of cerebral cortical GABA-ergic neurons growing on top of a preformed layer of astrocytes (co-cultures) were incubated with [1-13C]glucose and exposed to a low oxygen atmosphere (2% O2) for 17 hr. 13C, 1H, and 13P nuclear magnetic resonance (NMR) spectroscopy was performed on perchloric acid (PCA) extracts of cells and of media collected from these cultures. In the control groups incorporation of 13C label into glutamine, citrate, and lactate could be demonstrated in both cell extracts and culture media. Labeled GABA and glutamate were only observed in cell extracts. During hypoxia high energy phosphates decreased but lactate production and glucose consumption increased. There was a decreased amount of citrate and glutamine in cell extracts and media of the hypoxic co-cultures. There was a change in distribution of the 13C label within the GABA molecule, with an increase of labeling in the C-2 position. This change in 13C distribution was not found in glutamine present in the media where it is a precursor for GABA in neurons. Instead a decrease in the corresponding C-4 position was observed. These results suggest that energy depletion during hypoxia leads to reduced export from the astrocytic tricarboxylic acid (TCA) cycle as demonstrated by a decreased amount of citrate and changed distribution of 13C in glutamine. The change in the distribution of label in GABA from cell extracts as compared to glutamine in the medium may indicate that neurons are synthesizing GABA using precursors supplied from their own TCA cycle and not from precursors supplied by astrocytes.  相似文献   

4.
3-Nitropropionic acid (3-NPA) is a selective and irreversible inhibitor of succinate dehydrogenase. The effect of this compound on the metabolism of [U-13C]glutamate was studied in astrocytes using 13C nuclear magnetic resonance spectroscopy. The appearance of [1,2,3-13C]glutamate in cell extracts and [1,2,3-13C]glutamine and [U-13C]lactate in cell media demonstrated the metabolism of labeled glutamate via the tricarboxylic acid cycle. Such labeling was observed in the control situation and also in cells treated with 3 mM 3-NPA. In the cells treated with 3 mM 3-NPA, however, the labeling was significantly reduced, and with 10 mM 3-NPA no such labeling was observed. Labeled aspartate was observed in untreated cells only. Labeled succinate was not detectable under control conditions, but increased dose dependently in the presence of 3-NPA. Glutamate uptake and conversion of [U-13C]glutamate to U-13C]glutamine was largely unaffected by 3-NPA, and ATP content was unchanged. In a previous study using cerebellar neurons, tricarboxylic acid cycle metabolism was blocked with 3 mM 3-NPA. The present results show that astrocyte metabolism is more adaptable to blockade of the tricarboxylic acid cycle by 3-NPA than neuronal metabolism. J. Neurosci. Res. 47:650–654, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.  相似文献   

6.
The intracellular compartmentation of pyruvate in primary cultures of cortical neurons was investigated by high resolution (13)C NMR using mixtures of different pyruvate precursors conveniently labeled with (13)C or unlabeled. Cells were incubated with 1-5 mM (1-(13)C, 1,2-(13)C(2) or U-(13)C(6)) glucose only or with mixtures containing 1.5 mM (1-(13)C or U-(13)C(6)) glucose, 0.25-2.5 mM (2-(13)C or 3-(13)C) pyruvate and 1 mM malate. Extracts from cells and incubation media were analyzed by (13)C NMR to determine the relative contributions of the different precursors to the intracellular pyruvate pool. When ((13)C) glucose was used as the sole substrate fractional (13)C enrichments and (13)C isotopomer populations in lactate and glutamate carbons were compatible with a unique intracellular pool of pyruvate. When mixtures of ((13)C) glucose, ((13)C) pyruvate and malate were used, however, the fractional (13)C enrichments of the C2 and C3 carbons of lactate were higher than those of the C2 and C3 carbons of alanine and depicted a different (13)C isotopomer distribution. Moreover, neurons incubated with 1 mM (1,2-(13)C(2)) glucose and 0.25-5 mM (3-(13)C) pyruvate produced exclusively (3-(13)C) lactate, revealing that extracellular pyruvate is the unique precursor of lactate under these conditions. These results reveal the presence of two different pools of intracellular pyruvate; one derived from extracellular pyruvate, used mainly for lactate and alanine production and one derived from glucose used primarily for oxidation. A red-ox switch using the cytosolic NAD(+)/NADH ratio is proposed to modulate glycolytic flux, controlling which one of the two pyruvate pools is metabolized in the tricarboxylic acid cycle when substrates more oxidized or reduced than glucose are used.  相似文献   

7.
Glutamate uptake and metabolism was studied in cerebral cortical astrocytes. The expression of the astrocytic glutamate transporter GLAST was found to be stimulated by extracellular glutamate through activation of kainate receptors on the astrocytes. Energy metabolism and ammonia homeostasis are two important aspects of glutamate handling in astrocytes. It is well known that glutamate transport into astrocytes and glutamine formation are energy consuming processes. Furthermore, ammonia is required for glutamine production. On the other hand, glutamate metabolism through the tricarboxylic acid cycle is an energy and ammonia producing pathway. In the present study it was shown that at an extracellular glutamate concentration of 0.5 mM, high energy phosphates were reduced, and more than 50% of the glutamate carbon skeleton entered the tricarboxylic acid cycle to yield products like lactate, aspartate, and additionally glutamate and glutamine derived from tricarboxylic acid cycle intermediates. Entry into the cycle was not affected by the transaminase inhibitor aminooxyacetic acid, indicating that deamination is the major route for 2-oxoglutarate formation from glutamate. Synthesis of glutamate from 2-oxoglutarate, however, proceeded via transamination. In an earlier study it was shown that at glutamate concentrations at and below 0.2 mM, glutamine appears to be the major product and entry of glutamate into the tricarboxylic acid cycle is decreased 70% by aminooxyacetic acid. In an attempt to unify the above mentioned results, it is suggested that availability of ammonia and energy demands are major factors determining the metabolic fate of glutamate in astrocytes. GLIA 21:56–63, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Uptake and oxidative metabolism of [14C]malate as well as its incorporation into aspartate, glutamate, glutamine, and GABA were studied in cultured cerebral cortical neurons (GABAergic), cerebellar granule neurons (glutamatergic), and cerebral cortical astrocytes. All cell types exhibited high affinity uptake of malate (Km 10–85 μM) with slightly higher Vmax values in neurons (0.1–0.2 nmol × min?1 × mg?1) than in astrocytes (0.06 nmol × min?1 × mg?1). Malate was oxidatively metabolized in all three cell types with nominal rates of 14CO2 production of 2–15 pmol × min?1 × mg?1. The oxidation of malate was only slightly inhibited by 5 mM aminooxyacetic acid (AOAA). In granule cell preparations [14C]malate was incorporated into aspartate and glutamate and, to a much less extent, into glutamine. This incorporation was blocked by 5 mM AOAA. Astrocytes exhibited slightly higher incorporation rates into aspartate and glutamate, but in these cells glutamine was labelled to a considerable extent. AOAA (5 mM) inhibited the incorporation by 60–70%. In cultures of cerebral cortical neurons, very low levels of radioactivity derived from [14C]malate were found in aspartate and glutamate, and GABA was not labelled at all. Glutamine had the same specific activity as glutamate, indicating that the low rates of incorporation of radioactivity into amino acids in this preparation is likely to exclusively represent metabolism of malate in the small population of astrocytes (5% of total cell number), contaminating the neuronal cultures. The findings suggest that exogenous malate to a quantitatively limited extent may serve as a precursor for transmitter glutamate in glutamaterigc neurons. Astrocytes are able to metabolize malate to glutamate and related amino acids, but oxidize little malate to CO2. © Wiley-Liss, Inc.  相似文献   

9.
Glutamate metabolism was studied in primary cultures of cerebral cortical astrocytes to determine the significance of transamination for the oxidative metabolism of glutamate. Cultures were incubated with [U-13C]glutamate (0.5 mM) in the presence and absence of the transaminase inhibitor aminooxyacetic acid (AOAA) and in some cases with methionine sulfoximine, an inhibitor of glutamine synthetase. Perchloric acid extracts of the cells as well as redissolved lyophilized incubation media were subjected to nuclear magnetic resonance spectroscopy to identify 13C-labeled metabolites. Additionally, biochemical analyses were performed to quantify amino acids, lactate, citrate, and ammonia. Glutamine released into the medium and intracellular glutamate were labeled uniformly to a large extent, but the C-3 position showed not only the expected apparent triplet but also a doublet due to 12C incorporation into the C-4 and C-5 positions. Incorporation of 12C into the C-4 and C-5 positions of glutamate and glutamine as well as labeling of lactate, citrate, malate, and aspartate could only arise via metabolism of [U-13C]glutamate through the tricarboxylic acid (TCA) cycle. Entry of the carbon skeleton of glutamate into the TCA cycle must proceed via 2-oxoglutarate. This conversion can occur as a transamination or an oxidative deamination. After blocking transamination with AOAA, metabolism of glutamate through the TCA cycle was still taking place since lactate labeling was only slightly reduced. Glutamate and glutamine synthesis from 2-oxoglutarate could, however, not be detected under this condition. It therefore appears that while glutamate dehydrogenase is important for glutamate degradation, glutamate biosynthesis occurs mainly as a transamination. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.  相似文献   

11.
Astrocytes were incubated under normoxic or hypoxic conditions in Dulbecco's minimum essential medium containing [12-13C]acetate, unlabeled glucose and in some cases orotic acid, an intermediate in pyrimidine biosynthesis. After 12 hr the medium was replaced by fresh medium without drug and incubation was continued for 17 hr in a normal oxygen atmosphere (reoxygenation). Thereafter, medium was removed, cell extracts were prepared, and metabolism in the treatment group was compared to the untreated hypoxia group and to control. 13C and H NMR spectra revealed that 13C enrichment in citrate and glutamine C-4 in the initial medium were increased in the presence of orotic acid, compared to the untreated hypoxia group but lower than control. The drug increased acetate utilization during hypoxia to normoxic levels. Thus it appears that the treatment group had a more active mitochondrial metabolism, which was also reflected in higher intracellular uridine diphosphoryl sugars and ADP concentrations. Glutamine labeling was increased in the cell extracts in the presence of orotic acid. Thus it appears that, in the presence of the pyrimidine nucleotide precursor, astrocytes are capable of normal metabolism during hypoxia which might have implications for neuronal survival during low oxygen insults, since neurons are dependent on astrocyte produced precursors for their neurotransmitter synthesis.  相似文献   

12.
The effect of gamma-aminobutyric acid (GABA) on glutamate metabolism was studied by (13)C-nuclear magnetic resonance (NMR) spectroscopy. Cerebral cortical astrocytes were incubated with 0.5 mM [U-(13)C]glutamate and 5 mM glucose in the presence or absence of 0.2 mM GABA for 2 hr. (13)C-labeled glutamate, glutamine, and aspartate were observed in cell extracts, and (13)C-labeled glutamine and lactate were present in the media. Both uniformly labeled glutamate and [1,2,3-(13)C]glutamate derived from the tricarboxylic acid (TCA) cycle were present in the cells. The consumption of [U-(13)C]glutamate and glucose was unchanged in the presence of GABA; however, the formation of [U-(13)C]lactate and [U-(13)C]aspartate from metabolism of [U-(13)C]glutamate was increased in cells incubated with GABA. The total concentration of aspartate was increased to the same extent as the (13)C-labeled aspartate, suggesting increased entry of [U-(13)C]glutamate into the TCA cycle to allow for the transamination of GABA. Although the concentrations of unlabeled glucose and lactate in the media were unchanged in the presence of GABA, the concentration of alanine was decreased, indicating that there was decreased transamination of the unlabeled pyruvate from glucose metabolism. The amount of [U-(13)C]glutamate converted to [U-(13)C]glutamine and [U-(13)C]lactate was increased in the presence of GABA. However, since the overall consumption of [U-(13)C]glutamate was not different, it can be concluded that the amount of [U-(13)C]glutamate used for energy was decreased. This suggests that exogenous GABA could substitute for glutamate as an energy source for astrocytes. The results indicate that the presence of GABA influences the metabolic fate of both glutamate and glucose in astrocytes, suggesting that fluctuations in the concentration of GABA in normal and pathological conditions can alter the compartmentation of glial metabolism in brain.  相似文献   

13.
Network activation triggers a significant energy metabolism increase in both neurons and astrocytes. Questions of the primary neuronal energy substrate (e.g., glucose vs. lactate) as well as the relative contributions of glycolysis and oxidative phosphorylation and their cellular origin (neurons vs. astrocytes) are still a matter of debates. Using simultaneous measurements of electrophysiological and metabolic parameters during synaptic stimulation in hippocampal slices from mature mice, we show that neurons and astrocytes use both glycolysis and oxidative phosphorylation to meet their energy demands. Supplementation or replacement of glucose in artificial cerebrospinal fluid (ACSF) with pyruvate or lactate strongly modifies parameters related to network activity-triggered energy metabolism. These effects are not induced by changes in ATP content, pHi, [Ca2+]i or accumulation of reactive oxygen species. Our results suggest that during network activation, a significant fraction of NAD(P)H response (its overshoot phase) corresponds to glycolysis and the changes in cytosolic NAD(P)H and mitochondrial FAD are coupled. Our data do not support the hypothesis of a preferential utilization of astrocyte-released lactate by neurons during network activation in slices—instead, we show that during such activity glucose is an effective energy substrate for both neurons and astrocytes.  相似文献   

14.
Mouse cerebellar granule neurons and astrocytes grown in the presence of 2 mM guanidinoethane sulfonate (GES) exhibited a progressive and rapid decrease in taurine concentration. A reduction of 20% was observed as early as 1 hr after exposure to GES and the loss of cell taurine continued until the taurine pool was reduced by about 90%. This remaining taurine persisted without further decrease even after 3 weeks of exposure to GES. Taurine reduction caused by GES was similar in both types of cells. The effect of GES was dose-dependent, with significant decreases in taurine levels already detected at 100 microM. It was selective for taurine, since none of the other free amino acids were affected. Taurine depletion induced by GES was totally reversible. Intracellular taurine was not mobilized by GES. Taurine uptake in both astrocytes and granule neurons, examined at the taurine concentration present in the culture medium, was practically abolished by 2 mM GES. This approach represents an in vitro model of taurine depletion that may be useful to investigate the cell abnormalities responsible for the failure of differentiation and migration of granule cells and astrocytes observed in taurine-deficient cats.  相似文献   

15.
The effects of glutamate on [U-(13)C]glucose metabolism were studied in cerebellar astrocytes using (13)C magnetic resonance spectroscopy. Labeled glutamate, glutamine, aspartate, lactate, and alanine were observed both in the cell extracts and in media, and, additionally, labeled glycogen was detected in the cell extracts. However, only labeled lactate and alanine were quantifiable in the medium in addition to [U-(13)C]glucose. In the presence of unlabeled glutamate, the amount of [U-(13)C]glucose removed from the medium was decreased, indicating that glutamate might spare glucose as an energy substrate and thus decrease the uptake of glucose. Labeled glycogen, [4,5-(13)C]glutamate, [3,4,5-(13)C]glutamate, [3,4-(13)C]aspartate, and [U-(13)C]alanine were increased in the presence of glutamate. However, the increase in the amount of [3,4,5-(13)C]glutamate from the second turn in the tricarboxylic acid (TCA) cycle was less pronounced than that of [4,5-(13)C]glutamate from the first turn in the TCA cycle. This indicates the dilution of label, probably resulting from the synthesis of unlabeled oxaloacetate from glutamate in the TCA cycle. Furthermore, exogenous glutamate had an inhibiting effect on pyruvate carboxylation, presumably by formation of oxaloacetate from 2-oxoglutarate derived from glutamate. It could be shown that glucose is a better substrate for energy production than glutamate; it is, however, less efficient in labeling amino acids than glutamate in cerebellar astrocytes.  相似文献   

16.
After incubation of glial cells with both (13)C-labeled and unlabeled glucose and alanine, (13)C isotopomer analysis indicates two cytosolic pyruvate compartments in astrocytes. One pyruvate pool is in an exchange equilibrium with exogenous alanine and preferentially synthesizes releasable lactate. The second pyruvate pool, which is of glycolytic origin, is more closely related to mitochondrial pyruvate, which is oxidized via tri carbonic acid (TCA) cycle activity. In order to provide 2-oxoglutarate as a substrate for cytosolic alanine aminotransferase, glycolytic activity is increased in the presence of exogenous alanine. Furthermore, in the presence of alanine, glutamate is accumulated in astrocytes without subsequent glutamine synthesis. We suggest that the conversion of alanine to releasable lactate proceeds at the expense of flux of glycolytic pyruvate through lactate dehydrogenase, which is used for ammonia fixation by alanine synthesis in the cytosol and for mitochondrial TCA cycle activity. In addition, an intracellular trafficking occurs between cytosol and mitochondria, by which these two cytosolic pyruvate pools are partly connected. Thus, exogenous alanine modifies astrocytic glucose metabolism for the synthesis of releasable lactate disconnected from glycolysis. The data are discussed in terms of astrocytic energy metabolism and the metabolic trafficking via a putative alanine-lactate shuttle between astrocytes and neurons.  相似文献   

17.
Three distinct, maternal-independent routes (e.g. intraamniotic, intraperitoneal and intracerebral), for [1-13C]glucose utilization by fetal brain and liver tissues, were examined by multinuclear magnetic resonance (NMR) spectroscopy before and after vascular occlusion of the maternal-fetal blood flow. Labeled lactate was the major glycolytic product by all routes, but in addition labeled TCA cycle products were also generated. Fractional 13C enrichment in both glucose and lactate were always higher in the ischemic state compared to controls using either one of the three routes studied. After intraperitoneal injection total glucose in the fetal brain was decreased by 85% after 20 min reperfusion following 20 min ischemia, but was elevated up to 170% after 60 min. [1-13C]glucose increased continuously by up to 370% after 60 min. Total glucose in the fetal liver remained unchanged while [1-13C]glucose increased up to 380%. Total lactate level in brain was 50–80% above the control apart from a transient increase (140%) notable after 40 min reperfusion. The kinetics of [3-13C]lactate followed a similar time course. At the same time when lactate was transiently increased in fetal brain, total lactate as well as 13C-labeled lactate showed a transient decrease in liver after 40 min. While the ways of mobilization of energy substrates for maintaining adequate metabolic activity in the fetal brain remain still unclear, the present 13C NMR studies suggest that both liver glucose and lactate can contribute to brain metabolism particularly under ischemic stress. J. Neurosci. Res. 54:97–108, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
13C magnetic resonance spectroscopy (MRS) combined with the administration of 13C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity 1H-[13C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-13C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the 13C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit 13C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05±0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48±0.02 μmol/g per minute), the glutamate-glutamine exchange rate Vgln (0.20±0.02 μmol/g per minute), the pyruvate dilution factor Kdil (0.82±0.01), and the ratio for the lactate conversion rate and the alanine conversion rate VLac/VAla (10±2). This study opens the prospect of studying transgenic mouse models of brain pathologies.  相似文献   

19.
The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer''s disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-13C]glucose or [3-13C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of 13C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ∼6% of glucose metabolism in cortical neurons and ∼4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that 13C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.  相似文献   

20.
The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between neurons and astrocytes. In the present study, we determined the role of N-methyl-D-aspartate (NMDA) receptors on glutamate-evoked Ca(2+) influx into neurons and astrocytes. Either a nonselective NMDA receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) or selective NR2B subunit-containing NMDA receptor antagonists ifenprodil and (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (Ro25-6981) significantly inhibited the glutamate-evoked Ca(2+) influx into neurons, but not into astrocytes. Furthermore, we investigated whether NR2B subunit-containing NMDA receptor antagonists could suppress the astrocytic activation, as detected by glial fibrillary acidic protein (GFAP; as a specific marker of astrocyte)-like immunoreactivities in mouse cortical astrocytes. Here, we demonstrated that the increases in the level of GFAP-like immunoreactivities induced by glutamate were markedly suppressed by cotreatment with ifenprodil in cortical neuron/glia cocultures, but not in purified astrocytes. These results suggest that NR2B subunit-containing NMDA receptor plays a critical role in not only glutamate-evoked Ca(2+) influx into neurons, but also glutamate-induced astrocytic activation. Thus, glutamate-mediated pathway via NR2B subunit-containing NMDA receptor may, at least in part, contribute to neuron-to-astrocyte signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号