首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chromosome banding analysis of 11 short-term cultured gallbladder carcinomas revealed acquired clonal aberrations in seven tumors (five primary and two metastases). Three of these had one clone, whereas the remaining four were cytogenetically heterogeneous, displaying two to seven aberrant clones. Of a total of 21 abnormal clones, 18 had highly complex karyotypes and three exhibited simple numerical deviations. Double minutes and homogeneously staining regions were observed in one and two carcinomas, respectively. To characterize the karyotypic profile of gallbladder cancer more precisely, we have combined the present findings with our three previously reported cases, thereby providing the largest cytogenetic database on this tumor type to date. A total of 287 chromosomal breakpoints were identified, 251 of which were found in the present study. Chromosome 7 was rearranged most frequently, followed by chromosomes 1, 3, 11, 6, 5, and 8. The bands preferentially involved were 1p32, 1p36, 1q32, 3p21, 6p21, 7p13, 7q11, 7q32, 19p13, 19q13, and 22q13. Nine recurrent abnormalities could, for the first time, be identified in gallbladder carcinoma: del(3)(p13), i(5)(p10), del(6)(q13), del(9)(p13), del(16)(q22), del(17)(p11), i(17)(q10), del(19)(p13), and i(21)(q10). The most common partial or whole-arm gains involved 3q, 5p, 7p, 7q, 8q, 11q, 13q, and 17q, and the most frequent partial or whole-arm losses affected 3p, 4q, 5q, 9p, 10p, 10q, 11p, 14p, 14q, 15p, 17p, 19p, 21p, 21q, and Xp. These chromosomal aberrations and imbalances provide some starting points for molecular analyses of genomic regions that may harbor genes of pathogenetic importance in gallbladder carcinogenesis. Genes Chromosomes Cancer 26:312-321, 1999.  相似文献   

2.
Chromosome banding analysis of 97 short-term cultured primary breast carcinomas revealed clonal aberrations in 79 tumors, whereas 18 were karyotypically normal. In 34 of the 79 tumors with abnormalities, two to eight clones per case were detected; unrelated clones were present in 27 (34%) cases, whereas only related clones were found in seven. These findings indicate that a substantial proportion of breast carcinomas are of polyclonal origin. Altogether eight abnormalities were repeatedly identified both as sole chromosomal anomalies and as part of more complex karyotypes: the structural rearrangements i(1)(q10), der(1;16)(q10;p10), del(1)(q11–12), del(3)(p12–13p14–21), and del(6)(q21–22) and the numerical aberrations +7, +18, and +20. At least one of these changes was found in 41 (52%) of the karyotypically abnormal tumors. They identify a minimum number of cytogenetic subgroups in breast cancer and are likely to represent primary chromosome anomalies in this type of neoplasia. Other candidates for such a role are translocations of 3p12–13 and 4q21 with various partner chromosomes and inversions of chromosome 7, which also were seen repeatedly. Additional chromosomal aberrations that give the impression of occurring nonrandomly in breast carcinomas include structural rearrangements leading to partial monosomies for 1p, 8p, 11p, 11q, 15p, 17p, 19p, and 19q and losses of one copy of chromosomes X, 8, 9, 13, 14, 17, and 22. The latter changes were seen consistently only in complex karyotypes, however, and we therefore interpret them as being secondary anomalies acquired during clonal evolution.  相似文献   

3.
Cytogenetic analysis of a highly malignant osteosarcoma in a 17-year-old girl revealed extremely complex karyotypic changes with several different clonal numerical and structural chromosome aberrations. The composite karyotype was interpreted as 39–41,X,t(X;9)(q11;p24), −1,der(1),−4,−4,−5,i(7q),−8,del(8)(q21),t(10;19)(p13;q13),del(11)(p11p13),t(12;18)(q24;q12), −13,13q+,−14,14p+,−15,15q+,17p+,19q+,−21,+22,+3–6 mar.  相似文献   

4.
Samples from 34 primary transitional cell carcinomas (TCCs) of the bladder were short-term-cultured and processed for cytogenetic analysis after G-banding of the chromosomes. Clonal chromosome abnormalities were detected in 27 tumors and normal karyotypes in 3, and the cultures from 4 tumors failed to grow. Losses of genetic material were more common than gains, indicating that loss of tumor suppressor genes may be of major importance in TCC pathogenesis. There was no clonal heterogeneity within individual tumors, consonant with the view that TCCs are monoclonal in origin. The most striking finding was the involvement of chromosome 9 in 92% of the informative cases, as numerical loss of one chromosome copy in 15 cases, but as structural rearrangement in 8. The changes in chromosome 9 always led to loss of material; from 9p, from 9q, or of the entire chromosome. A total of 16 recurrent, unbalanced structural rearrangements were seen, of which del(1)(p11), add(3)(q21), add(5)(q11), del(6)(q13), add(7)(q11), add(11)(p11), i(13)(q10), del(14)(q24), and i(17)(q10) are described here for the first time. The karyotypic imbalances were dominated by losses of the entire or parts of chromosome arms 1p, 9p, 9q, 11p, 13p, and 17p, loss of an entire copy of chromosomes 9, 14, 16, 18, and the Y chromosome, and gains of chromosome arms 1q and 13q and of chromosomes 7 and 20. The chromosome bands and centomeric breakpoints preferentially involved in structural rearrangements were 1q12, 2q11, 5q11, 8q24, 9p13, 9q13, 9q22, 11p11, and 13p10. Rearrangements of 17p and the formation of an i(5)(p10) were associated with more aggressive tumor phenotypes. There was also a general correlation between the tumors' grade/stage and karyotypic complexity, indicating that progressive accumulation of acquired genetic alterations is the driving force behind multistep bladder TCC carcinogenesis.  相似文献   

5.
Cytogenetic investigation of short-term cultures from two leiomyosarcomas revealed complex karyotypic changes in both cases. The first tumor, a subcutaneous leiomyosarcoma of the knee, had the karyotype 70-80,XY, +X, +Y, +1, +1, +2, +2, +3, +3, +4, +4, +7, +7, +8, +8, +9, +10, +15, +15, +16, +16, +18, +19, +20, +21, +21, +22, +22,t(?;5)(5;21)(?;q35p11;q11), t(?;5)(5;21)(?;q35p11;q11), +del(11)(q22),der(13)t(12;13)(q13;q22),der(14)t(9;14)(p11;p11), +14p+, +t(20;?)(q13;?), +t(20;?)(q13;?), +2 mar. A polyploidized clone with 120-150 chromosomes was also observed. DNA flow cytometry revealed only one abnormal peak, corresponding to a DNA index of 1.76. The other tumor, a uterine leiomyosarcoma, had the karyotype 61-67, X, -X, +1, +3, +5, +6, +7, +8, +9, +12, +13, +15, +t(1;1)(p32;q32), +der(1)t(1;8)(p13;q11), +del(2)(p11), +del(2)(q22), +del(2)(q22), +del(3)(p13), +i(5p),t(8;14)(q24;q24), +der(8)t(8;14) (q24;q24), +del(10)(p12),der(11)t(11;15)(p15;q11),t(16;?)(p13;?),t(16;?)(q24;?), der dic(17) (17pter----cen----17q25::hsr::17q25----cen----17pte r), +t(19;?)(p13;?), +der dic(20)(20pter----cen----20q12::hsr::20q12----cen----+ ++20pter), +mar. The DNA index was 1.59. The finding in these leiomyosarcomas of rearrangements of the same regions of chromosomes 12 and 14 that are involved in the tumor-specific t(12;14)(q14-15;q23-24) of uterine leiomyoma indicates that the same genes in 12q and 14q might be important in the pathogenesis of benign and malignant smooth muscle tumors.  相似文献   

6.
Cytogenetic abnormalities in 106 oral squamous cell carcinomas   总被引:1,自引:0,他引:1  
We report karyotypic features of 106 short-term cultured oral squamous cell carcinomas (SCC), 51 new and 55 previously reported cases, with clonal chromosome aberrations. The major cytogenetic findings were as follows: simple karyotypic changes were present in 38 cases (36%) and 68 tumors (64%) displayed complex karyotypes. The most common numerical changes were +7, +8, +9, +16, +18, +20, and -4, -10, -13, -14, -18, -19, -21, -22, and -Y. Structural rearrangements frequently (43% of the breaks) affected the centromeric regions, resulting in the formation of isochromosomes and whole-arm translocations. Among the recurrent structural aberrations identified, the most common were i(1q), i(3q), i(5p), i(8q), del(16)(q22), and hsr. With the exception of chromosomal band 11q13, which was involved in 25 tumors, only centromeric or near-centromeric bands were commonly involved: 3p11 approximately q11 (59 cases), 8p11 approximately q11 (57), 1p11 approximately q11 (48), 13p11 approximately q11 (46), 5p11 approximately q11 (41), 14p11 approximately q11 (41), and 15p11 approximately q11 (37). Losses of genetic material dominated over gains. The most frequent imbalances included loss of 2q33 approximately qter, 3p, 4p, 6q, 8p, 10p, 11q, 13p, 14p, and 15p, and chromosomes 18, 21, 22, and Y, and gain of chromosomes 7 and 20, 8q, and 11q13. No major karyotypic differences could be discerned between the present series of oral SCC and a previously reported series of laryngeal SCC, indicating that common genetic pathways are involved in the initiation and progression of SCC irrespective of site of origin.  相似文献   

7.
Cytogenetic analysis of short-term cultures from 105 squamous cell carcinomas of the larynx (LSCC) revealed clonal chromosome aberrations in 56 tumors. Simple karyotypic changes (less than four aberrations per clone) were found in 24 cases, and the remaining 32 tumors had complex karyotypes with multiple numerical as well as unbalanced structural rearrangements. Extensive intratumor heterogeneity, in the form of multiple related subclones or unrelated clones, was observed in a large fraction of the tumors. The structural changes most often affected chromosomes 3, 1, 11, 7, 2, 15, 5, 4, 8, and 12, with rearrangements in the centromeric regions, i.e., the centromeric bands p10 and q10 and the juxtacentromeric bands p11 and q11, accounting for 43% of the total breakpoints. The most common imbalances brought about by numerical and unbalanced structural rearrangements were loss of chromosomal region 3p21-pter, chromosome arms 4p, 6q, 8p, 10p, 13p, 14p, 15p, and 17p, and gain of chromosomal regions 3q21-qter, 7q31-pter, and 8q. Among 17 recurrent aberrations identified, the most common were i(8q), hsr(11)(q13), i(3q), i(5p), and del(3)(p11). No statistically significant association was found between major karyotypic features and histological differentiation or TNM stage. The karyotypic features of the LSCC were also compared with previously published oral SCC, a subgroup of SCC that has been more extensively characterized cytogenetically. No clear-cut karyotypic differences were found between LSCC and oral SCC, with the exception that i(8q) was significantly more frequent among the latter.  相似文献   

8.
Male breast cancer is uncommon; so far, only 10 cases with chromosome banding analysis have been published. We report the cytogenetic findings of two invasive breast cancers in two Caucasian men lacking a history of familial breast cancer and more than 70 years of age. Both had ductal carcinomas with lymphangiosis carcinomatosa and positive lymph nodes at diagnosis. Strong expression of estrogen receptor, weak expression of progesterone receptor, and lack of expression of androgen receptor by both tumors were demonstrated by immunohistochemistry, as well as lack of expression of p53 and C-ERB-B-2. The karyotypes were 45 approximately 46,XY,-Y[4],-7[2],+8[2],t(8;12)(q21;q24)[3], del(9)(q22)[3],del(11)(p11p14)[5],del(18)(q21)[7], t(19;20)(p10;q10)[8] [cp13] and 61 approximately 69,XXXY,-Y[3], del(2)(p21)[4],del(3)(p22q26)[3],-4,-4[5],+5,+5[5], dic(5;11)(p14;q23)[3],del(6)(q23)[4],del(8)(p21)[3],-9[4],-11[4],+ i(12)(p10)[4],-16[3],del(17)([13)[5],del(18)(q21)[4],+19[5], +20[4][cp7], respectively. Although the available data on male breast cancer are still very limited, our findings confirm that gain of an X chromosome, loss of the Y chromosome, gain of chromosome 5, and loss of material from chromosomes 17 and 18 are nonrandom aberrations in male breast cancer. Trisomy 8, characteristic of ductal carcinomas, was found in one case.  相似文献   

9.
Cytogenetic analysis was carried out on six passages (pass. 16, 19, 21, 25, 34, and 47) of the nontumorigenic epithelial cell line, HMT-3522, established from a fibrocystic lesion of the human breast. Minor chromosome abnormalities were present in the first passage (pass. 16) available for study, and limited cytogenetic progression was observed during the in vitro growth. A modal chromosome number of 45 chromosomes was found in all passages. Each passage contained 4-5 marker chromosomes. Three markers were consistently present in all passages studied. During in vitro growth two markers were gained and two markers were lost from the stemline karyotype. The two latest passages studied had identical karyotypes: 45,XX, del(1)(q44----p32:),t(5;14)(14p13----14q32::5q22----++ +5q35),t(6;8;12;17)(8p23---- 8q24::6p21.1----6p23;12q24----12p13::6p23- --- 6p25;17p13----17q25::6q11----6q27). The present study demonstrates chromosome abnormalities and karyotypic evolution in a nontumorigenic (in nude mice) and noninvasive (in vitro tested) cell line established from nonmalignant epithelial breast tissue. The results are discussed in relation to gene amplification, double minutes and oncogene localization.  相似文献   

10.
Variant Ph translocations in chronic myeloid leukemia   总被引:3,自引:0,他引:3  
Variant translocations were found in eight of 142 consecutive patients with Ph-positive, chronic myeloid leukemia encountered in our laboratory during the last decade. Two patients had simple, two-way variant translocations: t(17;22)(p13;q11) and t(16;22)(q24;q11). Both of these patients had an additional translocation involving chromosomes #9: t(7;9)(q22;q34) and t(9;17)(q34;q21), respectively. Complex variant translocations were found in four cases: t(2;9;22)(p23q12;q34;q11), t(3;9;22)(p21;q34;q11), t(9;12;22)(q34;q13;q11q13), and t(13;17;22)(p11;p11q21;q11). In two cases, the only discernable cytogenetic aberration was del(22)(q11). A review of the chromosomal breakpoints involved in this series and in 185 cases of variant Ph translocations previously reported in the literature reveals that a disproportionately large number of breakpoints are located in light-staining regions of G-banded chromosomes. Furthermore, the breakpoints in simple variant translocations are more often located in terminal chromosomal regions, whereas, the breakpoints in complex translocations typically affect nonterminal bands. No obvious correlation was detected between variant Ph translocation breakpoints and either fragile sites, oncogene locations, or consistent chromosome breakpoints in other malignancies.  相似文献   

11.
We report the finding of clonal chromosome abnormalities in 13 short-term cultured squamous cell carcinomas (SCCs) of the skin. Intratumor heterogeneity, in the form of cytogenetically related (subclones) or unrelated clones, was detected in six tumors. Whereas clones with complex karyotypic changes were found in 6 tumors, clones with simple anomalies were observed in 10 tumors, and sometimes these clones coexisted with highly abnormal clones. Rearrangement of chromosome 8, in the form of isochromosome i(8q) or whole arm translocation, was the most common aberration, found predominantly in complex clones. Another recurrent feature, i.e., the centromeric rearrangement of chromosome 1, as isochromosome i(1q) or i(1p), or whole arm translocations, was always part of a complex karyotype. Homogeneously staining regions were found in two cases, one with a highly complex karyotype and the other with a simple karyotype. In order to obtain an overall karyotypic picture in SCC of the skin, the cytogenetic findings in 10 SCCs reported earlier were reviewed. The chromosomes most commonly affected were, in decreasing order, chromosomes 1, 11, 8, 9, 5, 3, and 7. Chromosomal sites most frequently rearranged were almost all pericentromeric: they were 8q10-q11, 1p10-q12, 5p10-q11, 11p15, and 9p10-q10. Recurrent anomalies were i(1q), i(8q), i(5p), i(1p), i(9p), and i(9q). Among them, only i(8q) and i(9q) might be assumed to be early genetic events, considering the fact that they could occasionally be identified in simple clones. The most frequent losses included part of or the entire chromosomes 2, 4, 9, 11, 14, 18, and 21, arm 8p, and chromosomes X, Y, and 13. Overrepresentation most frequently involved 1q, chromosome 7, and 8q. The characteristic karyotypic pattern observed in skin SCC was in line with the experience in several other carcinomas. Genes Chromosomes Cancer 26:295-303, 1999.  相似文献   

12.
The cytogenetic analysis of a spindle-cell rhabdomyosarcoma of the parotid gland in a 6-year-old boy is reported. The tumor cells showed an abnormal karyotype with a hypotriploid modal chromosome number and clonal structural rearrangements affecting chromosomes 1, 8, 12, 21, and 22. The tumor karyotype was: 59, XY, -1, -3, -4, -5, -6, +8, +8, +del(8)(q22q24), -9, -10, del(12)(q13), -15, -16, -17, -18, der(21)t(12;21)(p11;p11), -22, der(22)t(1;22)(q12;p11).  相似文献   

13.
Cytogenetic analysis of a low-grade metastatic endometrial stromal sarcoma in a 58-year-old woman revealed translocations involving both homologues of chromosome 7 with chromosomes 13 and 17, respectively, and an interstitial deletion of the long arm of chromosome 11. The karyotype of the tumor was 46,XX,t(7;13)(q11.1;p13),t(7;17)(p21;q12),del(11)(q13q21).  相似文献   

14.
Among 20 patients with acute nonlymphocytic leukemia or dysmyelopoietic preleukemia secondary to Alkeran therapy for another tumor, four had a del(12)(p11-p12) and four had a translocation to 19q13 among multiple karyotypic alterations in their neoplastic hematopoetic clones. It is suggested that these two cytogenetic abnormalities may occur nonrandomly in such hemic disorders and may play a limited role in their pathogenesis.  相似文献   

15.
Five tenosynovial giant cell tumors—4 pigmented villonodular synovitis (PVNS) and 1 nodular tenosynovitis (NTS)—were investigated cytogenetically. Clonal chromosome aberrations were detected in 3 of them. One PVNS had t(7;16)(q22;q24) as the sole anomaly, whereas 1 PVNS and the NTS displayed aberrations suggesting clonal evolution: t(1;19)(p11;p12)/t(1;19), + 12 and ins(5;1)(q31;p13p34)/ins(5;1),t(2;4)(p23;q21), respectively. Including our 3 cases, a total of 6 tenosynovial giant cell tumors with karyotypic changes have been reported. Apart from 2 PVNS with trisomies 5 and 7, and 2 NTS with rearrangement of chromosome band 1p13, no recurrent chromosome change has been detected. Although the detection of clonal, acquired chromosome abnormalities has formerly generally been accepted as sufficient to conclude that a lesion is neoplastic, the interpretation of the pathogenetic significance of the karyotypic aberrations in synovial tumors is obscured by the fact that we have also detected comparable aberrations in obviously nonneoplastic synovial tissue. One of 2 lesions from patients with hemorrhagic synovitis carried a clonal del(13)(q12q21), and 2 of 4 synovectomy samples from patients with rheumatoid arthritis displayed –Y and –Y together with +7. The available cytogenetic data therefore cannot be used to resolve the controversy as to whether tenosynovial giant cell tumors are truly neoplastic or only reactive, inflammatory proliferations. © 1993 Wiley-Liss, Inc.  相似文献   

16.
We have cytogenetically examined short-term cultures from a squamous cell carcinoma of the tongue, a tumor type in which chromosome aberrations hitherto have not been reported. No less than 12 pseudodiploid clones were detected, giving the tumor karyotype 46,X,der(X)t(X;1)(q26;p32),der(1)(Xqter→Xq26::1p32→cen→1q42:),del(13)(q11q21),t(15;?) (q26;?)/46,XX,t(1;?)(p34;?),inv(2)(p21q11)/46,XX,t(1;10)(p32;q24)/46,XX,+der(1)(12pter→ 12p11::1p11→cen→1q32::11q13→11q32→1q42:),del(11)(q13q22), - 12, der(17)t(1:17) (q42;p13)/46,XX,inv(1)(p22q44)/47,XX,del(1)(q32),der(17)t(1:17)(p22;q25),der(1)inv(1) (q25q44)t(1;17)(p22;q25),ins(14;7)(q11;q22q36), + 14/46,XX,t(1;4)(q23;q35)/46,XX,t(1;21) (q25;q22),t(2;10)(q31;q26),t(22;?)(q12;?)/46,XX,del(1)(q32)/46,XX,t(1;8)(q44;q21)/46,XX, t(2;21)(q11;p11)/46,XX,t(9;11)(q34;q13). The large number of apparently unrelated abnormalities leads us to suggest that the carcinoma may have been of multiclonal origin.  相似文献   

17.
Ossifying fibromyxoid tumor (OFMT) of soft parts is a recently described, rare but morphologically distinctive soft tissue tumor. The histogenesis of this lesion remains uncertain, although several immunohistochemical and ultrastructural features suggest that it is an unusual neural tumor, possibly of Schwann cell origin. We report here a case of a malignant variant of OFMT that occurred in the foot of a 52-year-old man. The karyotype of a pulmonary metastasis exhibited the following complex numeric and structural aberrations:72 approximately 74,XXY,-5,+6,+del(8)(p21),del(9)(p22),+10,der(11)t(3;11)(p21;p15),del(12) (q13),der(13)t(5;13)(q13;q34),+18,+19,+20,-22 [cp10]. A kidney metastasis exhibited the following karyotypic abnormalities: 46,XY,add(3)(p11),+der(3)t(3;?;11)(3qter-->3p11::?::11q13-->11qter), -5,del(8)(p21),add(9)(q22),del(9)(p22),der(11)t(3;11)(p21;p15),del(12)(q13),+der(13)t(5;13) (q13;q34),-22. To our knowledge, this is the first reported case of OFMT in which clonal chromosomal aberrations have been shown.  相似文献   

18.
Cytogenetic analysis of short-term cultures from 52 primary colorectal adenocarcinomas revealed clonal chromosome aberrations in 45 tumors, whereas the remaining 7 had a normal karyotype. More than 1 abnormal clone was detected in 26 tumors; in 18 of them, the clones were cytogenetically unrelated. The modal chromosome number was near-diploid in 32 tumors and near-triploid to near-tetraploid in 13. Only numerical aberrations were identified in 13 carcinomas, only structural aberrations in 3, and 29 had both numerical and structural changes. The most common numerical abnormalities were, in order of decreasing frequency, gains of chromosomes 7, 13, 20, and Y and losses of chromosomes 18, Y, 14, and 15. The structural changes most often affected chromosomes 1, 17, 8, 7, and 13. The most frequently rearranged chromosome bands were, in order of decreasing frequency, 13q10, 17p10, 1p22, 8q10, 17p11, 7q11, 1p33, 7p22, 7q32, 12q24, 16p13, and 19p13. Frequently recurring aberrations affecting these bands were del(1)(p22), i(8)(q10), i(13)(q10), and add(17)(p11–13). The most common partial gains were from chromosome arms 8q, 13q, and 17q and the most common partial losses from chromosome arms 1p, 8p, 13p, and 17p. A correlation analysis between the karyotype and the clinicopathologic features in our total material, which consists of altogether 153 colorectal carcinomas, including 116 with an abnormal karyotype, showed a statistically significant association (P < 0.05) between the karyotype and tumor grade and site. Carcinomas with structural chromosome rearrangements were often poorly differentiated; well and moderately differentiated tumors often had only numerical aberrations or normal karyotypes. Abnormal karyotypes were more common in rectal carcinomas than in carcinomas situated higher up. Near-triploid to near-tetraploid karyotypes were more than twice as frequent in tumors of the distal colon as in those of the proximal colon and rectum. The cytogenetic data indicate that carcinomas located in the proximal colon and rectum, which often are near-diploid with simple numerical changes and cytogenetically unrelated clones, probably arise through different mechanisms than do tumors located in the distal colon, which more often have complex near-triploid to near-tetraploid karyotypes.  相似文献   

19.
Uterine leiomyoma cytogenetics   总被引:4,自引:0,他引:4  
Uterine leiomyoma--a benign smooth muscle tumor--has recently been found to contain tumor-specific chromosome aberrations. Although only normal karyotypes were detected in 50 to 80% of cytogenetically investigated tumors, 104 leiomyomas with karyotypic aberrations have already been reported. At least four cytogenetically abnormal subgroups have been identified thus far, characterized by rearrangements of 6p, del(7)(q21.2q31.2), +12, and t(12;14)(q14-15;q23-24). The remaining abnormal tumors have had various nonrecurrent anomalies. Secondary karyotypic rearrangements, sometimes including ring chromosomes, have been found in one-third and reflect clonal evolution. Occasional leiomyomas have contained multiple numerical and structural rearrangements. Though benign, these cytogenetically grossly aberrant tumors often displayed more atypical histological features than are usually seen in leiomyoma. Multiple leiomyomas have been investigated from 69 patients, with detection of chromosome anomalies in at least two separate tumors from the same uterus in ten cases. In half of these patients unrelated aberrations were found in different leiomyomas from the same uterus. On other occasions the aberrations were identical, indicating that although some uterine leiomyomas originate independently, others may develop by intra-myometrial spreading from a common neoplastic clone. Some common features are discernible between the karyotypic pictures of uterine leiomyoma and angioleiomyoma; rearrangements of 6p, 13q, and 21q have been described in both tumor types. The cytogenetic similarities so far detected between leiomyoma and the malignant muscle tumors--leiomyosarcoma and rhabdomyosarcoma--are few and may be fortuitous. The cytogenetic profiles of leiomyoma and lipoma are strikingly similar; both tumor types have nonrandom rearrangements of 12q13-15, t(12;14) in leiomyoma and t(3;12) in lipoma, as well as variant rearrangements of the same 12q segment. Both also have cytogenetic subgroups characterized by changes in 6p and ring chromosomes. Finally, karyotypic similarities exists also between leiomyoma and pleomorphic adenoma of the salivary gland, which includes a subset of tumors with anomalies of 12q13-15, and with myxoid liposarcoma, which has t(12;16)(q13;p11) as a tumor-specific rearrangement.  相似文献   

20.
The high level of karyotypic complexity found in epithelial neoplasms hinders the characterization of their cytogenetic evolution. Derivation of such pathways in adenocarcinoma of the pancreas has been particularly limited, because only a few pancreatic carcinomas are resected at an early stage of disease and so the number of primary carcinomas for which analysis of abnormal karyotypes has been reported is small. Here we report the clonal karyotypic abnormalities identified by G-banding analysis of 36 primary pancreatic carcinomas obtained from patients undergoing a Whipple resection with curative intent. The majority of the 36 carcinomas were diploid or triploid (33 of 36; 91%). Numerical alterations were found in all carcinomas for which a complete karyotype was determined. All the chromosomes were involved in gain, loss, or both gain and loss of the entire chromosome, in at least 8 and up to 28 of the carcinomas. Most commonly lost were chromosomes 18 (in 78% of the 36 carcinomas), 17 (56%), 6 (44%), 21 (42%), 22 (42%), Y (36%), and 4 (33%). Gain of chromosome 20 was observed in 10 of the 36 carcinomas. Structural abnormalities were common, resulting in partial chromosomal gains and losses, with a median number of 7 partial imbalances per carcinoma (range, 1-15). Sixteen carcinomas contained double-minute chromosomes, homogeneously staining regions, or both, indicating gene amplification. Pooling data for these 36 carcinomas with the primary carcinomas with karyotypes published in the Mitelman database (http://cgap.nci.nih.gov/Chromosomes/Mitelman), we defined pathways of karyotypic evolution. The most frequent chromosomal imbalances were -18 (67.6%), -10 (34.3%), -4 (31.4%), +20 (31.4%), -15p (23.8%), -14p (22.9%), +2 (21.9%), -5 (21.9%), -13p (20%), +16 (20%), -21p (19%), -17p (19%), +1q (19.0%). Recurrent imbalances identified as occurring early were -1p, -15p, -18, -7q, -8p, -17p, and -5; late recurrent imbalances were +11q, +7q, +6p, -19p, and +2. In contrast to reports from similar analyses in other epithelial carcinomas, we did not find evidence for multiple karyotypic evolutionary pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号