首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reciprocal chromosomal translocations involving the MLL gene at chromosome region 11q23 are recurring cytogenetic abnormalities in both de novo and therapy-related acute myeloid leukemia (AML) and in acute lymphoblastic leukemia. We report a t(4;11)(p12;q23) with rearrangement of MLL and FRYL (also known as AF4p12), a human homolog to the furry gene of Drosophila, in an adult patient with therapy-related AML after fludarabine and rituximab therapy for small lymphocytic lymphoma and radiation therapy for breast carcinoma. To our knowledge, t(4;11)(p12;q23) has been reported in two previous patients, and MLL and FRYL rearrangement was demonstrated in one of them. Both of the previous patients had therapy-related leukemias after exposure to topoisomerase II inhibitors, whereas our patient had received cytotoxic therapy that did not include a topoisomerase II inhibitor. Thus, t(4;11)(p12;q23) with MLL and FRYL involvement represents a new recurring 11q23 translocation, to date seen only in therapy-related acute leukemias.  相似文献   

2.
3.
4.
A patient with acute myeloblastic leukemia (AML-M2) and a balanced translocation, t(9;11)(p21;q23), is described. The translocation appears to be the same as that previously reported in some patients with acute monoblastic leukemia (AMoL-M5). This suggests that, although t(9;11)(p21;q23) frequently may be associated with AMoL, the translocation may not be specific for that disorder.  相似文献   

5.
6.
A case of acute myeloid leukemia (AML) with increased numbers of basophils and abnormal megakaryocytes was shown to have a t(3;6)(q21;p21) in the bone marrow cells. The morphology is described in detail and the case is discussed with reference to t(6;9)(p23;q34) and inv/ins(3)(q21q26) in AML. It is possible that increased numbers of basophils in AML may be associated with a translocation involving 6p21-6p23.  相似文献   

7.
Follicular lymphoma is characterized genetically by t(14;18)(q32;q21), whereas t(18;22)(q21;q11), a rare variant form of t(14;18), has been preferentially observed in chronic lymphocytic leukemia (CLL). We describe here an unusual case of follicular lymphoma with a t(18;22)(q21;q11), that progressed to diffuse large cell lymphoma with a novel t(2;6)(p12;q23). Spectral karyotyping revealed that add(2)(p12) and add(6)(q23) were derived from a t(2;6)(p12;q23). Fluorescence in situ hybridization analysis confirmed rearrangements of the BCL2 gene at 18q21 and the BCL6 gene at 3q27. Our results indicate that a reciprocal translocation involving 6q23 could be implicated in the progression of follicular lymphoma and that t(18;22) may have a specific role in the pathogenesis of follicular lymphoma as well as CLL.  相似文献   

8.
Previous studies described the t(10;11)(p13-14;q14-21) as a recurring translocation associated with T-cell acute lymphoblastic leukemia (ALL). This translocation has also been reported in monocytic leukemia or ALL with a very early pre-B phenotype. However, whether these cytogenetically similar translocations involve the same molecular breakpoint is unknown. Using fluorescence in situ hybridization (FISH) with a series of probes on 11q, we mapped the 11q breakpoint of the U937 cell line, which was derived from a patient with diffuse histiocytic lymphoma and was shown by FISH to have the t(10;11)(p13-14;q14-21). Subsequently, we identified a yeast artificial chromosome (YAC) clone, y960g8, that included the breakpoint on 11q. From this YAC, we isolated a P1 clone, P91B1, that was split by the 10;11 translocation. We studied four patients with a t(10;11), one of whom had acute monocytic leukemia (AMoL), one had acute lymphoblastic leukemia (ALL), one had lymphoblastic lymphoma (LBL), and one had granulocytic sarcoma, by using FISH with y960g8 and P91B1. Y960g8 and P91B1 were split by the translocation in each patient. We showed that P91B1 included a recently identified gene, CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene), and that AF10 was also rearranged in each patient by FISH when we used y807b3, which contains the AF10 gene. These findings indicate that hematologic malignant diseases with fusion of AF10 and CALM show various morphologic and immunologic phenotypes, suggesting that this fusion occurs in multipotential or very early precursor cells. Genes Chromosomes Cancer 20:253–259, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
A case of acute myelocytic leukemia (AML) M5 subtype (French-American-British classification), in a 13-year-old girl showed the abnormal karyotype 46,XX,t(11;17)(q23;q21) in all bone marrow cells analyzed. Rearrangements involving 11q23 are frequent in cases of AML M5 and often involve the MLL gene. Nevertheless, t(11;17)(q23;q21) is very rare in this type of leukemia. In acute promyelocytic leukemia, the RARalpha gene, located at 17q21, is involved in almost all cases. Fluorescence in situ hybridization studies revealed a deletion of the C-terminal part of the MLL gene and a translocation of the RARalpha gene on the derivative chromosome 11, proximal to the remaining part of the MLL gene. However, hybridization with the LSI RARA dual color break-apart rearrangement probe showed that the RARalpha gene was not rearranged in this translocation. This is the first study reporting a t(11;17)(q23;q21) with a deletion distal to MLL gene exon 6 in a case of AML M5. Furthermore, this is the second study that strongly suggests the implication of a gene proximal and close to the RARalpha locus in a case of AML M5. According to these results, the discovery of new fusion partner genes of MLL and the precise characterization of t(11;17) will be important for the understanding of neoplastic cell differentiation in AML M5.  相似文献   

10.
11.
12.
13.
The translocation (4;11)(q21;p15) has been observed in acute lymphoblastic as well as acute myeloid leukemias (ALL and AML, respectively). We report the first case of T-cell lymphoma with t(4;11)(q21;p15) and a case of AML. The clinical history of and cytogenetics in the latter is suggestive of a secondary leukemia; his karyotype revealed emergence of a t(3;11)(q21;q13) in addition to the t(4;11). Previously reported cases with t(4;11)(q21;p15) are reviewed, clinical and morphological characteristics of cases with t(4;11)(q21;q23) and t(4;11)(q21;p15) are compared, and chromosome abnormalities involving the NUP98 gene in hematologic malignant disorders are reviewed.  相似文献   

14.
T-cell prolymphocytic leukemia (T-PLL) is an uncommon chronic lymphoproliferative disorder characterized by lymphadenopathy, splenomegaly, and lymphocytosis. The leukemic cells have the appearance of prolymphocytes and usually an immunophenotype of T-helper cells (CD3+ CD4+ CD8-). Inv(14q), del(11q), i(8q), and rearranged Xq28 are the commonest nonrandom chromosomal abnormalities in T-PLL. Recently, it has been shown that the ataxia-telangiectasia mutated (ATM) gene located at 11q23 is often deleted in T-PLL, suggesting a tumor suppressor role of the ATM gene on tumorigenesis of T-PLL. We report a case of T-PLL with t(6;11)(q21;q23) as the sole chromosomal abnormality and suggest that the cytogenetically identified translocation also implicates the ATM gene.  相似文献   

15.
We describe a patient with stage IV non-Hodgkin's lymphoma (NHL) and a t(11;18)(q21;q21) translocation. He presented with a gastric small B-cell lymphocytic lymphoma, expressing IgAL immunoglobulins without expression of CD10, CD5, and CD23 antigens. The lymphoma was the final development of a 6-year history of a monoclonal IgAL increase complicated by severe renal failure due to membranoproliferative glomerulonephritis. The clinical, histological, immunologic, and cytogenetic features of this patient are very similar to those observed in the five other patients with t(11;18) reported to date. This translocation therefore seems to delineate a new subtype of diffuse small B-cell lymphoma with involvement of mucosal sites. Involvement of the BCL2 oncogene on 18q21 could not be detected using molecular techniques with 5′ as well as 3′ BCL2 probes, indicating that other, so far unknown, genes relevant to lymphoid differentiation could be located in 18q21 and 11q21. © 1993 Wiley-Liss, Inc.  相似文献   

16.
We describe a case of an acute myelogenous leukemia (AML) associated with t(1;11) (q23;p15), which is a novel simple variant translocation of t(7;11)(p15;p15). The patient was a Japanese man who had a history of non-Hodgkin lymphoma (NHL) and received MACOP-B combination chemotherapy. Fifteen months after the completion of the treatment, the patient developed AML (M2), which was regarded as a therapy-related leukemia. Cytogenetic study of bone marrow cells showed t(1;11). Although he achieved complete remission by combination chemotherapy, a relapse of NHL and gastric cancer were revealed in the course of the consolidation chemotherapy for AML. The NHL was considered a histological conversion from follicular lymphoma because lymphoma cells carried t(14;18) (q32;q21) and were strongly positive for BCL2 protein. Translocation (1;11), together with AML having t(7;11) or inv(11) involving 11p15, shows that 11p15 is a common acceptor site of these chromosome aberrations and suggests the significance of the NUP98 gene located in 11p15 in therapy-related leukemia.  相似文献   

17.
The inv(14)(q11q32) is a non-random chromosomal aberration which has been associated with a variety of T-cell malignancies. We have studied a case of inv(14)(q11q32) that is unique in several respects. First, the inversion, which is expressed at the mRNA level, occurred in the context of a pre-B acute lymphoblastic leukemia (ALL) as opposed to a T-cell malignancy. Second, cloning and sequencing of the inversion revealed that it resulted from a fusion between an immunoglobulin heavy chain variable (V) segment and a T-cell receptor delta diversity (D) segment. In addition, the patient had a second chromosomal abnormality at diagnosis, a t(4;11)(q21;q23) which disrupted the MLL gene. The fact that there were two distinct chromosomal abnormalities at diagnosis enabled us to address the question of leukemic clonal evolution during the course of this patient's disease. We present evidence suggesting that the t(4;11)(q21;q23) occurred first, with the inv(14)(q11q32) occurring as a second event.  相似文献   

18.
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease characterized by the aberrant proliferation of myeloid stem cells, reduced apoptosis and blockage in cellular differentiation. The present report describes the results of hematological, cytogenetic, and fluorescence in situ hybridization (FISH) analysis in a 25-year-old man diagnosed with AML-M2. Cytogenetic as well as FISH analysis revealed a complex translocation involving four chromosomes, with the karyotype 45,−Y,der(X)t(X;8)(p21;q22),der(8)t(8;21)(q22;q22),ins(15;21)(q15;q22.2q22.3),der(21)t(8;21)(q22;q22). The breakpoints at 8q22 and 21q22 suggested a rearrangement of the RUNX1T1 (alias ETO) and RUNX1 (previously AML1) genes, respectively. Using a dual-color FISH test with RUNX1T1 and RUNX1 probes, we demonstrated an RUNX1/RUNX1T1 fusion signal on the derivative chromosome 8, establishing this translocation as a novel complex variant of t(8;21)(q22;q22).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号