首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bloom syndrome is more common in individuals of Ashkenazi Jewish descent than in any other population, and one particular mutation in the Bloom syndrome gene,blmAsh,is homozygous in nearly all Ashkenazi Jewish persons with Bloom syndrome. We have determined the frequency ofblmAshin 1491 Ashkenazi Jewish persons with no known history of Bloom syndrome and found that 1 in 107 persons was heterozygous. Although not common, genetic screening for Bloom syndrome is feasible in this population.  相似文献   

2.
Warsaw breakage syndrome (WABS), caused by bi‐allelic variants in the DDX11 gene, is a rare cohesinopathy characterized by pre‐ and postnatal growth retardation, microcephaly, intellectual disability, facial dysmorphia, and sensorineural hearing loss due to cochlear hypoplasia. The DDX11 gene codes for an iron–sulfur DNA helicase in the Superfamily 2 helicases and plays an important role in genomic stability and maintenance. Fourteen individuals with WABS have been previously reported in the medical literature. Affected individuals have been of various ethnic backgrounds with different pathogenic variants. We report two unrelated individuals of Ashkenazi Jewish descent affected with WABS, who are homozygous for the c.1763‐1G>C variant in the DDX11 gene. Their phenotype is consistent with previously reported individuals. RNA studies showed that this variant causes an alternative splice acceptor site leading to a frameshift in the open reading frame. Carrier screening of the c.1763‐1G>C variant in the Jewish population revealed a high carrier frequency of 1 in 68 in the Ashkenazi Jewish population. Due to the high carrier frequency and the low number of affected individuals, we hypothesize a high rate of miscarriage of homozygous fetuses and/or subfertility for carrier couples. If the carrier frequency is reproducible in additional Ashkenazi Jewish populations, we suggest including DDX11 to Ashkenazi Jewish carrier screening panels.  相似文献   

3.
Hoyeraal–Hreidarsson syndrome (HH) is a clinically severe variant of dyskeratosis congenita (DC), characterized by cerebellar hypoplasia, microcephaly, intrauterine growth retardation, and severe immunodeficiency in addition to features of DC. Germline mutations in the RTEL1 gene have recently been identified as causative of HH. In this study, the carrier frequency for five RTEL1 mutations that occurred in individuals of Ashkenazi Jewish descent was investigated in order to advise on including them in existing clinical mutation panels for this population. Our screening showed that the carrier frequency for c.3791G>A (p.R1264H) was higher than expected, 1% in the Ashkenazi Orthodox and 0.45% in the general Ashkenazi Jewish population. Haplotype analyses suggested the presence of a common founder. We recommend that the c.3791G>A RTEL1 mutation be considered for inclusion in carrier screening panels in the Ashkenazi population.  相似文献   

4.
Alport syndrome is an inherited progressive nephropathy arising from mutations in the type IV collagen genes, COL4A3, COL4A4, and COL4A5. Symptoms also include sensorineural hearing loss and ocular lesions. We determined the molecular basis of Alport syndrome in a non‐consanguineous Ashkenazi Jewish family with multiple affected females using linkage analysis and next generation sequencing. We identified a homozygous COL4A3 mutation, c.40_63del, in affected individuals with mutant alleles inherited from each parent on partially conserved haplotypes. Large‐scale population screening of 2017 unrelated Ashkenazi Jewish samples revealed a carrier frequency of 1 in 183 indicating that COL4A3 c.40_63del is a founder mutation which may be a common cause of Alport syndrome in this population. Additionally, we determined that heterozygous mutation carriers in this family do not meet criteria for a diagnosis of Thin Basement Membrane Nephropathy and concluded that carriers of c.40_63del are not likely to develop benign familial hematuria.  相似文献   

5.
Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that occurs almost exclusively in the Ashkenazi Jewish (AJ) population. Mutations in the IκB kinase complex‐associated protein (IKBKAP) gene cause FD. Two IKBKAP mutations, IVS20+6T → C and R696P, have been identified in FD patients of AJ descent. The splice site mutation IVS20+6T → C is responsible for > 99.5% of known AJ patients with FD, and haplotype analyses were consistent with a common founder. In contrast, the R696P mutation has been identified in only a few AJ patients. To facilitate carrier detection, a single PCR and allele‐specific oligonucleotide (ASO) hybridization assay was developed to facilitate the detection of both the IVS20+6T → C and R696P mutations. Screening of 2,518 anonymous AJ individuals from the New York metropolitan area revealed a carrier frequency for IVS20+6T → C of 1 in 32 (3.2%; 95% CI, 2.5–3.9%), similar to the previously estimated carrier frequency (3.3%) based on disease incidence. No carrier was identified for the R696P lesion, indicating that the mutation was rare in this population (< 1 in 2,500). This sensitive and specific assay should facilitate carrier screening for FD mutations in the AJ community, as well as postnatal diagnostic testing. © 2002 Wiley‐Liss, Inc.  相似文献   

6.
Gaucher disease (GD), caused by a deficiency of the lysosomal enzyme glucocerebrosidase (GBA), is the most common human glycolipid storage disease. The incidence of the disease is particularly high in the Ashkenazi Jewish population, with a carrier frequency of 0.068. The 1226A→G and 84GG mutations are the two predominant disease-causing alleles. We investigated the association of various mutations in the GBA gene with different alleles of a highly polymorphic site in the adjacent pyruvate kinase (PKLR) gene. Ninety-seven unrelated type I GD patients of various genotypes were studied to determine their genotype for the PKLR gene trinucleotide repeat polymorphism. One hundred out of 104 (96%) alleles carrying the 1226G mutation also carried the A1 allele of the PKLR gene, which is present in only 6.7% of the control population. The calculated linkage disequilibrium between 1226G and the A1 allele of the PKLR gene is 0.957. Mutation 84GG was found to be uniquely associated with the PKLR A6 allele, with a linkage disequilibrium of 1.00. The association of several less frequent GD mutations with PKLR alleles was also studied. These results support the hypothesis that the 1226G and 84GG mutations in the Ashkenazi Jewish population each originated in a single founder. Further studies of the association of the 1226G and 84GG mutations with PKLR alleles in European non-Jewish GD patients could help in the study of the chronological order of these mutations and may shed light on the history of the Ashkenazi Jews in the past two millennia. Am. J. Med. Genet. 78:233–236, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Gaucher disease is the most prevalent inherited disease among Ashkenazi Jews. It is very heterogeneous due to a large number of mutations within the glucocerebrosidase gene, whose impaired activity is the cause for this disease. Aiming at determining Gaucher carrier frequency among the Ashkenazi Jewish population in Israel, 1,208 individuals were molecularly diagnosed for six mutations known to occur among Ashkenazi Jewish Gaucher patients, using the newly developed Pronto™ Gaucher kit. The following mutations were tested: N370S, 84GG, IVS2+1, D409H, L444P, and V394L. Molecular testing of these mutations also allows identification of the recTL allele. The results indicated that Gaucher carrier frequency is 1:17 within the tested population. The prevalence of N370S carriers is 1:17.5. This implies that ˜1:1225 Ashkenazi Jews will be homozygous for the N370S mutation. Actually, in our study of 1,208 individuals one was found to be homozygous for the N370S mutation. The actual number of known Ashkenazi Jewish Gaucher patients with this genotype is much lower than that expected according to the frequency of the N370S mutation, suggesting a low penetrance of this mutation. Results of loading experiments in cells homozygous for the N370S mutation, as well as cells homozygous for the L444P and the D409H mutations, exemplified this phenomenon. Hum Mutat 12:240–244, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Liede A, Metcalfe K, Offit K, Brown K, Miller S, Narod SA, Moslehi R. A family with three germline mutations in BRCAl and BRCA2 . Clin Genet 1998: 54: 215–218. 0 Munksgaard. 1998
Several cancer genetics centres offer testing for specific BRCAl and BRCAZ mutations to Ashkenazi Jewish individuals with a family history of breast and ovarian cancers. Testing involves screening for three common mutations found in this population, namely BRCA I 185delAG, 5382insC and BRCA2 6174delT (Struewing et al., Nat Genet 1995: 11: 198–200; Roa et al., Nat Genet 1996: 14 185–187; Oddoux et al., Nat Genet 1996: 14 188–190). We have identified a large Ashkenazi Jewish kindred (W9170) with ten cases of breast cancer and four cases of ovarian carcinoma. Initially, mutation analysis for this family identified a BRCAl 185delAG mutation in the proband diagnosed with three separate primary cancers of the breast, ovary and colon. Another individual in this family diagnosed with two primary cancers of the ovary and breast, was identified as having a second mutation, BRCA I 5382insC. Subsequent work found that two sisters (cousins of the proband), both diagnosed with carcinoma of the breast, had a third mutation, BRCAZ 6174delT. These three mutations have previously been found to be more common in the Ashkenazi Jewish population (References as above). The identification of all three mutations in one family, raised new implications for the manner in which testing and counselling should be offered. In our opinion, Ashkenazi Jewish individuals in breast-ovarian cancer families should be offered complete testing for the three common Ashkenazi Jewish mutations regardless of previous identification of one of these mutations in the family.  相似文献   

9.
Bardet–Biedl syndrome (BBS) is known to be caused by numerous mutations that occur in at least 15 of the BBS genes. As the disease follows an autosomal recessive pattern of inheritance, carrier screening can be performed for at‐risk couples, but the number of potential mutation sites to screen can be daunting. Ethnic studies can help to narrow this range by highlighting mutations that are present at higher percentages in certain populations. In this article, the carrier frequency for two mutations that occur in the BBS2 gene, c.311A>C and c.1895G>C were studied in individuals of Ashkenazi Jewish descent in order to advise on including them in existing mutation panels for this population. Carrier screenings were performed on individuals from the Ashkenazi Jewish population using a combination of TaqMan genotyping assays followed by real‐time polymerase chain reaction (PCR) and allelic discrimination, and allele‐specific PCR confirmed by restriction analysis. The combined results indicated carrier frequencies of 0.473% (±0.0071%) for the c.311A>C mutation and 0.261% (±0.0064%) for the c.1895G>C mutation. On the basis of these frequencies, we believe that the two mutations should be considered for inclusion in screening panels for the Ashkenazi population.  相似文献   

10.
The relative roles of natural selection and accentuated genetic drift as explanations for the high frequency of more than 20 Ashkenazi Jewish disease alleles remain controversial. To test for the effects of a maternal bottleneck on the Ashkenazi Jewish population, we performed an extensive analysis of mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS-1) sequence and restriction site polymorphisms in 565 Ashkenazi Jews from different parts of Europe. These patterns of variation were compared with those of five Near Eastern (n=327) and 10 host European (n=849) non-Jewish populations. Only four mtDNA haplogroups (Hgs) (defined on the basis of diagnostic coding region RFLPs and HVS-1 sequence variants) account for approximately 70% of Ashkenazi mtDNA variation. While several Ashkenazi Jewish mtDNA Hgs appear to derive from the Near East, there is also evidence for a low level of introgression from host European non-Jewish populations. HVS-1 sequence analysis revealed increased frequencies of Ashkenazi Jewish haplotypes that are rare or absent in other populations, and a reduced number of singletons in the Ashkenazi Jewish sample. These diversity patterns provide evidence for a prolonged period of low effective size in the history of the Ashkenazi population. The data best fit a model of an early bottleneck (approximately 100 generations ago), perhaps corresponding to initial migrations of ancestral Ashkenazim in the Near East or to Europe. A genetic bottleneck followed by the recent phenomenon of rapid population growth are likely to have produced the conditions that led to the high frequency of many genetic disease alleles in the Ashkenazi population.  相似文献   

11.
Familial hyperinsulinism (HI; MIM# 256450) is an autosomal recessive disorder of pancreatic β‐cell function, characterized by inadequate suppression of insulin secretion despite severe recurrent fasting hypoglycemia. Subtotal pancreatectomy is frequently required to prevent permanent neurologic sequelae. The incidence of HI in the Caucasian population is estimated at 1:50,000, however an apparent increased incidence among Ashkenazi Jews and Saudi Arabian Arabs has been reported. A locus for HI was assigned by linkage analyses to human chromosome 11p15.1. The sulfonylurea receptor (MIM# 600509, SUR1) and the potassium channel, inwardly rectifying, subfamily J member 11 (MIM# 600937, KIR6.2) genes, 2 components of the β‐cell KATP channel, are clustered in this chromosomal region, and mutations in these genes have been implicated in HI. We previously demonstrated that two mutations in the SUR1 gene are present on approximately 88% of HI‐associated chromosomes in Ashkenazi Jewish patients. Haplotype analysis with microsatellite markers flanking the gene revealed that one mutation (delF1388), reported only in Ashkenazi probands, occurred on two related extended haplotypes. By contrast, the second, more common mutation (3992‐9g→a) was associated with nine different intergenic haplotypes and has been reported in non‐Jewish HI patients as well. In this study, we evaluated disease‐associated chromosomes from 41 Ashkenazi Jewish and 2 non‐Jewish HI patients carrying the 3992‐9g→a mutation by assessing haplotypes defined by nine common single nucleotide polymorphisms (SNPs), six in the SUR1 gene, and three in the KIR6.2 gene. Our results indicate that all 54 chromosomes carrying the 3992‐9g→a mutation in the Jewish patients appear to have originated from one founder mutation, whereas the same mutation on chromosomes from non‐Jewish patients originated independently. Furthermore, our findings have implications concerning the HI‐associated chromosomes on which no mutation has been identified. Hum Mutat 14:23–29, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
We performed exome analysis in two affected siblings with severe intellectual disability (ID), microcephaly and spasticity from an Ashkenazi Jewish consanguineous family. We identified only one rare variant, a missense in SLC1A4 (c. 766G>A [p. E256K]), that is homozygous in both siblings but not in any of their 11 unaffected siblings or their parents (Logarithm of odds, LOD score: 2.6). This variant is predicted damaging. We genotyped 450 controls of Ashkenazi Jewish ancestry and identified only 5 individuals who are heterozygous for this variant (minor allele frequency: 0.0056). SLC1A4 (ASCT1) encodes a transporter for neutral aminoacids such as alanine, serine, cysteine and threonine. l ‐Serine is essential for neuronal survival and differentiation. Indeed, l ‐serine biosynthesis disorders affect brain development and cause severe ID. In the brain, l ‐serine is synthesized in astrocytes but not in neurons. It has been proposed that ASCT1 mediates the uptake of l ‐serine into neurons and the release of glia‐borne l ‐serine to neighboring cells. SLC1A4 disruption may thus impair brain development and function by decreasing the levels of l ‐serine in neurons. The identification of additional families with mutations in SLC1A4 would be necessary to confirm its involvement in ID.  相似文献   

13.
The polymorphic mutation C677T in the gene of MTHFR is considered a risk mutation for spina bifida and vascular disease. Another common mutation on the MTHFR gene, A1298C, has also been described as another risk mutation. We studied the frequencies of these two mutations on DNA samples from healthy Jewish individuals and compared them to the frequency of these mutations in DNA samples obtained from healthy individuals in South Texas. The presence of the C677T allele was determined by PCR and Hinf I digestion, and mutation A1298C by PCR and Mbo II digestion. A total of 310 alleles was examined for C677T in the Ashkenazi samples and 400 alleles in the non-Jewish samples. The rate of C677T among the Ashkenazi Jewish alleles was 47.7% as compared to 28.7% among the alleles from the non-Jewish population. The difference is statistically significant, P < 0.0005. Mutation A1298C was examined in 298 alleles of Jewish individuals and 374 alleles of non-Jewish counterparts from Texas. The rate of the A1298C mutation in the Jewish samples was 27.2% whereas in the non-Jewish was 35%. This was also statistically significant, P < 0.031. No individuals were homozygous for both mutations or were found to be homozygous for one mutation with heterozygosity of the other mutation, and that the C677T and the A1298C alleles did not occur in cis position. This study shows a unique distribution of C677T and the A1298C alleles among the Ashkenazi Jews. In spite of high frequency of C677T mutation, spina bifida is less common among Ashkenazi Jews. Further studies are needed to establish whether the C677T and the A1298C mutations have an impact on vascular disease in the Ashkenazi Jewish population. Am. J. Med. Genet. 86:380–384, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

14.
The gene MCOLN1 is mutated in Mucolipidosis type IV (MLIV), a neurodegenerative, recessive, lysosomal storage disorder. The disease is found in relatively high frequency among Ashkenazi Jews due to two founder mutations that comprise 95% of the MLIV alleles in this population [Bargal et al., 2000]. In this report we complete the mutation analysis of Jewish and non-Jewish MLIV patients whose DNA were available to us. Four novel mutations were identified in the MCOLN1 gene of severely affected patients: two missense, T232P and F465L; a nonsense, R322X; and an 11-bp insertion in exon 12. The nonsense mutation (R322X) was identified in two unrelated patients with different haplotypes in the MCOLN1 chromosomal region, indicating a mutation hotspot in this CpG site. An in-frame deletion (F408del) was identified in a patient with unusual mild psychomotor retardation. The frequency of MLIV in the general Jewish Ashkenazi population was estimated in a sample of 2,000 anonymous, unrelated individuals assayed for the two founder mutations. This analysis indicated a heterozygotes frequency of about 1/100. A preferred nucleotide numbering system for MCOLN1 mutations is presented and the issue of a screening program for the detection of high-risk families in the Jewish Ashkenazi population is discussed.  相似文献   

15.
X. Xu 《Clinical genetics》2015,87(4):327-328
Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole‐exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi‐Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.  相似文献   

16.
IntroductionCongenital contractural arachnodactyly (CCA) is a rare connective tissue disorder, associated with heterozygous mutations in the FBN2 gene. The objective of this study was to evaluate the prevalence of an intragenic deletion encompassing exons 1–8 of FBN2 gene in Israeli population.Materials and methodsA search for intragenic FBN2 microdeletions was performed in two databases of chromosomal microarray analysis (CMA) – genetic laboratory of a tertiary medical center (the primary cohort) and one of the largest Israeli health maintenance organizations (replication cohort).ResultsOverall, 52,879 microarray tests were searched for FBN2 microdeletions. The primary cohort constituted of 18,301 CMA tests, among which 33 intragenic FBN2 microdeletions in unrelated individuals were found (0.18%). Prenatal prevalence of this variant was 0.23% (28/12,604), and specifically in low risk pregnancies - 0.29% (22/7464). Of the 28 cases with known parental origin, 27 (96.4%) were of full or partial Ashkenazi Jewish ethnic background. The approximate allele incidence in the Ashkenazi Jewish origin was 0.4% (18/4961). Combined with the 34,578 CMA tests in the replication cohort, the overall frequency of FBN2 microdeletions was 0.24% (125/52,879). None of the pre- or postnatal cases had any clinical manifestations of CCA.DiscussionIntragenic FBN2 microdeletions are found in one of every 420 CMA analyses in Israeli population, and in particular one of every 340 low-risk pregnancies. Due to high allele incidence in Ashkenazi Jewish population (1:275), we suggest that FBN2 gene deletion detected by CMA among Ashkenazi Jews should be interpreted as benign copy number variant.  相似文献   

17.
The Ashkenazi Jewish (AJ) population has an increased risk for a variety of recessive diseases due to historical founder effects and genetic drift. For some, the disease‐causing founder mutations have been identified and well‐characterized, but for others, further study is necessary. The purpose of this study is to assess the carrier frequencies of 85 pathogenic variants causative of 29 recessive conditions in the AJ population. Up to 3000 AJ individuals were genotyped by Luminex MagPlex®‐TAG? bead array or Agena Bioscience? MassARRAY assays. We identified seven conditions with carrier frequencies higher than 1 in 100, nine between 1 in 100 and 1 in 200, and four between 1 in 200 and 1 in 500. Variants in nine conditions had a detected carrier rate of less than 1 in 500 or were not identified in approximately 2000 AJ individuals. We assessed the combined AJ carrier frequency for 18 relatively prevalent diseases to be 1 in 6, and the risk of AJ individuals to be a carrier couple for one of these 18 diseases as 1 in 441. We note additional recessive genetic conditions should be considered for AJ carrier screening panels.  相似文献   

18.
Moroccan Jewry (N>750,000) is the only non-Ashkenazi Jewish community in which Tay-Sachs disease (TSD) is not extremely rare. Previous studies among Moroccan Jewish TSD families identified three HEXA mutations. In this study, extended to enzyme-defined and new obilgate TSD carriers, we found four additional mutations. One of them is a novel, IVS5-2(A→G) substitution, resulting in exon skipping, and it was found only among enzyme-defined carriers. The seven HEXA identified mutations among Moroccan Jews are: ΔF304/305, R170Q, IVS-2(A→G), Y180X, E482K, 1278+TATC, and IVS12+1(G→C). Their respective distribution among 51 unrelated enzyme-defined and obligate carriers is 22:19:6:1:1:1:1. The mutation(s) remain unknown in only three enzyme-defined carriers. Five of the seven Moroccan mutations, including the three most common ones, were not found among Ashkenazi Jews. Compared with the much larger and relatively homogeneous Ashkenazi population, the finding among Moroccan Jews probably reflects their much longer history. Hum Mutat 10:295–300, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Bloom syndrome (BS) is a rare autosomal recessive genetic disorder characterized by lupus-like erythematous facial telangiectasia, sun sensitivity, infertility, stunted growth and a high predisposition to various types of cancer. Chromosomal abnormalities are hallmarks of this disorder, and high frequencies of sister chromatid exchanges and quadriradial configurations in lymphocytes and fibroblasts are diagnostic features. BLM is the causative gene for BS. We investigated the mutation in the BLM gene in 4 Japanese BS kindreds. Taken together with previously documented mutations, 2 kindreds were homozygous for 631delCAA and 2 were compound heterozygous for 631delCAA. The silent mutation of A1055C (Thr to Thr) was detected in control Japanese individuals. The 6-bp deletion/7-bp insertion at position 2,281, which most Askenazi Jewish BS patients carry, was not detected in 200 Japanese alleles. These results suggest that 631delCAA is a relatively common mutation among the Japanese BS patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号