首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor IX is a multidomain protein and is the proenzyme of a serine protease, factor IXa, essential for hemostasis. In this report, we describe the molecular basis of hemophilia B (deficiency of factor IX activity) in five patients who have neither deletions nor rearrangements of the factor IX gene. By enzymatic amplification and sequencing of all exons and promoter regions, the following causative mutation in the protease domain of factor IX was identified in each patient: IXSchmallenberg: nucleotide 31,215G----T, Ser365Ile; IXVarel: nucleotide 31,214A----G, Ser365Gly; IXMechtal: nucleotide 31,211G----C, Asp364His; IXDreihacken: nucleotide 30,864G----A, Arg248Gln; and IXMonschau: nucleotide 30,855A----T, Glu245Val. In IXVarel, nucleotide 31,213T was also replaced by C, which results in a silent mutation (GAT----GAC) at Asp-364. Thus, this patient has a double base-pair substitution of TA to CG at nucleotides 31,213 and 31,214 but only a single amino acid change of Ser-365 to Gly. This patient also developed an antibody to factor IX during replacement therapy, which suggests that deletion of the factor IX gene is not necessary for development of the antibody in hemophilia B patients. The levels of plasma factor IX antigen in the patients ranged from 40% to 100% except for IXDreihacken (Arg248Gln), in which case it was approximately 4% of normal. The Ser365Gly and Ser365Ile mutants are nonfunctional because of lack of the active site serine residue. Mutant Asp364His is inactive because it cannot form the hydrogen bond between the carboxylate group of Asp-364 and the alpha-amino group of Val-181 generated after activation. As observed in other homologous serine proteases, this hydrogen bond is essential for maintaining the correct active site conformation in normal factor IXa (IXaN). Purified Arg248Gln had approximately 41% and Glu245Val had approximately 17% of the activity of normal factor IX (IXN) in a partial thromboplastin time (aPTT) assay. In immunodot blot experiments, the isolated Glu245Val mutant did and the Arg248Gln mutant did not bind to an anti-IXN monoclonal antibody that has been shown previously to inhibit the interaction of factor VIIIa with factor IXaN. We have recently shown that a high-affinity calcium binding site exists in the protease domain of IXN; among the proposed Ca(2+)-binding ligands is the carboxyl group of Glu-245. Further, a part of the epitope for the above antibody was shown to be contained in the 231 to 265 residue segment of factor IX.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Factor IX is a multidomain protein essential for hemostasis. We describe a mutation in a patient affecting the first epidermal growth factor (EGF)-like domain of the protein. All exons and the promoter region of the gene were amplified by the polymerase chain reaction method, and sequenced. Only a single mutation (C----G), that predicts the substitution of Pro55 by Ala in the first EGF domain was found in the patient's gene. This mutation leads to new restriction sites for four enzymes. One new site (Nsi) was tested in the amplified exon IV fragment and was shown to provide a rapid and reliable marker for carrier detection and prenatal diagnosis in the affected family. The factor IX protein, termed factor IXHollywood (IXHW), was isolated to homogeneity from the patient's plasma. As compared with normal factor IX (IXN), IXHW contained the same amount of gamma-carboxy glutamic acid but twice the amount of beta-OH aspartic acid. Both IXHW and IXN contained no detectable free -SH groups. Further, IXHW could be readily cleaved to yield a factor IXa-like molecule by factor Xla/Ca2+. However, IXaHW (compared with IXaN) activated factor X approximately twofold slower in the presence of Ca2+ and phospholipid (PL), and 8- to 12-fold slower in the presence of Ca2+, PL, and factor VIIIa. Additionally, IXaHW had only approximately 10% of the activity of IXaN in an aPTT assay. In agreement with the nuclear magnetic resonance-derived structure of EGF, the Chou-Fasman algorithm strongly predicted a beta turn involving residues Asn-Pro55-Cys-Leu in IXN. Replacement of Pro55 by Ala gave a fourfold decrease in the beta turn probability for this peptide, suggesting a change(s) in the secondary structure in the EGF domain of IXHW. Since this domain of IXN is thought to have one high-affinity Ca2+ binding site and may be involved in PL and/or factor VIIIa binding, the localized secondary structural changes in IXHW could lead to distortion of the binding site(s) for the cofactor(s) and, thus, a dysfunctional molecule.  相似文献   

3.
Hamaguchi  N; Bajaj  SP; Smith  KJ; Stafford  DW 《Blood》1994,84(6):1837-1842
The purpose of this study is to determine which residues of the factor IXa heavy chain are important for interaction with the cofactor of factor IXa, factor VIIIa. Because the monoclonal antibody (MoAb) FXC008 inhibits interaction between factors IXa and VIIIa, and because it also reacts with residues 181-310 of the factor IXa heavy chain, we used the computer-modelled structure of the factor IXa heavy chain to select charged surface residues likely to interact with FXC008 and/or factor VIIIa. We made mutations in the region of residues 181-310 of the heavy chain of factor IX, and replaced these amino acids individually with those located at the same position in factor X. The mutated factor IX retained complete clotting activity and thus interacted normally with factor VIIIa. Five mutant proteins (factor IXK214F, factor IXK228R, factor IXE240Q, factor IXK247V, and factor IXN260K) reacted with heavy chain-specific MoAbs FXC008 and A-5. Neither factor IXD276K nor factor IXR248H bound to FXC008. Factor IXR252V had reduced affinity to FXC008. Our results suggest the following: (1) factor IXa residues 214, 228, 240, 247, 248, 252, 260, and 276 are not involved in specific interaction with factor VIIIa; and (2) the FXC008 and factor VIIIa binding sites may not share critical residues.  相似文献   

4.
To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.  相似文献   

5.
Binding of factors IX and IXa to cultured vascular endothelial cells.   总被引:14,自引:3,他引:14       下载免费PDF全文
Factor IX and its activated form IXa have been found to bind to confluent cultured bovine aortic and human umbilical vein endothelial cells. Binding of bovine factors IX and IXa to the bovine endothelial cells was saturable and specific and reached a plateau in 75 min at 4 degrees C and 30 min at 37 degrees C. Binding was half-maximal at a total factor IX or IXa concentration of 2.3 +/- 0.2 nM. At 4 degrees C, a maximum of 42 fmol of tritiated factor IX or IXa bound to 10(6) cells (an average of 20,000 molecules per cell). The binding of tritiated factor IX or IXa was inhibited by excess unlabeled factor IX or IXa but not by factor X, prothrombin, or thrombin. Competition studies indicated that factors IX and IXa interacted with the same site. Binding was reversible, with 50% of the specifically bound factor IX or IXa eluted in 40 min by a 400-fold excess of unlabeled protein. Specific binding required Ca2+ with half-maximal binding at 1.2 mM CaCl2. Factor IXa bound to the cells was tested for procoagulant activity in a clotting assay with factor IX-deficient plasma, cephalin, and CaCl2. Cell-bound factor IXa was at least 3-fold more active than was factor IXa in solution. The retention of procoagulant activity by cell surface-bound factor IXa provides a mechanism for the localization of clot-promoting activity.  相似文献   

6.
Platelet procoagulant complex assembly in a tissue factor-initiated system   总被引:6,自引:0,他引:6  
Summary. The aim of this study was to examine the assembly of the factor IXa/VIIIa (Xase) and factor Xa/Va (IIase) complexes on the platelet surface in a system designed to mimic tissue factor-initiated coagulation. The experimental system contained tissue factor-bearing monocytes, unactivated platelets, and plasma concentrations of factors V, VIII, IX, X, prothrombin, tissue factor pathway inhibitor (TFPI), antithrombin III (ATIII), and small amounts of factor VIIa. The time courses of platelet activation, coagulation factor binding and thrombin generation were compared. In this system, thrombin generation by the combination of monocytes and platelets was synergistic compared to each cell type alone. Platelet activation and thrombin generation were minimal in the absence of prothrombin or factor X. After a lag period, platelet activation began, followed by progressive binding of factors Va and VIIIa. This was followed by factor IXa and Xa binding and the onset of thrombin generation. Unexpectedly, a transient early increase in platelet-associated factor IX and X was also seen, that was due to release from platelets. The amount of factor IX bound to isolated activated platelets was increased by addition of factor VIIIa, or by activation of factor IX to IXa. In contrast, factor VIIIa binding was not altered by the presence of factor IX or IXa. We conclude that in a tissue factor-initiated system, assembly of the procoagulant complexes on the platelet surface begins after platelet activation occurs. Platelet activation requires thrombin generation in the vicinity of the tissue factor bearing cells. The cofactors Va and VIIIa bind to the platelets and facilitate subsequent binding of factors IXa and Xa to form functional procoagulant complexes.  相似文献   

7.
B J Lamphear  P J Fay 《Blood》1992,80(12):3120-3126
Factor IXa was shown to inactivate both factor VIII and factor VIIIa in a phospholipid-dependent reaction that could be blocked by an antifactor IX antibody. Factor IXa-catalyzed inactivation correlated with proteolytic cleavages within the A1 subunit of factor VIIIa and within the heavy chain (contiguous A1-A2-B domains) of factor VIII. Furthermore, a relatively slow conversion of factor VIII light chain to a 68-Kd fragment was observed after prolonged incubation. Sites of cleavage were identified within the A1 domain at Arg336-Met337 and within the factor VIII light chain at Arg1719-Asn1720. Factor IXa failed to cleave isolated factor VIII heavy chains, yet cleaved isolated factor VIII light chain. In addition, the purified A1/A3-C1-C2 dimer derived from factor VIIIa was a substrate for factor IXa; however, cleavage of the A1 subunit occurred at less than 30% the rate of cleavage of A1 in trimeric factor VIIIa. These data suggest that factor VIII light chain contributes to the binding site for factor IXa and also support a role for a heavy chain determinant located within the A2 subunit in the association of factor VIIIa with factor IXa. Furthermore, the capacity of factor IXa to proteolytically inactivate its cofactor, factor VIIIa, suggests a mode of regulation within the intrinsic tenase complex.  相似文献   

8.
Mutational and biophysical analysis suggests that an intracellular COOH-terminal domain of the large conductance Ca(2+)-activated K(+) channel (BK channel) contains Ca(2+)-binding site(s) that are allosterically coupled to channel opening. However the structural basis of Ca(2+) binding to BK channels is unknown. To pursue this question, we overexpressed the COOH-terminal 280 residues of the Drosophila slowpoke BK channel (Dslo-C280) as a FLAG- and His(6)-tagged protein in Escherichia coli. We purified Dslo-C280 in soluble form and used a (45)Ca(2+)-overlay protein blot assay to detect Ca(2+) binding. Dslo-C280 exhibits specific binding of (45)Ca(2+) in comparison with various control proteins and known EF-hand Ca(2+)-binding proteins. A mutation (D5N5) of Dslo-C280, in which five consecutive Asp residues of the "Ca-bowl" motif are changed to Asn, reduces (45)Ca(2+)-binding activity by 56%. By electrophysiological assay, the corresponding D5N5 mutant of the Drosophila BK channel expressed in HEK293 cells exhibits lower Ca(2+) sensitivity for activation and a shift of approximately +80 mV in the midpoint voltage for activation. This effect is associated with a decrease in the Hill coefficient (N) for activation by Ca(2+) and a reduction in apparent Ca(2+) affinity, suggesting the loss of one Ca(2+)-binding site per monomer. These results demonstrate a functional correlation between Ca(2+) binding to a specific region of the BK protein and Ca(2+)-dependent activation, thus providing a biochemical approach to study this process.  相似文献   

9.
Buyue Y  Whinna HC  Sheehan JP 《Blood》2008,112(8):3234-3241
The role of the factor IXa heparin-binding exosite in coagulation was assessed with mutations that enhance (R170A) or reduce (R233A) stability of the protease-factor VIIIa A2 domain interaction. After tissue factor (TF) addition to reconstituted factor IX-deficient plasma, factor IX R170A supported a 2-fold increase in velocity index (slope) and peak thrombin concentration, whereas factor IX R233A had a 4- to 10-fold reduction relative to factor IX wild-type. In the absence of TF, 5 to 100 pM of factor IXa increased thrombin generation to approach TF-stimulated thrombin generation at 100% factor IX. Factor IXa R170A demonstrated a 2- to 3-fold increase in peak thrombin concentration and 5-fold increase in velocity index, whereas the response for factor IXa R233A was blunted and delayed relative to wild-type protease. In hemophilia B mice, factor IX replacement reduced the average time to hemostasis after saphenous vein incision, and the time to occlusion after FeCl(3)-induced saphenous vein injury. At 5% factor IX, the times to occlusion for factor IX wild-type, R170A, and R233A were 15.7 minutes, 9.1 minutes (P 相似文献   

10.
M S Hertzberg  S L Facey  P J Hogg 《Blood》1999,94(1):156-163
Factor IXR94S is a naturally occurring hemophilia B defect, which results from an Arg 94 to Ser mutation in the second epidermal growth factor (EGF)-like module of factor IX. Recombinant factor IXR94S was activated by factor XIa/calcium with an approximately 50-fold reduced rate and by factor VIIa/tissue factor/phospholipid/calcium with an approximately 20-fold reduced rate compared with wild-type factor IX. The apparent molecular mass of the light chain of factor IXaR94S was approximately 6 kD higher than that of plasma or wild-type factor IX, which was not corrected by N-glycosidase F digestion. This result indicated the presence of additional O-linked carbohydrate in the mutant light chain, probably at new Ser 94. The initial rate of activation of factor X by factor IXaR94S in the presence of polylysine was 7% +/- 1% of the initial rate of activation of factor X by plasma factor IXa, and the kc/Km for activation of factor X by factor IXaR94S/factor VIIIa/phospholipid/calcium was 4% +/- 1% of the kc/Km for activation of factor X by plasma factor IXa/factor VIIIa/phospholipid/calcium. The reduced efficiency of activation of factor X by factor IXaR94S in the tenase enzyme complex was due to a 58-fold +/- 12-fold decrease in kcat with little effect on Km. In conclusion, the R94S mutation had introduced an O-linked carbohydrate, which markedly impaired both activation by factor XIa and turnover of factor X in the tenase enzyme complex.  相似文献   

11.
Summary. Factor IX Kiryu is a naturally occurring mutant of factor IX that has 2.5% coagulant activity, even though normal plasma levels of factor IX antigen are detected. Factor IX Kiryu was purified from a patient's plasma by immunoaffinity chromatography with a calcium-dependent anti-factor IX monoclonal antibody column. It was cleaved normally by factor XIa in the presence of Ca2+, yielding a two-chain factor IXa. However, the resulting factor IXa showed only 1.5% of the normal factor IXa in terms of factor X activation in the presence of factor VIII, phospholipids, and Ca2+, and had 20% of the normal esterase activity for Z-Arg- p -nitrobenzyl ester. Therefore factor IXa Kiryu showed the defect of the catalytic triad or primary substrate binding site as well as defective interaction with factors VIII/X. Single-strand conformational polymorphism analysis and DNA sequencing of the amplified DNA revealed a missense point mutation, a T-to-A substitution at nucleotide number 31 059 of the factor IX Kiryu gene. This mutation resulted in the amino acid substitution of Val-313 by Asp in the catalytic domain. Restriction enzyme analysis of the amplified DNA showed that the mutation was inherited from the patient's mother. The chimaeric method was employed to construct a model of the serine protease domain of factor IXa, and the resultant model suggested that the Val-313 to Asp substitution altered the conformation of the substrate-binding site. These data combined with our previous findings on a Gly-311-to-Glu mutant of factor IX suggest that the loop conformation from Gly-311 to Arg-318 is important for the expression of coagulant activity.  相似文献   

12.
Factor IX is a vitamin K-dependent serine protease, which exists as a zymogen in the blood. On activation to factor IXa, by factor XIa or tissue factor-factor VIIa complex, it forms tenase complex with factor VIIIa, in the presence of Ca2+. This tenase complex enzymatically converts factor X to factor Xa, thereby bringing about the coagulation cascade. Mutations in factor IX gene have been shown to cause haemophilia B, which is inherited as an X-linked recessive disorder. Herein we report a novel missense mutation at the nucleotide position 30829-T > A in the exon 8 of factor IX gene. This transversion leads to the substitution of histidine 236 to glutamine. This resulting abnormal protein has been named factor IXDelhi. Molecular modelling was performed to predict the molecular pathology of this mutation. We predict that this change in the catalytic domain may affect the surface loop that accommodates Ca2+, thereby leading to severe bleeding disorder.  相似文献   

13.
Protein S functions as an activated protein C (APC)-independent anticoagulant in the inhibition of intrinsic factor X activation, although the precise mechanisms remain to be fully investigated. In the present study, protein S diminished factor VIIIa/factor IXa-dependent factor X activation, independent of APC, in a functional Xa generation assay. The presence of protein S resulted in an c. 17-fold increase in K(m) for factor IXa with factor VIIIa in the factor Xase complex, but an c. twofold decrease in K(m) for factor X. Surface plasmon resonance-based assays showed that factor VIII, particularly the A2 and A3 domains, bound to immobilized protein S (K(d); c. 10 nmol/l). Competition binding assays using Glu-Gly-Arg-active-site modified factor IXa showed that factor IXa inhibited the reaction between protein S and both the A2 and A3 domains. Furthermore, Sodium dodecyl sulphate polyacrylamide gel electrophoresis revealed that the cleavage rate of factor VIIIa at Arg(336) by factor IXa was c. 1.8-fold lower in the presence of protein S than in its absence. These data indicate that protein S not only down-regulates factor VIIIa activity as a cofactor of APC, but also directly impairs the assembly of the factor Xase complex, independent of APC, in a competitive interaction between factor IXa and factor VIIIa.  相似文献   

14.
Sheehan JP  Walke EN 《Blood》2006,107(10):3876-3882
Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombin-independent antithrombotic properties and inhibits factor X activation by the intrinsic tenase complex (factor IXa-factor VIIIa). The mechanism and molecular target for intrinsic tenase inhibition were determined and compared with inhibition by low-molecular-weight heparin (LMWH). DHG inhibited factor X activation in a noncompetitive manner (reduced V(max(app))), with 50-fold higher apparent affinity than LMWH. DHG did not affect factor VIIIa half-life or chromogenic substrate cleavage by factor IXa-phospholipid but reduced the affinity of factor IXa for factor VIIIa. DHG competed factor IXa binding to immobilized LMWH with an EC(50) 35-fold lower than soluble LWMH. Analysis of intrinsic tenase inhibition, employing factor IXa with mutations in the heparin-binding exosite, demonstrated that relative affinity (K(i)) for DHG was as follows: wild type > K241A > H92A > R170A > > R233A, with partial rather than complete inhibition of the mutants. This rank order for DHG potency correlated with the effect of these mutations on factor IXa-LMWH affinity and the potency of LMWH for intrinsic tenase. DHG also accelerated decay of the intact intrinsic tenase complex. Thus, DHG binds to an exosite on factor IXa that overlaps with the binding sites for LMWH and factor VIIIa, disrupting critical factor IXa-factor VIIIa interactions.  相似文献   

15.
O'Brien LM  Mastri M  Fay PJ 《Blood》2000,95(5):1714-1720
Factor VIIIa is a trimer of A1, A2, and A3-C1-C2 subunits. Inactivation of the cofactor by human activated protein C (APC) results from preferential cleavage at Arg336 within the A1 subunit, followed by cleavage at Arg562 bisecting the A2 subunit. In the presence of human protein S, the rate of APC-dependent factor VIIIa inactivation increased several-fold and correlated with an increased rate of cleavage at Arg562. (Active site-modified) factor IXa, blocked cleavage at the A2 site. However, APC-catalyzed inactivation of factor VIIIa proceeded at a similar rate independent of factor IXa, consistent with the location of the preferential cleavage site within the A1 subunit. Addition of protein S failed to increase the rate of cleavage at the A2 site when factor IXa was present. In the presence of factor X, cofactor inactivation was inhibited, due to a reduced rate of cleavage at Arg336. However, inclusion of protein S restored near original rates of factor VIIIa inactivation and cleavage at the A1 site, thus overcoming the factor X-dependent protective effect. These results suggest that in the human system, protein S stimulates APC-catalyzed factor VIIIa inactivation by facilitating cleavage of A2 subunit (an effect retarded in the presence of factor IXa), as well as abrogating protective interactions of the cofactor with factor X. (Blood. 2000;95:1714-1720)  相似文献   

16.
The activation of factor IX purified from human plasma has been studied. Factor XIa and kallikrein separately activated factor IX to factor IXa. In both cases factor IXa had an apparent molecular wight of about 42-45000 in sodium dodecyl sulphate-polyacrylamide disc gel electrophoresis compared with a molecular weight of about 70000 for the native factor IX. The activation by XIa required Ca2+-ions, wherease Ca2+-in and factor VII or Russell's-viper venom alone did not activate factor IX. Trypsin activated and plasmin inactivated factor IX.  相似文献   

17.
A chromogenic factor IX assay is developed which requires only two time-dependent steps. Diluted plasma is mixed with a reagent containing factors VIII and X. The reaction is started by addition of a reagent containing factor XIa, thrombin, CaCl2, and phospholipids. Then factor XIa activates factor IX if present, thrombin activates factor VIII, and subsequently the complete factor X activating complex (factor IXa, factor VIIIa, Ca ions, and phospholipids) rapidly activates factor X. Finally, ethylenediaminetetraacetic acid plus a chromogenic substrate are added to stop the reaction and to measure formed factor Xa. Factor Xa formation is proportional to the plasma factor IX concentration (from 0 to 140%). The two reagents needed for the assay are stable at room temperature during a whole working day and for 3 h at 37 degrees C. A new isolation procedure for factor VIII is described. Factor VIII is purified from bovine plasma in a few steps with a yield of 20% and a 8,000-fold purification.  相似文献   

18.
The Na(+)-Ca(2+) exchanger plays a central role in cardiac contractility by maintaining Ca(2+) homeostasis. Two Ca(2+)-binding domains, CBD1 and CBD2, located in a large intracellular loop, regulate activity of the exchanger. Ca(2+) binding to these regulatory domains activates the transport of Ca(2+) across the plasma membrane. Previously, we solved the structure of CBD1, revealing four Ca(2+) ions arranged in a tight planar cluster. Here, we present structures of CBD2 in the Ca(2+)-bound (1.7-A resolution) and -free (1.4-A resolution) conformations. Like CBD1, CBD2 has a classical Ig fold but coordinates only two Ca(2+) ions in primary and secondary Ca(2+) sites. In the absence of Ca(2+), Lys(585) stabilizes the structure by coordinating two acidic residues (Asp(552) and Glu(648)), one from each of the Ca(2+)-binding sites, and prevents a substantial protein unfolding. We have mutated all of the acidic residues that coordinate the Ca(2+) ions and have examined the effects of these mutations on regulation of exchange activity. Three mutations (E516L, D578V, and E648L) at the primary Ca(2+) site completely remove Ca(2+) regulation, placing the exchanger into a constitutively active state. These are the first data defining the role of CBD2 as a regulatory domain in the Na(+)-Ca(2+) exchanger.  相似文献   

19.
Large conductance voltage and Ca(2+)-dependent K(+) channels (BK(Ca)) are activated by both membrane depolarization and intracellular Ca(2+). Recent studies on bacterial channels have proposed that a Ca(2+)-induced conformational change within specialized regulators of K(+) conductance (RCK) domains is responsible for channel gating. Each pore-forming alpha subunit of the homotetrameric BK(Ca) channel is expected to contain two intracellular RCK domains. The first RCK domain in BK(Ca) channels (RCK1) has been shown to contain residues critical for Ca(2+) sensitivity, possibly participating in the formation of a Ca(2+)-binding site. The location and structure of the second RCK domain in the BK(Ca) channel (RCK2) is still being examined, and the presence of a high-affinity Ca(2+)-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BK(Ca) and prokaryotic RCK domains that reveal the location of a second RCK domain in human BK(Ca) channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca(2+)-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca(2+)-induced change in conformation, associated with an alpha-to-beta structural transition. We also show that the Ca bowl is an essential element for the Ca(2+)-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca(2+)-dependent gating mechanism of BK(Ca) channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed.  相似文献   

20.
Manithody C  Fay PJ  Rezaie AR 《Blood》2003,101(12):4802-4807
Activated protein C (APC) is a natural anticoagulant serine protease in plasma that down-regulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. Recent results have indicated that basic residues of 2 surface loops known as the 39-loop (Lys37-Lys39) and the Ca2+-binding 70-80-loop (Arg74 and Arg75) are critical for the anticoagulant function of APC. Kinetics of factor Va degradation by APC mutants in purified systems have demonstrated that basic residues of these loops are involved in determination of the cleavage specificity of the Arg506 scissile bond on the A2 domain of factor Va. In this study, we characterized the properties of the same exosite mutants of APC with respect to their ability to interact with factor VIIIa. Time course of the factor VIIIa degradation by APC mutants suggested that the same basic residues of APC are also critical for recognition and degradation of factor VIIIa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the factor VIIIa cleavage reactions revealed that these residues are involved in determination of the specificity of both A1 and A2 subunits in factor VIIIa, thus facilitating the cleavages of both Arg336 and Arg562 scissile bonds in the cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号