首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa is an opportunistic human pathogen that causes both an acute lung disease in patients with hospital-acquired pneumonia and a chronic lung disease in individuals with cystic fibrosis. Many of the pathophysiologic effects of P. aeruginosa infection are due to factors secreted by the bacterium. Conditioned media from cultures of P. aeruginosa increased interleukin-8 expression and decreased regulated on activation, normal T cells expressed and secreted (RANTES) expression by human airway epithelial cells. Both of these activities were present in heat-treated, protease-treated, small molecular weight fractions. The activities were not inhibited by polymyxin B and were not extracted into ethyl acetate, suggesting that they were not due to endotoxin or autoinducer. Conversely, results from chloroform extractions and studies with a phenazine-minus mutant suggested that the blue pigment pyocyanin contributes to these activities when present. In addition to the effects of small molecular weight factors on cytokine expression, proteases in bacterial-conditioned media further decreased levels of RANTES. By altering expression, release, and/or activity of inflammatory cytokines, secretory factors from P. aeruginosa could disrupt the delicate balance that constitutes the immune response to bacterial infection and thus could contribute to the lung damage that occurs in P. aeruginosa-infected airways.  相似文献   

2.
3.
Cystic fibrosis (CF) is characterized by airway inflammation and chronic bacterial lung infection, most commonly with Pseudomonas aeruginosa, an opportunistic human pathogen. Despite the persistent airway inflammation observed in patients with CF, although phagocyte inducible nitric oxide synthase (iNOS) production is upregulated, expression of iNOS in the respiratory epithelium is markedly reduced. Given the antimicrobial action of NO, this may contribute to the chronic airway infection of this disease. To define the role of epithelium-derived NO in airway defense against P. aeruginosa, we infected differentiated human bronchial epithelial cells derived from a patient with CF (CFBE41o- cells) with different strains of this pathogen at low multiplicities of infection. Using cells transfected with human iNOS cDNA, we studied the effect of NO on P. aeruginosa replication, adherence, and internalization. P. aeruginosa adherence to iNOS-expressing cells was reduced by 44 to 72% (P = 0.02) compared with control values. Absolute P. aeruginosa uptake into these cells was reduced by 44%, but uptake expressed as a percentage of adherent bacteria did not differ from the control uptake. Survival of P. aeruginosa within iNOS-expressing cells was reduced at late times postinfection (P = 0.034). NO production did not alter host cell viability. NO production reduced P. aeruginosa adherence to human bronchial epithelial cells and enhanced killing of internalized bacteria, suggesting that a lack of epithelial iNOS in patients with CF may contribute to P. aeruginosa infection and colonization.  相似文献   

4.
Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n-acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed in Pseudomonas-associated lung disease.  相似文献   

5.
Monocyte chemoattractant protein-1 (MCP-1), a chemoattractant for monocytes, is presumed to play a pivotal role in the recruitment and accumulation of monocytes in various diseases including pulmonary infections. We examined here whether or not Pseudomonas nitrite reductase (PNR), a recently identified IL-8 inducer in various respiratory cells, could stimulate human pulmonary type II epithelial-like cells (A549) to induce MCP-1 production. A time- and dose-dependent induction of MCP-1 protein synthesis associated with an increase of MCP-1 mRNA expression by A549 cells was observed in response to PNR. New protein translation was not required for PNR-mediated MCP-1 mRNA expression in the same cells. When anti-human MCP-1 monoclonal antibody was used for neutralizing of monocyte chemotactic factor (MCF) activities in the culture supernatants of these cells stimulated with PNR, significant reductions of MCF activities (the mean reduction rate; 49-59%, P<0. 05) were observed. These data suggest that PNR may contribute to monocyte migration, through inducing pulmonary epithelial cell-derived MCP-1 production in the airway of patients with pneumonia due to P. aeruginosa.  相似文献   

6.
7.
The clinical manifestations of infection in cystic fibrosis (CF) are restricted to the lung, and involve a limited number of pathogens, suggesting a specific defect in mucosal immunity. We postulated that cystic fibrosis transmembrane conductance regulator (CTFR) mutations could affect the activation of type I interferon signaling in airway epithelial cells, which function in immune surveillance and initiate the recruitment and activation of immune cells. In response to infection with Pseudomonas aeruginosa, Ifnb was induced more than 100-fold in the murine lung, and the phosphorylation of STAT1 was similarly induced by the expected TLR4/TRIF/MD2/TBK1 cascade. The stimulation by P. aeruginosa of CF (IB3) cells and control (C-38) human cell lines similarly resulted in the induction of IFN-β, but to a significantly lower extent in CF airway cells. The potential consequences of diminished type I IFN signaling were demonstrated in a murine model of P. aeruginosa pneumonia, pretreatment with polyinosinic:polycytidylic acid significantly enhanced bacterial clearance and correlated with increased numbers of mature CD11c(+)/CD86(+) dendritic cells (DCs) in the lung. Using culture supernatants from CF or control cell lines stimulated with P. aeruginosa, we similarly demonstrated the diminished activation of human monocyte-derived DCs by incubation with CF compared with normal epithelial cell culture supernatants, which was dependent on IFN-β. These observations suggest that dysfunction of the CFTR in airway epithelial cells may contribute to impaired immune surveillance in the CF airway and resultant colonization by P. aeruginosa.  相似文献   

8.
OBJECTIVE AND DESIGN: Neutrophils may contribute to recruiting other cells to sites of inflammation by generating chemotactic signals themselves, or by stimulating other cell types to release chemoattractants such as interleukin-8 (IL-8). Recently, we demonstrated that neutrophil-derived alpha-defensins are able to increase IL-8 expression in airway epithelial cells. In addition, it has previously been reported that neutrophil elastase-induced IL-8 synthesis was insensitive to inhibition by the glucocorticoid dexamethasone. The aim of the present study was to investigate the effect of defensins on the expression of various cytokines in cultured airway epithelial cells and to examine the effect of dexamethasone on defensin-induced cytokine synthesis in these cells. METHODS: Cultures of A549 cells and primary bronchial epithelial cells (PBEC) were stimulated with defensins either alone or in the presence of dexamethasone. Supernatants were analyzed for IL-8, ENA-78, IL-6, MCP-1 and GM-CSF by ELISA. In addition, IL-8 and ENA-78 mRNA was detected by Northern blot analysis. RESULTS: Defensins increased IL-8 expression, ENA-78, MCP-1 and GM-CSF release from A549 cells, whereas in PBEC only IL-8 and IL-6 were increased. Pre-treatment with dexamethasone significantly reduced defensin-induced IL-6, IL-8 and ENA-78 synthesis in airway epithelial cells. In addition, dexamethasone also reduced the neutrophil chemotactic activity in supernatants of these cells. CONCLUSIONS: The results from the present study indicate that defensins differentially induce cytokine secretion by A549 cells and PBEC. Glucocorticoids may interfere with the defensin-induced inflammatory process by reducing defensin-induced cytokine secretion in lung epithelial cells.  相似文献   

9.
Pseudomonas aeruginosa causes acute and chronic infections of the human lung, with resultant tissue injury. We have previously shown that iron bound to pyochelin, a siderophore secreted by the organism to acquire iron, is an efficient catalyst for hydroxyl radical (HO.) formation and augments injury to pulmonary artery endothelial cells resulting from their exposure to superoxide (O2.) and/or H2O2. Sources for O2-. and H2O2 included phorbol myristate acetate (PMA)-stimulated neutrophils and pyocyanin. Pyocyanin, another P. aeruginosa secretory product, undergoes cell-mediated redox, thereby forming O2-. and H2O2. In P. aeruginosa lung infections, damage to airway epithelial cells is probably more extensive than that to endothelial cells. Therefore, we examined whether ferripyochelin also augments oxidant-mediated damage to airway epithelial cells. A549 cells, a human type II alveolar epithelial cell line, was exposed to H2O2, PMA-stimulated neutrophils, or pyocyanin, and injury was determined by release of 51Cr from prelabeled cells. Ferripyochelin significantly increased (> 10-fold) oxidant-mediated cell injury regardless of whether H2O2, neutrophils, or pyocyanin was employed. Apo-pyochelin was not effective, and ferripyochelin was not toxic by itself at the concentrations employed. Spin trapping with alpha-(4-pyrridyl-1-oxide)-N-t-butyl-nitrone-ethanol confirmed the generation of HO., and injury was decreased by a variety of antioxidants, including superoxide dismutase, catalase, and dimethylthiourea. These data are consistent with the hypothesis that the presence of ferripyochelin at sites of P. aeruginosa lung infection could contribute to tissue injury through its ability to promote HO.-mediated damage to airway epithelial cells.  相似文献   

10.
Chronic lung infection with Pseudomonas aeruginosa constitutes the most severe manifestation of cystic fibrosis, a scenario that results from defects in early clearance of the microbe. Early clearance involves epithelial cell ingestion of bacteria, rapid activation of nuclear factor-kappa B and cellular desquamation within minutes of P. aeruginosa infection, processes that are deficient in cells with mutant alleles of Cftr. Analyzing the effect of Cftr genotype on the apoptotic response of airway epithelial cells to P. aeruginosa, we found that human bronchial epithelial cells expressing Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) underwent significantly delayed apoptosis compared with cells expressing wild-type (WT) CFTR. Mice with a WT Cftr allele had apoptotic cells in their lungs after P. aeruginosa infections, whereas mice homozygous for the Delta F508 or G551D Cftr alleles showed little apoptosis in response to acute infection. Pseudomonal infection induced expression of CD95 and CD95 ligand, a response that was also delayed in cells homozygous for mutant Cftr alleles. Thus, WT CFTR expression promotes a rapid expression of CD95/CD95 ligand and apoptotic response to P. aeruginosa infection. Prompt apoptosis of infected epithelial cells may be critical for clearance of P. aeruginosa, and CFTR-associated defects in apoptosis may contribute to the pathogenesis of the lung disease in cystic fibrosis.  相似文献   

11.
Pseudomonas aeruginosa pneumonia usually results from a deficit of the innate immune system. To investigate whether inflammatory signalling by airway epithelial cells provides a pivotal line of defence against P. aeruginosa infection, we utilized two separate lines of inducible transgenic mice that express a constitutive activator of the nuclear factor kappa-B (NF-kappaB) pathway (IKTA) or a dominant inhibitor of NF-kappaB (DNTA) in airway epithelial cells. Compared with control mice, IKTA mice showed an enhanced host response to P. aeruginosa infection with greater neutrophil influx into the lungs, increased expression of Glu-Leu-Arg-positive (ELR(+)) CXC chemokines macrophage inflammatory protein-2 and keratinocyte chemoattractant (KC), superior bacterial clearance and improved survival at 24 h after infection. Neutrophil depletion abrogated the improvement in host defence identified in IKTA mice. In contrast, DNTA mice showed impaired responses to P. aeruginosa infection with higher bacterial colony counts in the lungs, decreased neutrophilic lung inflammation and lower levels of KC in lung lavage fluid. DNTA mice given recombinant KC at the time of P. aeruginosa infection demonstrated improved neutrophil recruitment to the lungs and enhanced bacterial clearance. Our data indicate that the NF-kappaB pathway in airway epithelial cells plays an essential role in defence against P. aeruginosa through generation of CXC chemokines and recruitment of neutrophils.  相似文献   

12.
Peroxynitrite, formed by nitric oxide and superoxide, has been shown to nitrate and reduce the function of proinflammatory proteins such as interleukin (IL)-8, monocyte chemoattractant protein-1, and eotaxin, but in contrast, to enhance the function of the anti-inflammatory cytokine IL-10 in reducing IL-1 release from blood monocytes. However, the effect of nitrated IL-10 on release of proinflammatory cytokines from lung epithelial cells is unknown. We hypothesized that peroxynitrite would enhance the capacity of human IL-10 to reduce inflammatory mediators released by epithelial cells. To test this hypothesis, recombinant human IL-10 was evaluated for its capacity to attenuate the release of neutrophil chemotactic activity and IL-8 from a human epithelial cell line in response to IL-1 beta and tumor necrosis factor-alpha. Neutrophil chemotactic activity and IL-8 in lung epithelial culture supernatant fluids were significantly lower after culture with nitrated human IL-10 compared with non-nitrated human IL-10 controls (P < 0.05). Consistent with these results, nitrated human IL-10 attenuated IL-8 mRNA expression more than non-nitrated human IL-10 controls (P < 0.05). These data demonstrate that peroxynitrite exposed human IL-10 has enhanced anti-inflammatory activity and suggest that nitration may play a critical role in the regulation of inflammation within the lower respiratory tract.  相似文献   

13.
14.
Persistent infection with Pseudomonas aeruginosa increases interleukin-8 (IL-8) levels and causes dense neutrophil infiltrations in the airway of patients with chronic airway diseases. To investigate the role of P. aeruginosa infection in IL-8 production in the airway of these patients, we examined whether cell lysates of P. aeruginosa could cause IL-8 production from human bronchial epithelial cells. Diluted sonicated supernatants of P. aeruginosa (SSPA) with a mucoid or nonmucoid phenotype stimulated human bronchial epithelial (BET-1A) cells to produce IL-8. In this study, we have purified a 59-kDa heat-stable protein with IL-8-inducing activity from the SSPA by sequential ion-exchange chromatography. The N-terminal sequence of this purified protein completely matched a sequence at the N-terminal part of the mature protein of nitrite reductase from P. aeruginosa. In addition, immunoblotting with a polyclonal immunoglobulin G (IgG) against recombinant Pseudomonas nitrite reductase demonstrated a specific binding to the purified protein. Furthermore, the immunoprecipitates of the SSPA with a polyclonal IgG against recombinant nitrite reductase induced a twofold-higher IL-8 production in the BET-1A cell culture than did the immunoprecipitates of the SSPA with a control IgG. These lines of evidence confirmed that Pseudomonas nitrite reductase was responsible for IL-8 production in the BET-1A cells. The purified nitrite reductase induced maximal expression of IL-8 mRNA in the BET-1A cells at 1 to 3 h after stimulation, and the IL-8 mRNA expression declined by 8 h after stimulation. New protein translation was not required for nitrite reductase-mediated IL-8 mRNA expression in the BET-1A cells. Nitrite reductase stimulated the BET-1A cells, as well as human alveolar macrophages, pulmonary fibroblasts, and neutrophils, to produce IL-8. In contrast, nitrite reductase induced significant levels of tumor necrosis factor alpha and IL-1beta protein only in human alveolar macrophages. These data support the notion that nitrite reductase from P. aeruginosa induces the production of inflammatory cytokines by respiratory cells and may contribute to the pathogenesis of chronic airway diseases and persistent P. aeruginosa infection.  相似文献   

15.
Alpha1 Protease inhibitor (alpha1PI) modulates serine protease activity in the lung. Reactive oxygen species inactivate alpha1PI, and this process has been implicated in the pathogenesis of a variety of forms of lung injury. An imbalance of protease-antiprotease activity is also detected in the airways of patients with cystic fibrosis-associated lung disease who are infected with Pseudomonas aeruginosa. P. aeruginosa secretes pyocyanin, which, through its ability to redox cycle, induces cells to generate reactive oxygen species. We tested the hypothesis that redox cycling of pyocyanin could lead to inactivation of alpha1PI. When alpha1PI was exposed to NADH and pyocyanin, a combination that results in superoxide production, alpha1PI lost its ability to form an inhibitory complex with both porcine pancreatic elastase (PPE) and trypsin. Similarly, addition of pyocyanin to cultures of human airway epithelial cells to which alpha1PI was also added resulted in a loss of the ability of alpha1PI to form a complex with PPE or trypsin. Neither superoxide dismutase, catalase, nor dimethylthiourea nor depletion of the media of O2 to prevent formation of reactive oxygen species blocked pyocyanin-mediated inactivation of alpha1PI. These data raise the possibility that a direct interaction between reduced pyocyanin and alpha1PI is involved in the process. Consistent with this possibility, pretreatment of alpha1PI with the reducing agent beta-mercaptoethanol also inhibited binding of trypsin to alpha1PI. These data suggest that pyocyanin could contribute to lung injury in the P. aeruginosa-infected airway of cystic fibrosis patients by decreasing the ability of alpha1PI to control the local activity of serine proteases.  相似文献   

16.
Cyclosporin A (CsA) blocks T cell activation by interfering with the Ca2+-dependent phosphatase, calcineurin. Proinflammatory responses to bacteria that are activated by Ca2+-fluxes in airway cells are a potential target for CsA. Although local immunosuppression may be advantageous to control airway inflammation, it could also increase susceptibility to bacterial pneumonia and invasive infection. As aerosolized CsA is currently under study in lung transplantation, we examined its direct effects on airway cells as well as in a murine model of pneumonia. Epithelial interleukin-6 production was very effectively inhibited by CsA, whereas CXCL8 production, the major PMN chemokine, was only modestly diminished. Responses to a TLR2 agonist Pam3Cys were more sensitive to CsA inhibition than those activated by Pseudomonas aeruginosa. CsA substantially blocked activation of nuclear factor of activated T cells and cAMP-responsive element-binding protein (P<0.001), inhibited CCAAT/enhancer-binding protein by 50% (P<0.05), and minimally blocked activator protein-1 and nuclear factor-kappaB responses to bacteria in epithelial cells. The in vitro effects were confirmed in a mouse model of P. aeruginosa infection with similar rates of PMN recruitment, pneumonia and mortality in CsA treated and control mice. These studies indicate that airway epithelial signaling is a potential target for CsA, and such local immunosuppression may not increase susceptibility to invasive infection.  相似文献   

17.
白细胞介素-8(1L-8)是呼吸道炎症反应的重要介质。本实验通过构建突变MyD88真核表达质粒(MyD88 DN),转染人呼吸道上皮细胞株A549及SPC-A-1,探讨其对病原菌感染上皮细胞IL-8表达的影响。结果显示:MyD88 DN转染可降低结核杆菌、绿脓杆菌培养上清诱导的IL-8释放;对肺炎克雷伯杆菌和绿脓杆菌活菌侵袭细胞所刺激的IL-8分泌也有明显的阻断作用。提示突变MyD88能够阻断细菌感染引起的呼吸道上皮细胞IL-8表达,可能成为呼吸道严重炎症反应基因治疗的新靶基因。  相似文献   

18.
Pseudomonas aeruginosa can notably cause both acute and chronic infection. While several virulence factors are implicated in the acute phase of infection, advances in understanding bacterial pathogenesis suggest that chronic P. aeruginosa infection is related to biofilm formation. However, the relationship between these two forms of disease is not well understood. Accumulating evidence indicates that, during acute infection, P. aeruginosa enters epithelial cells, a process viewed as either a host-mediated defense response or a pathogenic mechanism to avoid host-mediated killing. We investigated the possibility that epithelial cell entry during early P. aeruginosa-epithelial cell contact favors bacterial survival and is linked to chronic infection. Using electron microscopy and confocal microscopy to analyze primary culture airway epithelial cells infected with P. aeruginosa, we found that epithelial cells developed pod-like clusters of intracellular bacteria with regional variation in protein expression. Extracellular gentamicin added to the medium after acute infection led to the persistence of intracellular P. aeruginosa for at least 3 days. Importantly, compared to bacterial culture under planktonic conditions, the intracellular bacteria were insensitive to growth inhibition or killing by antibiotics that were capable of intraepithelial cell penetration. These findings suggest that P. aeruginosa can use airway epithelial cells as a sanctuary for persistence and develop a reversible antibiotic resistance phenotype characteristic of biofilm physiology that can contribute to development of chronic infection.  相似文献   

19.
Recent studies have shown that airway inflammation dominated by neutrophils, ie, polymorphonuclear cells (PMN) was observed in infants and children with cystic fibrosis (CF) even in the absence of detectable infection. To assess whether there is a CF-related anomaly of PMN migration across airway epithelial cells, we developed an in vitro model of chemotactic migration across tight and polarized CF(15) cells, a CF human nasal epithelial cell line, seeded on porous filters. To compare PMN migration across a pair of CF and control monolayers in the physiological direction, inverted CF(15) cells were infected with increasing concentrations of recombinant adenoviruses containing either the normal cystic fibrosis transmembrane conductance regulator (CFTR) cDNA, the DeltaF508 CFTR cDNA, or the beta-galactosidase gene. The number of PMN migrating in response to N-formyl-Met-Leu-Phe across inverted CF(15) monolayers expressing beta-galactosidase was similar to that seen across CF(15) monolayers rescued with CFTR, whatever the proportion of cells expressing the transgene. Moreover, PMN migration across monolayers expressing various amounts of mutated CFTR was not different from that observed across matched counterparts expressing normal CFTR. Finally, PMN migration in response to adherent or Pseudomonas aeruginosa was equivalent across CF and corrected monolayers. The possibility that mutated CFTR may exert indirect effects on PMN recruitment, via an abnormal production of the chemotactic cytokine interleukin-8, was also explored. Apical and basolateral production of interleukin-8 by polarized CF cells expressing mutated CFTR was not different from that observed with rescued cells, either in baseline or stimulated conditions. CF(15) cells displayed a CF phenotype that could be corrected by CFTR-containing adenoviruses, because two known CF defects, Cl(-) secretion and increased P. aeruginosa adherence, were normalized after infection with those viruses. Thus, we conclude that the presence of a mutated CFTR does not per se lead to an exaggerated inflammatory response of CF surface epithelial cells in the absence or presence of a bacterial infection.  相似文献   

20.
Intact tissues are relatively resistant to Pseudomonas aeruginosa-induced disease, and injury predisposes tissue to infection. Intact epithelia contain polarized cells that have distinct apical and basolateral membranes with unique lipids and proteins. In this study, the role of cell polarity in epithelial cell susceptibility to P. aeruginosa virulence mechanisms was tested. Madin-Darby canine kidney (MDCK) cells, human corneal epithelial cells, and primary cultures of two different types of airway epithelial cells were grown on Transwell filters or in plastic tissue culture wells. P. aeruginosa invasion of cells was quantified by gentamicin survival assays with two isolates that invade epithelial cells (6294 and PAO1). Cytotoxic activity was assessed by trypan blue exclusion assays with two cytotoxic strains (6206 and PA103). Basolateral surfaces of cells were exposed by one of two methods: EGTA pretreatment of epithelial cells or growth of cells in low-calcium medium. Both methods of exposing basolateral membranes increased epithelial cell susceptibility to P. aeruginosa invasion and cytotoxicity. Migrating cells were also found to be more susceptible to P. aeruginosa invasion than confluent monolayers that had established membrane polarity. Monolayers of MDCK cells that had been selected for resistance to killing by concanavalin A were resistant to both cytotoxicity and invasion by P. aeruginosa because they were more efficiently polarized for their susceptibility to P. aeruginosa virulence factors than regular MDCK cells and not because they were defective in glycosylation. These results suggest that there are factors on the basolateral surfaces of epithelial cells that promote interaction with P. aeruginosa or that there are inhibitory factors on the apical cell surface. Thus, cell polarity of intact epithelia is likely to contribute to defense against P. aeruginosa infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号