首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
An NADPH-dependent microsomal-activating system has been coupled to a rat embryo culture in vitro. No embryonic morphological abnormalities or decreases in final yolk sac or embryo DNA and protein contents occurred when 0.2 mM NADPH was used in this coupled system. In contrast, 1.0 mM NADPH alone, or 0.2 mM NADPH in the presence of microsomes and a glucose-6-phosphate dehydrogenase-based NADPH-generating system, greatly reduced embryo and yolk sac growth in vitro. The toxicity of NADPH was not due to lipid peroxidation. Only minor decreases in final yolk sac protein levels occurred when embryos were grown in media containing male rat microsomes and 1.0 mM NADPH. The protective effect of rat hepatic microsomes on NADPH toxicity does not seem to have been due to the oxidation of NADPH to the less toxic NADP. Although cyclophosphamide alone was not toxic to rat embryos cultured in vitro, in the coupled microsomal-activating/embryo culture system, cyclophosphamide reduced yolk sac and embryo growth and caused abnormal embryonic differentiation. The uses of the coupled microsomal-activating/embryo culture system to study mechanisms in anomalous development, as well as its possible use in embryo toxicity and teratogenicity testing, are discussed.  相似文献   

2.
Conceptuses removed from the rats in the eleventh day of gestation were cultured in vitro for 2 days. Growth and differentiation of the major organs of the embryo in vitro resembled those developed in vivo. Embryonic development and organogenesis were markedly affected when the alkylating agents TEM (2,4,6-triethylenimino-1,3,5-triazine) and nitrogen mustard (mechlorethamine hydrochloride) were added to the culture medium. At concentrations of 1 and 5 μg/ml medium, these teratogens were highly embryotoxic and affected both growth and differentiation. DNA and protein content of embryos and yolk sacs was reduced significantly (p < 0.001) from the controls. Development of conceptuses in the culture medium that contained cyclophosphamide (0.35 mm) alone apparently were normal. However, addition of cyclophosphamide (0.35 mm), microsomes (0.5 mg protein/ml), and NADPH (1 mm) to the culture medium induced marked deleterious effects on the conceptus growth and differentiation. DNA and protein contents were significantly (p < 0.001) reduced by the combined treatment indicative of formation of reactive metabolites and their interference with macro-molecular biosynthesis. Aminopyrine which has not been shown to be teratogenic, in equimolar amounts to cyclophosphamide, under identical conditions of culture, did not affect conceptus development.  相似文献   

3.
The in vitro hepatic metabolism of O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN) was investigated in the hen (a species that is sensitive to EPN delayed neurotoxicity) and the rat (an insensitive species). EPN, which produced a Type I binding spectrum on incubation with cytochrome P-450, was converted by liver microsomes from both species to its oxygen analog, O-ethyl O-4-nitrophenyl phenylphosphonate (EPNO), and to p-nitrophenol (PNP). The formation of EPNO and PNP was dependent on the presence of NADPH in the reaction mixture and could be inhibited by either SKF-525A or by anaerobic conditions. The rates of EPNO and PNP formation by rat liver microsomes were, however, 3- and 20-fold higher, respectively, than the rates of formation by chicken liver microsomes. There was also a 4-fold difference in the cytochrome P-450 contents of the liver microsomes. The EPNO-hydrolyzing activity of rat liver microsomes was much greater than that of chicken liver microsomes. EPNO metabolism, in contrast to EPN metabolism, did not require NAPDH nor was it inhibited by SKF-525A or by anaerobic conditions. Prior exposure of rats to phenobarbital (PB) or Arochlor 1254 resulted in an increase in hepatic microsomal EPN metabolism and cytochrome P-450 content. On the other hand, 3-methylcholanthrene (3-MC) treatment elevated microsomal cytochrome P-450 but did not increase EPNO or PNP formation. Pretreatment with EPN did not alter either microsomal EPN metabolism or cytochrome P-450 levels. In chickens, prior exposure to PB, 3-MC or 100 mg/kg EPN increased EPNO and PNP formation by liver microsomes as well as cytochrome P-450 levels; prior exposure of chickens to 15 mg/kg EPN did not alter these variables. The λmax Soret bands of the reduced hepatic cytochrome P-450 complexes from these animals differed as follows (rat then chicken): untreated, 450 vs 452 nm; PB-treated, 450 vs 451 nm; and 3-MC-treated, 448 vs 449 nm. None of the above treatments had an effect on EPNO metabolism by liver microsomes.  相似文献   

4.
The role of flavin-containing monooxygenase (FMO) in the decrease in cytochrome P-450 content during the microsomal metabolism of methimazole (N-methyl-2-mercaptoimidazole) was investigated by heat inactivation of FMO. Incubation of liver microsomes from untreated Fischer 344 rats with NADPH and methimazole resulted in a 25% loss of cytochrome P-450 detectable as its ferrous-carbon monoxide complex. The same extent of cytochrome P-450 loss was observed with 1 and 20 mM methimazole, suggesting saturation of the process. There was no significant loss of cytochrome P-450 when microsomal FMO was heat-inactivated prior to incubation with NADPH and methimazole. Heat pretreatment of the microsomes did not affect cytochrome P-450 concentrations and cytochrome P-420 was not observed. These results indicate that FMO-catalyzed metabolism of methimazole is necessary for the loss of cytochrome P-450 in microsomes from untreated rats. Sulfite and N-methylimidazole, the ultimate products of methimazole metabolism, did not cause a significant loss of cytochrome P-450. There was no loss of cytochrome P-450 when glutathione was included in the incubation with methimazole, suggesting that cytochrome P-450 loss was due to an interaction with oxygenated metabolites of methimazole formed by FMO. Losses of cytochrome P-450 were also observed after incubation of microsomes from phenobarbital- (31%) of beta-naphthoflavone-pretreated rats (44%) with NADPH and methimazole. In contrast to microsomes from untreated rats, heat inactivation of FMO did not prevent the loss of cytochrome P-450 in microsomes from the pretreated rats. These results indicate that both phenobarbital and beta-naphthoflavone induce isozymes of cytochrome P-450 capable of directly activating methimazole.  相似文献   

5.
Microsomal cytochrome P-450 content was higher in histologically non-tumorous liver adjacent to intrahepatically implanted Morris hepatomas 5123D or 7795 than in histologically normal liver far removed from each tumor. Vmax values for microsomal benzo[a]pyrene monooxygenase activity and cyclophosphamide activation were also significantly higher in tumor-adjacent liver than in normal liver far removed from tumor. Km values of these reactions were unchanged. After intrahepatic implantation, inert spheres of several different materials produced no regional differences in hepatic microsomal cytochrome P-450 content. Both intrahepatic Morris hepatomas exhibited markedly reduced cytochrome P-450 content and benzo[a]pyrene monooxygenase activity. Cyclophosphamide biotransformation could not be detected in microsomes from either Morris hepatoma. Similar recoveries from microsomes of far-removed and tumor-adjacent liver indicated that differences between these regions in drug-metabolizing activity could not be attributed to different stabilities or sedimenting properties of their microsomes. Although microsomal recovery was significantly less from hepatomas than from far-removed or tumor-adjacent liver, this loss of tumor microsomes accounted for only a small part of the reductions in cytochrome P-450-mediated monooxygenases observed within tumors. Compared to control rats. tumor-bearing rats exhibited no change in hepatic drug-metabolizing capacity measured in vivo by hexobarbital sleeping times and antipyrine elimination rates. Phenobarbital (PB) pretreatment of tumor-bearing rats induced cytochrome P-450 to different extents within far-removed liver, tumoradjacent liver, and both hepatomas. The same differential inducibility occurred with PB pretreatment for cyclophosphamide activation. After PB induction, differences in drug-metabolizing activity between far-removed and tumor-adjacent liver disappeared; though induced, these activities remained lower in the hepatomas than in other regions. These changes in drug-metabolizing activity in both basal and PB-induced states of various hepatic regions were related to changes in cellularity of tumor-adjacent tissue. Hepatocellular nuclei prepared from tumor-containing liver were separated into diploid and tetraploid classes by sucrose density gradient centrifugation. Compared to far-removed liver, tumoradjacent liver contained significantly more diploid nuclei and less tetraploid nuclei.  相似文献   

6.
The effects of some macrolides (4mmoles·kg?1 p.o. daily for 4 days in vivo; 0.3mM in vitro) on hepatic drug-metabolizing enzymes in rats were compared. One group of macrolides including previously studied compounds (oleandomycin, erythromycin and troleandomycin), as well as several other erythromycin derivatives, showed induction of microsomal enzymes and formation of inactive cytochrome P-450-metabolite complexes in vivo; this formation increased in the order: oleandomycin, erythromycin ethylsuccinate, erythromycin stearate, erythromycin itself, erythromycin propionate, erythromycin estolate and troleandomycin. Troleandomycin and, to a lesser extent, erythromycin and oleandomycin formed cytochrome P-450-metabolite complexes when incubated in vitro with 1 mM NADPH and microsomes from rats pretreated with troleandomycin or phenobarbital, but not with microsomes from control rats or rats treated with 3-methylcholanthrene. In contrast, two other macrolides, josamycin and midecamycin, showed no induction of microsomal enzymes and no detectable formation of cytochrome P-450-metabolite complexes in vivo. In vitro, these macrolides failed to form detectable complexes even with microsomes from rats pretreated with troleandomycin or phenobarbital. Hexobarbital sleeping time was unaffected by preadministration of josamycin or midecamycin (4 mmoles·kg?1 p.o.) 2 hr earlier; the in vitro activity of hexobarbital hydroxylase was not inhibited by 0.3 mM josamycin or midecamycin. We conclude that, unlike several erythromycin derivatives, josamycin and midecamycin do not form inactive cytochrome P-450-metabolite complexes in rats.  相似文献   

7.
The effects of 2,4-dinitrotoluene (2,4-DNT) on xenobiotic metabolizing enzymes and the hepatic metabolism and covalent binding of this compound to microsomal proteins in vitro were studied. Male Fischer-344 rats received po doses of DNT daily for 5 days at 14, 35, and 70 mg/kg/day. Hepatic oxygen-insensitive cytosolic azoreductase activity was increased and microsomal nitroreductase was decreased by DNT treatments. A small but significant increase in liver/body weight ratio and in hepatic cytochromes P-450 and b5 occurred in the absence of changes in microsomal biphenyl hydroxylase or aryl hydrocarbon hydroxylase activities. The patterns of in vitro microsomal metabolism of DNT were dependent on oxygen tension: under aerobic conditions, 2,4-dinitrobenzyl alcohol (DNBAlc) was the major metabolite whereas under anaerobic conditions no DNBAlc was detected; 2-amino-4-nitrotoluene (2A4NT) and 4-amino-2-nitrotoluene (4A2NT) were the major metabolites. Pretreatment of rats with phenobarbital or Aroclor 1254 increased the metabolism of 2,4-DNT to DNBAlc by six- to sevenfold. Metabolism to the alcohol was inhibited by SKF-525A. These data suggested that oxidative metabolism of 2,4-DNT to DNBAlc was mediated by cytochrome P-450-dependent mixed-function oxidases. Covalent binding studies showed that a maximum of only 7 pmol of 2,4-DNT-derived radioactivity was bound per milligram of microsomal protein per hour; this binding was increased to 1.0 nmol bound/mg protein/hr in microsomes from phenobarbital of Aroclor 1254-pretreated rats. It is concluded that 2,4-DNT treatment had little effect on the activity of some hepatic xenobiotic metabolizing enzymes and was readily metabolized by liver preparations in vitro. The pathways of in vitro metabolism were dependent on oxygen tension. This in vitro metabolism produced mostly polar metabolites which did not bind appreciably to microsomal macromolecules.  相似文献   

8.
Addition of isoniazid (isonicotinic acid hydrazide, INH) to rat liver microsomes produced an immediate decrease in the binding of carbon monoxide to reduced cytochrome P-450. Preincubation of the microsomes with INH in the presence of NADPH produced a further decrease of carbon monoxide binding to cytochrome P-450. The latter decrease of functional cytochrome P-450 was dependent upon NADPH and oxygen and was transitory. Examination of compounds structurally related to INH indicated that both the hydrazine moiety and the aromatic ring were needed to produce both effects. Incubation of microsomes with INH also resulted in gradual increases in absorbance at 449 nm and at 493 nm which also were transitory. Thus, the decreased binding of carbon monoxide to cytochrome P-450 may have occurred concurrently with formation of these spectral intermediates. Microsomal N-demethylation and aniline p-hydroxylation were inhibited by isoniazid. Preincubation of the microsomes with INH and NADPH increased the inhibition. Thus, the decreased availability of cytochrome P-450 as observed may account for the inhibition of the mixed function oxidases by isoniazid.  相似文献   

9.
The liver metabolism of hexobarbital and aniline was decreased 48 hr after the first injection of growth hormone (GH) in adult male rats. The content and rate of reduction of hepatic microsomal cytochrome P-450 were lowered in these rats as compared with control animals. Liver NADPH-cytochrome c reductase showed a similar decrease in activity after GH treatment. The decrease in hexobarbital metabolism paralleled the change in cytochrome P-450 reductase activity as measured with or without addition of this drug substrate to a suspension of liver microsomes from GH-treated rats. The change in aniline metabolism approximated the extent and rate of cytochrome P-450 reduction after GH treatment only when cytochrome P-450 reductase activity was measured without addition of aniline. Injection of GH produced a parallel decrease in the metabolism of both drugs as compared with cytochrome c reductase activity. Differences in optimal requirements for drug substrates (hexobarbital or aniline) or NADPH for cytochrome P-450 reductase were not detected. Preincubation studies showed no differences in microsomal drug metabolic enzyme system stability in rats injected with GH. Inhibitors of this system in vitro were not demonstrated in liver from GH-treated rats. GH is presumed to affect the level of liver drug metabolism through mechanisms in vivo operative at the first stage transfer of reducing equivalents to cytochrome P-450. An additional effect of this hormone on the level or catalytic properties of the hemoprotein cytochrome P-450 may contribute to the decrease in aniline metabolism.  相似文献   

10.
To evaluate the role of cytochrome P-450 in anesthetic toxicity, we investigated the effects of hepatic microsomal cytochrome P-450 inducers [phenobarbital (PB), 3-methylcholanthrene (3-MC) and pregnenolone-16 α-carbonitrile (PCN)] and inhibitors [SKF 525-A, metyrapone, and 2allyl2isopropylacetamide (ALA)] on the potentiation of lethal effects to rats of i.p. administered 2,2,2-trifluoroethyl vinyl ether (TFVE), ethyl 2,2,2-trifluoroethyl ether (TFEE), allyl 2,2,2-trifluoroethyl ether (TFAE) and 2,3-epoxypropyl 2,2,2-trifluoroethyl ether (EPTFE). The time courses of tail-vein blood anesthetic concentrations and quantities of exhaled anesthetics together with the in vitro metabolism of the anesthetics and their binding to microsomal cytochromes P-450 were also determined. The results indicate that (1) the majority of the administered anesthetics make a single pass through the liver prior to exhalation and apparently are metabolized to toxic products, (2) the epoxide (EPTFE) exerts its lethal effects independently of cytochrome P-450 catalyzed metabolism and does not lie on the major path of TFAE metabolism, (3) all the anesthetics yield 2,2,2-trinuoroethanol (TFE) on metabolism in vitro but lethality does not always correlate with the rates of TFE formation, (4) PB induced cytochromes P-450 potentiate lethal effects of TFVE and TFEE but not of TFAE, and inhibitors differentiate mechanisms of TFVE and TFEE lethality, (5) PCN induced cytochromes P-450 potentiate the toxicity of TFVE, TFAE, and TFEE in a similar manner, and (6) 3-MC induction potentiates TFEE and TFAE lethality apparently independently of cytochrome P-450 catalyzed metabolism.  相似文献   

11.
The interaction of tetrachloroethylene with hepatic microsomal cytochromes P-450 has been investigated using male Long-Evans rats. The spectral binding of tetrachloroethylene to cytochromes P-450 in hepatic microsomes from uninduced rats was characterized by a Ks of 0.4 mM. The Ks was not affected by phenobarbital induction, but was increased following pregnenolone-16α-carbonitrile induction. The KM of 1.1 mM, calculated for the conversion of tetrachloroethylene to total chlorinated metabolites by the hepatic microsomal cytochrome P-450 system, was decreased by phenobarbital induction and increased by pregnenolone-16α-carbonitrile induction. The maximum extents of binding (ΔAmax) and metabolism (Vmax) of tetrachloroethylene were increased by both phenobarbital and pregnenolone-16α-carbonitrile induction. Induction with β-naphthoflavone was without effect on any of the above parameters. The effects of the inducing agents on tetrachloroethylene-stimulated CO-inhibitable hepatic microsomal NADPH oxidation followed the same trend as their effects on Vmax for the metabolism of tetrachloroethylene, although in all cases the extent of NADPH oxidation was 5- to 25-fold greater than the extent of metabolite production. The inhibitors of cytochromes P-450, viz. metyrapone, SKF 525-A, and CO, inhibited the hepatic microsomal binding and metabolism of tetrachloroethylene. Free trichloroacetic acid was found to be the major metabolite of tetrachloroethylene from the hepatic microsomal cytochrome P-450 system. Neither 2.2,2-trichloroethanol nor chloral hydrate was produced in measurable amounts from tetrachloroethylene. A minor but significant metabolite of tetrachloroethylene by cytochrome P-450 was the trichloroacetyl moiety covalently bound to components of the hepatic microsomes. Incubation of tetrachloroethylene. an NADPH-generating system. EDTA and hepatic microsomes was without effect on the levels of microsomal cytochromes P-450, cytochrome b5, beme, and NADPH-cytochrome c reductase. It is concluded that hepatic microsomal cytochromes P-450 bind and metabolize tetrachloroethylene. The major product of this interaction is trichloroacetic acid, which is also the major urinary metabolite of tetrachloroethylene in vivo. The forms of cytochrome P-450 that bind and metabolize tetrachloroethylene include those induced by pregnenolone-16α-carbonitrile and by phenobarbital. Cytochrome P-448. which was induced in rat liver by β-naphthoflavone, does not appear to spectrally bind or metabolize tetrachloroethylene. The metabolism and toxicity of tetrachloroethylene are considered in relation to other chlorinated ethylenes.  相似文献   

12.
Bis(tri-n-butyltin)oxide, an agriculturally important biocidal agent, when added in vitro to liver microsomes containing the phenobarbital-induced form of cytochrome P-450, produced a typical type I binding spectrum (an absorption maximum at 390 nm; an absorption minimum at 420 nm). Studies with microsomal preparations containing cytochrome P-448, induced by 3-methylcholanthrene or β-naphthoflavone, revealed that this hemeprotein was more susceptible to direct degradation by bis (tri-n-butyltin)oxide than was the uninduced or phenobarbital-induced forms of cytochrome P-450. The disappearance of spectrally detectable cytochrome P-450 was accompanied by an increase in cytochrome P-420. The formation of cytochrome P-420 was both time and temperature dependent, and it also occurred to a greater extent in microsomal preparations containing cytochrome P-448 than in microsomes containing the phenobarbital-induced form of cytochrome P-450. In all cases, the decreases in spectrally detectable cytochrome P-450 produced by the organotin were not accompanied by decreases in microsomal heme or cytochrome b5 content. The findings provide evidence for the direct interaction followed by conversion of cytochrome P-450 to cytochrome P-420 produced by a trialkyltin compound in vitro, and indicate that different susceptibilities to degradation exist within the various subspecies of this hemeprotein.  相似文献   

13.
The effects of inhibitors and of inducing agents for cytochromes P-450 on the fluroxene mediated destruction of cytochromes P-450 were investigated with hepatic microsomes from male rats in vitro and compared with the metabolism of fluroxene (2,2,2-trifluoroethyl vinyl ether) to 2,2,2-tri-fluoroethanol under similar conditions. The fluroxene mediated destruction of cytochromes P-450 and the metabolism of fluroxene are fully inhibited under totally anaerobic conditions. Carbon monoxide, SKF 525A and metyrapone fully inhibit the fluroxene mediated destruction of cytochromes P-450 and partially inhibit the metabolism of fluroxene to trifluoroethanol in microsomes from phenobarbital pretreated rats. The Km values for the destruction of cytochromes P-450 by fluroxene in vitro were calculated as 0.8, 3.3 and 1.5 mM for microsomes from phenobarbital induced, 3-methylcholanthrene induced and uninduced animals, respectively. Vmax values for 3-methylcholanthrene and phenobarbital induced microsomes (approximately 0.5 nmol cytochromes P-450 destroyed/mg microsomal protein/7 min) are elevated compared to uninduced microsomes (0.2 nmol cytochromes P-450 destroyed/mg microsomal protein/10 min). The Km value for the metabolism of fluroxene to trifluoroethanol in control microsomes of approximately 1.0 mM is unchanged following induction, and Vmax for the production of trifluoroethanol is increased relative to controls only in phenobarbital induced microsomes. It is concluded that the fluroxene mediated destruction of cytochromes P-450 appears to involve both cytochrome P-448 and cytochrome P-450 whereas the production of trifluoroethanol from fluroxene is catalyzed by cytochrome P-450 but not by cytochrome P-448.  相似文献   

14.
Levels of hepatic microsomal cytochrome P-450 were depressed by administration of estradiol-17β and were elevated by administration of testosterone in both male and female juvenile brook trout (Salvelinus fontinalis). Treatment-associated changes in the levels of other microsomal electron transfer components in liver did not reflect the changes in cytochrome P-450 content and were also distinct from the changes in these components in kidney. Electrophoretic analysis of hepatic microsomes revealed that estradiol treatment reduced the amounts of several proteins including some heme-staining protein at 56,000 daltons, possibly containing cytochrome P-450. Hepatic microsomal benzo[a]pyrene hydroxylase and the response to 7,8-benzoflavone in vitro were affected little by steroid treatment, and ethoxyresorufin O-deethylase activity could not be detected in any of the samples. Hepatic microsomes metabolized testosterone to a suite of products including 6β-hydroxytestosterone (the major metabolite) and 16β-hydroxytestosterone, plus as many as eleven unknown metabolites. Estradiol-17β treatment depressed the rates of testosterone metabolism and particularly the rates of 6β-hydroxylase activity but did not affect 16β-hydroxylase activity. Both activities were largely unaffected by testosterone. The results are consistent with the idea that both androgens and estrogens regulate the levels of hepatic cytochrome P-450 in brook trout and that the effect, at least of estradiol-17β, involves regulation of forms that function in specific hydroxylation of testosterone. The significance of these effects and whether factors additional to steroids are involved in this regulation of hepatic cytochromes P-450 in fish remain to be established.  相似文献   

15.
The effects of inducing agents on the binding and metabolism of vinylidene chloride by hepatic microsomal cytochrome P-450 are reported. Hanes plots for the Type I binding of vinylidene chloride to cytochrome P-450 were biphasic with hepatic microsomes from untreated and β-naphthoflavone- or phenobarbital-treated male rats. Neither pretreatment affected the value of the Ks (ca. 0.22 mM) for the high-affinity binding site for vinylidene chloride, while phenobarbital induction, but not β-naphthoflavone treatment, decreased the value of the Ks for the low-affinity site by 3-fold to ca. 1.6 mM. The maximum extents of binding (ΔAmax or ΔAmax/nmole cytochrome P-450) of vinylidene chloride were decreased or not affected by β-naphthoflavone induction, while ΔAmax but not ΔAmax/ nmole cytochrome P-450 was elevated following phenobarbital induction. The rate of vinylidene chloride stimulated CO-inhibitable hepatic microsomal NADPH oxidation was not affected by β-naphthoflavone induction, but was increased significantly following phenobarbital induction. Vinylidene chloride was converted to monochloroacetate and to the previously unreported metabolite, dichloroacetaldehyde, by hepatic microsomes plus NADPH-generating system. Measurable levels of 2-mono- and 2,2-dichloroethanol, and of chloroacetaldehyde and dichloroacetic acid, were not produced from vinylidene chloride under these conditions. SKF-525A and CO:O2 (80:20, v/v) inhibited the conversion of vinylidene chloride to monochloroacetate and dichloroacetaldehyde by approximately 60%. The rates of production of monochloroacetate and dichloroacetaldehyde in the presence of NADH were ca. 15% of the rates seen with NADPH-generating system. The rate of monochloroacetate production per mg microsomal protein was not affected by β-naphthoflavone induction but was increased slightly following phenobarbital induction. In contrast, the Vmax values per mg microsomal protein for the metabolism of vinylidene chloride to dichloroacetaldehyde were not elevated by either pretreatment. Incubation of vinylidene chloride, NADPH-generating system, EDTA and hepatic microsomes from untreated and β-naphthoflavone- or phenobarbital-treated rats did not result in any significant alterations in the levels of microsomal cytochrome P-450 and heme or in the covalent binding of the mono- or dichloroacetyl moieties to microsomal or buffer constituents, but it did result in significant production of H2O2. It is concluded that multiple forms of cytochrome P-450 bind and metabolize vinylidene chloride. However, the form of the enzyme elevated by phenobarbital plays, at most, a minor role in these processes, while the form induced by β-naphthoflavone is not involved in either process. The effect of metabolism of vinylidene chloride by cytochrome P-450 on the relationship between the metabolism and toxicity of vinylidene chloride in vivo and its mutagenicity in vitro is considered.  相似文献   

16.
Administration of 1,2,3-benzothiadiazoles to mice had a biphasic effect on liver microsomal monooxygenases. During the first 15 hr of treatment, an inhibition of the in vivo metabolism of hexobarbital, as well as of the in vitro hydroxylation of naphthalene and N-demethylation of aminopyrine, was observed. An apparent decrease in cytochrome P-450 and in the activity of the NADPH-cytochrome c reductase also occurred. The levels of cytochrome b5 and NADH-cytochrome c reductase activity were only slightly affected. A shift to 452 nm in the carbon monoxide difference spectrum was obtained with dithionite-reduced microsomes and this was not modified by ferricyanide. After the initial inhibitory phase, an enhancement of drug-metabolizing activities in vivo and in vitro and in the levels of some components of the mixed function oxidase system was observed. The carbon monoxide difference spectra of dithionite-reduced microsomes returned to a maximal absorption at 450 nm. The stimulatory effect on monooxygenase activity, elicited by benzothiadiazoles, was prevented completely by actinomycin D and was accompanied by increases in liver weight, microsomal protein, and incorporation of labeled amino acids into microsomal protein, as well as by proliferation of smooth and rough endoplasmic reticulum. Acrylamide gel analysis of liver microsomes from mice, given a single dose of 6-chloro-1, 2,3-benzothiadiazole 48 hr prior to being killed, showed preferential induction of cytochrome P-450 apoproteins of 50,000, 52,000 and 53,000 molecular weight.  相似文献   

17.
The effects of inducing agents on the binding and metabolism of trichloroethylene by hepatic microsomal cytochrome P-450 are reported. The binding constant (Ks) for the interaction of trichloroethylene with hepatic microsomal cytochrome P-450 was not altered by induction with phenobarbital, 3-methylcholanthrene or spironolactone, while the maximum extent of binding (ΔAmax) was increased only following phenobarbital induction. The Ks values (ca. 1 mM) obtained for the binding of trichloroethylene to cytochrome P-450 were similar whether the enzyme was partially purified or an integral part of hepatic microsomes. The Michaelis constant (Km) for the production of chloral hydrate from trichloroethylene by hepatic microsomal cytochrome P-450 was not altered by induction of different forms of cyfochrome P-450. Vmax for the production of chloral hydrate and the rate of hepatic microsomal NADPH oxidation in the presence of excess trichloroethylene were increased by phenobarbital induction, but not by spironolactone or 3-methylcholanthrene induction. The artificial electron donors NaClO2 and H2O2, but not NaIO4, supported the metabolism of trichloroethylene by partially purified cytochrome P-450 from phenobarbital-induced rat liver microsomes. Incubation of hepatic microsomes with NADPH and trichloroethylene resulted in decreased levels of cytochrome P-450 and heme, but did not alter the levels of NADPH-cytochrome c reductase, cytochrome b5 or glucose-6-phosphatase. The degradation of the heme moiety of cytochrome P-450 by trichloroethylene was not supported by NADH and was not inhibited by reduced glutathione (GSH). The inhibitors of cytochrome P-450—SKF 525-A, metyrapone and CO—inhibited the binding and metabolism of trichloroethylene and the trichloroethylenemediated degradation of cytochrome P-450. It is concluded that the form of cytochrome P-450 which is induced by phenobarbital, binds and metabolizes trichloroethylene, whereas other forms of the enzyme, such as cytochrome P-448, do not. Trichloroethylene appears to be activated by the phenobarbital-induced form of cytochrome P-450 to a reactive species which can then chemically alter the heme moiety of cytochrome P-450.  相似文献   

18.
Ten thiono-sulfur-containing compounds of varying structure were administered by intraperitoneal injection to untreated, phenobarbital-pretreated and 3-methylcholanthrene-pretreated adult male rats. Six hr later, the concentration of hepatic cytochrome P-450 and the ability of the hepatic microsomes to metabolize benzphetamine were examined. In the untreated, phenobarbital-pretreated and 3-methylcholanthrene-pretreated groups, two, four and four compounds, respectively, significantly decreased the concentration of cytochrome P-450 in the hepatic microsomes. A similar effect on benzphetamine metabolism was also seen. When examined 48 hr after the administration of the ten thiono-sulfurcontaining compounds, four, five and seven of the compounds decreased both the levels of hepatic cytochrome P-450 and the rate of benzphetamine metabolism in the untreated, phenobarbital-pretreated and 3-methylcholanthrene-pretreated animals respectively. Eight of the thiono-sulfur-containing compounds were incubated in the presence of NADPH with hepatic microsomes isolated from untreated, phenobarbital-pretreated or 3-methylcholanthrene-pretreated animals. All of the compounds examined significantly decreased the concentration of cytochrome P-450 in the microsomes from each treatment group. Similar reductions in benzphetamine metabolism were also seen. When these same compounds were incubated with microsomes in the absence of NADPH, no significant reduction of cytochrome P-450 or benzphetamine metabolism was seen. When the oxygen analogs of six of the thiono-sulfur compounds were administered in vivo or incubated with hepatic microsomes either in the presence or absence of NADPH, no significant reduction of cytochrome P-450 or benzphetamine metabolism was seen.  相似文献   

19.
Cis- and trans-1,1-dichloroethylene bound to the active site of hepatic microsomal cytochrome P-450 with the production of a Type I difference spectrum and stimulated CO-inhibitable hepatic microsomal NADPH oxidation. Incubation of cis- and trans-1,2-dichloroethylene plus hepatic microsomes, NADPH-generating system-EDTA resulted in the production of measurable levels of 2,2-dichloroethanol and dichloroacetaldehyde but not of 2-chloroethanol, chloroacetaldehyde or chloroacetic acid and, also, resulted in decreased levels of hepatic microsomal cytochrome P-450 and heme. In addition, dichloroacetic acid was produced from trans-dichloroethylene under these experimental conditions. The omission of any component of the incubation mixture eliminated the above effects, while the inclusion of SKF-525A, metyrapone or CO: O2 (80, v/v) diminished these effects. The effects of β-naphthoflavone and phenobarbital pretreatment on the values of Ks, ΔAmax, Km and Vmam for the binding and metabolism of the 1,2-dichloroethylenes are reported. The binding and metabolism of the 1,2-dichloroethylenes and the 1,2-dichloroethylene-mediated inactivation of cytochrome P-450 were enhanced per mg of microsomal protein, but generally not per nmole of cytochrome P-450 by prior induction with β-naphthoflavone or phenobarbital. It is concluded that multiple forms of hepatic microsomal cytochrome P-450 bind and metabolize the 1,2-dichloroethylenes. The role of cytochrome P-450 in the metabolic activation of the dichloroethylenes is considered.  相似文献   

20.
In light of recent suggestions that hepatic microsomal aldrin expoxidation activity selectively reflects the phenobarbital (PB)-inducible form(s) of cytochrome P-450 (P-450PB), we tested the effect of pregnenolone-16 alpha-carbonitrile (PCN), a synthetic steroid that induces P-450PCN, a form of the cytochrome biochemically and immunochemically distinguishable from P-450PB. In hepatic microsomes prepared from rats receiving PB, 3-methylcholanthrene (3-MC), or PCN, the latter compound produced a greater increase in aldrin epoxidation activity relative to control than did PB, whereas 3-MC decreased enzyme activity. Moreover, the aldrin epoxidation activity in microsomes prepared from PCN- or PB-pretreated rats was selectively inhibited by form-specific antibodies directed against P-450PCN or P-450PB, respectively, whereas anti-P-450MC antibodies gave no inhibition with microsomes prepared from induced or control animals. We conclude that P-450PCN, P-450PB, and probably other cytochromes P-450 catalyze aldrin epoxidation, precluding use of this enzyme as a specific marker of a single form of the cytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号