首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The main goal of this work was to evaluate the thermal insulation and sound absorption properties of open-cell rigid polyurethane foams synthesized with different contents of cooking oil-based polyol. The content of the applied bio-polyol as well as flame retardant (triethyl phosphate) in the foam formulation had a significant influence on the cellular structures of the materials. The open-cell polyurethane foams were characterized by apparent densities in the range 16–30 kg/m3. The sound absorption coefficients of the polyurethanes with various contents of bio-polyol were determined using the standing wave method (Kundt’s tube) in the frequency range of 100–6300 Hz. The effect of the content of the bio-polyol and flame retardant on the coefficient of thermal conductivity (at average temperatures of 0, 10 and 20 °C) as well as the compressive strength (at 20 and −10 °C) was analyzed. Different trends were observed in terms of the thermal insulation properties and sound absorption ability of the open-cell polyurethanes due to the addition of bio-polyol. In conclusion, it is necessary to use systems containing both petrochemical and bio-based raw materials.  相似文献   

2.
This article presents an ecological approach based on climate neutrality to the synthesis of open-cell polyurethane foams with modified used cooking rapeseed oils. Water was used as a chemical blowing agent in the amount of 20–28 wt.% in relation to the weight of the bio-polyol. The influence of water on the physical and mechanical properties of the synthesized foams was investigated. The resultant porous materials were tested for the content of closed cells, cell structure, apparent density, thermal conductivity, compressive strength, and dimensional stability. It was found that the apparent density decreased in the range of 11–13 kg/m3 when the amount of the foaming agent was increased. In the next step, a foam with a water content of 22% was selected as having the most favorable physico–mechanical properties among all the foams with various water contents. The isocyanate index of the selected foam was then changed from 0.6 to 1.1 and it was observed that the compressive strength increased by an average of 10 kPa. The thermal conductivity coefficients of the final materials with different water contents and isocyanate indices were comparable and in the range of 40–43 mW/m·K.  相似文献   

3.
Currently, the fundamental activity that will allow for the development of an economy with closed circulation is the management of food waste and production waste for the preparation of biocomposites. The use of waste materials of natural origin allows for the creation of innovative composites with improved physicochemical and functional properties. The present investigation concerns the use of coffee grounds (2.5–20 wt.%) and oak sawdust (2.5–20 wt.%) as effective fillers of rigid polyurethane foam. Innovative composite materials, previously indebted in the literature, were subjected to the necessary analyses to determine the application abilities: processing times, free density, water absorption, dimensional stability, mechanical properties (compressive strength), thermal conductivity, morphology, and flame resistance. The results with respect to the mechanical tests turned out to be the key. Increasing the number of coffee additives has a positive effect on the compressive strength. The addition of this filler in the range of 5–15 wt.% increased the compressive strength of the composites, 136–139 kPa, compared to the reference sample, 127 kPa. The key parameter analysed was thermal conductivity. The results obtained were in range of the requirements, that is, 0.022–0.024 W/m·K for all used amounts of fillers 2.5–20 wt.%. This is extremely important since these materials are used for insulation purposes. The results of the burning-behaviour test have confirmed that the addition of renewable materials does not negatively affect the fire resistance of the received foams; the results were obtained analogously to those obtained from the reference sample without the addition of fillers. The height of the flame did not exceed 17 cm, while the flame decay time was 17 s for the reference sample and the composite with coffee grounds and 18 s for the composite with oak sawdust. In this work, the practical application of bioorganic waste as an innovative filler for the insulation of flooded polyurethane foam is described for the first time. The introduction of fillers of natural origin into the polymer matrix is a promising method to improve the physicochemical and functional properties of rigid polyurethane foams. Composites modified with coffee grounds and sawdust are interesting from a technological, ecological, and economic point of view, significantly increasing the range of use of foam in various industries.  相似文献   

4.
Ground tire rubber (GTR) is used to decrease the cost of vulcanizates. However, insufficient interactions between GTR particles and rubber matrices make mechanical properties of vulcanizates containing GTR deteriorate. This paper compares original methods of GTR modification. The effects of surface activation of GTR by sulfuric acid (A), its modification by (3-mercaptopropyl)trimethoxy silane (M), or the hybrid treatment—combining both approaches (H), were analyzed in terms of surface energy, specific surface area and morphology of GTR particles. Vulcanizates containing virgin GTR were compared to the rubber filled with the modified GTR particles keeping the same amount of CB in the rubber mix, according to their crosslink density, mechanical and tribological properties. Contrary to the virgin GTR, the addition of modified GTR increases the stiffness of the vulcanizates. The highest changes have been observed for the samples filled with ca. 12 phr of the GTR modified with silane and ca. 25 phr of the GTR subjected to the hybrid treatment, representing the highest crosslink density of rubber vulcanizates filled with GTR. Furthermore, the addition of modified GTR, especially in the case of the samples where 10 phr of rubber was replaced, results in the significant lowering of friction but higher abrasive wear.  相似文献   

5.
The aim of the study was to assess the possibility of using polyurethane foams (PUF) as a filling of a foam-sand filter to directly treat domestic sewage with increased content of ammonium nitrogen and low organic carbon to nitrogen ratio (C/N). The study compared performance of two types of flexible foams: new, cylinder-shaped material (Novel Foams, NF) and waste, scrap foams (Waste Foams, WF). The foams serving as a filling of two segments of a foam-sand filter were assessed for their hydrophobic and physical properties and were tested for their cell structure, i.e., cell diameter, cell size distribution, porosity, and specific surface area. The study accounted also for selected application-related properties, such as hydrophobicity, water absorption, apparent density, dimensional stability, amount of adsorbed biomass, and the possibility of regeneration. Cell morphology was compared in reference foams, foams after 14 months of the filter operation, and regenerated foams. The experimental outcomes indicated WF as an innovative type of biomass carrier for treating domestic sewage with low C/N ratio. SEM images showed that immobilization of microorganisms in NF and WF matrices involved the formation of multi-cellular structures attached to the inner surface of the polyurethane and attachment of single bacterial cells to the foam surface. The amount of adsorbed biomass confirmed that the foam-sand filter made up of two upper layers of waste foams (with diameters and pore content of 0.50–1.53 mm and 53.0–63.5% respectively) provided highly favorable conditions for the development of active microorganisms.  相似文献   

6.
Metal foams possess remarkable properties, such as lightweight, high compressive strength, lower specific weight, high stiffness, and high energy absorption. These properties make them highly desirable for many engineering applications, including lightweight materials, energy-absorption devices for aerospace and automotive industries, etc. For such potential applications, it is essential to understand the mechanical behaviour of these foams. Producing metal foams is a highly challenging task due to the coexistence of solid, liquid, and gaseous phases at different temperatures. Although numerous techniques are available for producing metal foams, fabricating foamed metal still suffers from imperfections and inconsistencies. Thus, a good understanding of various processing techniques and properties of the resulting foams is essential to improve the foam quality. This review discussed the types of metal foams available in the market and their properties, providing an overview of the production techniques involved and the contribution of metal foams to various applications. This review also discussed the challenges in foam fabrications and proposed several solutions to address these problems.  相似文献   

7.
Hydrophilic, flexible polyurethane (FPU) foams made from Hypol prepolymers are capable of retaining large amounts of water and saline solutions. The addition of different catalysts and surfactant agents to Hypol JM 5008 prepolymer was assayed to obtain a foam with good structural stability and elasticity. The combination of three catalysts, stannous octoate and two amine-based ones (Tegoamin 33 and Tegoamin BDE), and the surfactant Niax silicone L-620LV allowed to synthesize a foam with a homogeneous cell size distribution, exhibiting the highest saline absorption capacity (2.4 g/gram of foam) and almost complete shape recovery, with up to a 20% of remaining deformation. Then, superabsorbent sodium acrylate polymer (PNaA) was added to the FPU foam up to 8 pph. The urine absorption capacity of the foam was increased about 24.8% by incorporating 6 pph of PNaA, absorbing 17.46 g of saline solution per foam gram, without any negative impact on the rest of the foam properties. All these properties make the synthesized foams suitable for corporal fluids absorption applications in which elasticity and low-density are required.  相似文献   

8.
In this study, the possibility of using sawdust, a by-product of primary wood processing, as a filler (WF) for rigid polyurethane (PUR) foams was investigated. The effects of the addition of 5, 10, 15 and 20% of WF particles to the polyurethane matrix on the foaming process, cell structure and selected physical-mechanical properties such as density, thermal conductivity, dimensional stability, water absorption, brittleness, compressive and bending strengths were evaluated. Based on the results, it was found that the addition of WF in the amount of up to 10% does not significantly affect the kinetics of the foam foaming process, allowing the reduction of their thermal conductivity, significantly reducing brittleness and maintaining high dimensional stability. On the other hand, such an amount of WF causes a slight decrease in the compressive strength of the foam, a decrease in its bending strength and an increase in water absorption. However, it is important that in spite of the observed decrease in the values of these parameters, the obtained results are satisfactory and consistent with the parameters of insulation materials based on rigid PUR foam, currently available on the market.  相似文献   

9.
Conventional polyurethane foam has non-tunable sound absorption properties. Here, a magneto-induced foam, called magnetorheological (MR) foam, was fabricated with the feature of being able to tune sound absorption properties, primarily from the middle- to higher-frequency ranges. Three different samples of MR foams were fabricated in situ by varying the concentration of Carbonyl Iron Particles (CIPs) (0, 35, and 75 wt.%). The magnetization properties and tunable sound absorption characteristics were evaluated. From the magnetic saturation properties, the results showed very narrow and small coercivity of hysteresis loops relative to the soft magnetic properties of the CIPs. MR foam with 75 wt.% CIPs showed a higher magnetic saturation at 91.350 emu/g compared to MR foam with 35 wt.% CIPs at 63.896 emu/g. For tunable sound absorption testing, the effect of ‘shifting’ to higher frequency was also observed when the magnetic field was applied, which was ~10 Hz for MR foam with 35 wt.% CIPs and ~130 Hz for MR foam with 75 wt.% CIPs. As the latest evolution of semi-active noise control materials, the results from this study are valuable guidance for the advancement of MR-based devices.  相似文献   

10.
With the increasing demand for high temperature-resistant heat insulation materials for hypersonic vehicles, carbon foam has been studied extensively, and its mechanical and thermal properties have been fully researched, but the oxidation behavior of carbon foams during service and the change in their properties after oxidation are rarely studied. This paper studied the relationship between both mechanical and thermal properties and oxidation degree of two kinds of foams, coal-based carbon foam and antioxidant coal-based carbon foam with chemical vapor deposition of SiC particles. The variation trend for the two kinds of foam was the same. When the oxidation degree was less than 15%, the compression modulus and strength weakened with the increase in weight loss rate, but the thermal conductivity decreased with the increase in weight loss rate, which was a favorable influence for the thermal protection system. The mechanical and thermal properties had a linear relationship with the weight loss rate, but the slope was different between 0% to 10% and 10% to 15%. The microscopic mechanism of these changes was also analyzed.  相似文献   

11.
The application range of flexible polyurethane (PU) foams is comprehensive because of their versatility and flexibility in adjusting structure and performance. In addition to the investigations associated with further broadening of their potential properties, researchers are looking for new raw materials, beneficially originated from renewable resources or recycling. A great example of such a material is ground tire rubber (GTR)—the product of the material recycling of post-consumer car tires. To fully exploit the benefits of this material, it should be modified to enhance the interfacial interactions between PU and GTR. In the presented work, GTR particles were thermo-mechanically modified with the addition of fresh and waste rapeseed oil in the reactive extrusion process. The introduction of modified GTR particles into a flexible PU matrix caused a beneficial 17–28% decrease in average cell diameters. Such an effect caused an even 5% drop in thermal conductivity coefficient values, enhancing thermal insulation performance. The application of waste oil resulted in the superior mechanical performance of composites compared to the fresh one and thermo-mechanical modification without oils. The compressive and tensile performance of composites filled with waste oil-modified GTR was almost the same as for the unfilled foam. Moreover, the introduction of ground tire rubber particles enhanced the thermal stability of neat polyurethane foam.  相似文献   

12.
Magnesium alloys have considerably lower density than the aluminum alloy matrices that are typically used in syntactic foams, allowing for greater specific energy absorption. Despite the potential advantages, few studies have reported the properties of magnesium alloy matrix syntactic foams. In this work, Al2O3 hollow particles of three different size ranges, 0.106–0.212 mm, 0.212–0.425 mm, and 0.425–0.500 mm were encapsulated in Mg-AZ91D by a sub-atmospheric pressure infiltration technique. It is shown that the peak strength, plateau strength and toughness of the foam increases with increasing hollow sphere wall thickness to diameter (t/D) ratio. Since t/D was found to increase with decreasing hollow sphere diameter, the foams produced with smaller spheres showed improved performance—specifically, higher energy absorption per unit weight. These foams show better performance than other metallic foams on a specific property basis.  相似文献   

13.
Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.  相似文献   

14.
This paper deals with the study of cellular rubbers, which were filled with silica nanofiller in order to optimize the rubber properties for given purposes. The rubber composites were produced with different concentrations of silica nanofiller at the same blowing agent concentration. The mechanical, sound absorption and thermal properties of the investigated rubber composites were evaluated. It was found that the concentration of silica filler had a significant effect on the above-mentioned properties. It was detected that a higher concentration of silica nanofiller generally led to an increase in mechanical stiffness and thermal conductivity. Conversely, sound absorption and thermal degradation of the investigated rubber composites decreased with an increase in the filler concentration. It can be also concluded that the rubber composites containing higher concentrations of silica filler showed a higher stiffness to weight ratio, which is one of the great advantages of these materials. Based on the experimental data, it was possible to find a correlation between mechanical stiffness of the tested rubber specimens evaluated using conventional and vibroacoustic measurement techniques. In addition, this paper presents a new methodology to optimize the blowing and vulcanization processes of rubber samples during their production.  相似文献   

15.
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility of using waste wood particles (WP) from primary wood processing as a filler for PUR foams with open-cell structure was investigated. For this purpose, a wood particle fraction of 0.315–1.25 mm was added to the foam in concentrations of 0, 5, 10, 15 and 20%. The foaming course of the modified PUR foams (PUR-WP) was characterized on the basis of the duration of the process’ successive stages at the maximum foaming temperature. In order to explain the observed phenomena, a cellular structure was characterized using microscopic analysis such as SEM and light microscope. Computed tomography was also applied to determine the distribution of wood particles in PUR-WP materials. It was observed that the addition of WP to the open-cell PUR foam influences the kinetics of the foaming process of the PUR-WP composition and their morphology, density, compressive strength and thermal properties. The performed tests showed that the addition of WP at an the amount of 10% leads to the increase in the PUR foam’s compressive strength by 30% (parallel to foam’s growth direction) and reduce the thermal conductivity coefficient by 10%.  相似文献   

16.
Taking into account the circular economy guidelines and results of life cycle analyses of various materials, it was proposed to use a blackcurrant pomace filler in the production process of viscoelastic polyurethane (PUR) foams intended for application as mattresses, pillows, or elements for orthopedics. Open-cell viscoelastic PUR foams containing 10–60 per hundred polyols (php) blackcurrant pomace were prepared. It was found that after introducing the filler to the PUR foam formulation, the speed of the first stage of the foaming process significantly decreases, the maximum temperature achieved during the synthesis drops (by 30 °C for the foam containing 40 php of filler compared to unfilled foam), and the maximum pressure achieved during the synthesis of foam containing 20 php is reduced by approximately 57% compared to the foam without filler. The growth time of the foams increases with increasing the amount of introduced filler; for the foam containing 60 php, the time is extended even by about 24%. The effect of the filler on the physical, morphological, mechanical, and functional performances of PUR foam composites has been analyzed. The use of 60 php as the filler reduced the hardness of the foams by approximately 30% and increased their comfort factor from 3 to 5.  相似文献   

17.
Geopolymer foams with different pore structures can be used in construction, water treatment, and heavy metal adsorption. The preparation of high porosity geopolymer foams using vegetable oil as a foam stabilizer is a feasible and cost-effective route. In this study, metakaolin-based geopolymer foams with hierarchical pore structures were fabricated by adding H2O2 as the foaming agent with palm olein as the foam stabilizer. The effects of H2O2 and palm olein content on the chemical features and pore structure of geopolymer foams were evaluated. Water absorption, thermal conductivity, and mechanical behaviors of geopolymer foams were also investigated. The results indicate that fatty acid salt surfactants were generated in situ in the geopolymer matrix due to the addition of palm olein. Geopolymer foams with H2O2 and palm olein addition possess a homogeneously concentrated macropore distribution. Palm olein exhibits a refining effect on intrinsic pores formed by geopolymerization. In addition, using appropriate amounts of palm olein and H2O2, geopolymer foams can achieve higher open porosity and better pore connectivity, resulting in the improvement of water absorption and thermal insulation capacity.  相似文献   

18.
The state of cure and the vulcanizate properties of a conventional accelerated sulfur (CV) cured 50/50 blend of natural rubber (NR) and bromobutyl rubber (BIIR) were inferior. However, this blend exhibits a higher extent of cure with remarkable improvements in its mechanical properties, particularly the tensile strength, modulus and hardness after curing with a combination of accelerated sulfur and three parts per hundred rubber (phr) of a bismaleimide (MF3). Moreover, with the use of 0.25 phr of dicumyl peroxide (DCP) along with the CV/MF3 system, the compression set property of the CV-only cured blend could be reduced from 68% to 15%. The enhanced compatibility between NR and BIIR with the aid of bismaleimide via the Diels–Alder reaction was identified as the primary reason for the improved cure state and the mechanical properties. However, the incorporation of a certain amount of bismaleimide as a crosslink in the NR phase of the blend, via a radical initiated crosslinking process by the action of DCP, is responsible for the improved compression set properties  相似文献   

19.
The quantitative study of the structure and properties relationship in cellular materials is mostly limited to cell diameter, cell density, skin layer thickness, and cell size distribution. In addition, the investigation of the morphology is generally carried out in two dimensions. Therefore, the interrelation between morphological properties and mechanical characteristics of the foam structure has remained in an uncertain state. In this study, during the physical foaming process, a foam morphology is locally created by using a mold equipped with a core-back insert. The variation in morphology is obtained by modifying the mold temperature, injection flow rate, and blowing agent content in the polymer melt. X-ray microtomography (μCT) is used to acquire the 3D visualization of the cells structure. The Cell Distribution Index (CDI) is calculated to represent the polydispersity in cell size distribution. The relationship between the wide range of morphological qualities and relevant flexural properties is made explicit via a statistical model. According to the results, the morphology, particularly cell shape, characterizes the mechanism of the linear elastic deformation of the closed-cell foams. IR-thermography reveals the bending failure of cellular structures in the tensile region despite the differences in cell diameter.  相似文献   

20.
Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E’) of various MPU/EUG composites increased in a temperature range of −50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz–8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号