首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal ciliopathies are a heterogenous group of congenital disorders characterized by multiple internal abnormalities, and distinct radiographic presentation. Pathogenic variants in at least 30 cilia genes are known to cause skeletal ciliopathies. Here we report a fetus with an atypical skeletal ciliopathy phenotype and compound heterozygous variants in the RAB34 gene. The affected fetus had multiple malformations, including posterior neck edema, micrognathia, low-set and small ears, auricular hypoplasia, cleft lip and palate, short extremities, and a combination of rarely occurring pre- and postaxial polydactyly. Genome sequencing identified compound heterozygous variants in the RAB34 gene: maternal c.254T>C, p.(Ile85Thr), and paternal c.691C>T, p.(Arg231*) variants. Only the paternal variant was present in the unaffected sibling. Evidence in the literature indicated that Rab34−/− mice displayed a ciliopathy phenotype with cleft palate and polydactyly. These features were consistent with malformations detected in our patient supporting the pathogenicity of the identified RAB34 variants. Overall, this case report further expands genetic landscape of human ciliopathy syndromes and suggests RAB34 as a candidate gene for skeletal ciliopathies.  相似文献   

2.
3.
The phenotype of Bardet-Biedl syndrome (BBS) is defined by the association of retinitis pigmentosa, obesity, polydactyly, hypogenitalism, renal disease and cognitive impairement. The significant genetic heterogeneity of this condition is supported by the identification, to date, of eight genes (BBS1-8) implied with cilia assembly or function. Triallelic inheritance has recently been suggested on the basis of the identification of three mutated alleles in two different genes for the same patient. In a cohort of 27 families, six BBS genes (namely BBS1, BBS2, BBS4, BBS6, BBS7 and BBS8) have been studied. Mutations were identified in 14 families. Two mutations within the same gene have been identified in seven families. BBS1 is most frequently implied with the common M390R substitution at the homozygous state (n=2), or associated with another mutation at BBS1 (n=3). Compound heterozygous mutations have been found in BBS2 (one family) and BBS6 (one family). In seven other families, only one heterozygous mutation has been identified (once in BBS1, twice for BBS2 and three times in BBS6). Although our study did not reveal any families with bona fide mutations in two BBS genes, consistent with a triallelic hypothesis, we have found an excess of heterozygous single mutations. This study underlines the genetic heterogeneity of the BBS and the involvement of possibly unidentified genes.  相似文献   

4.
Cockayne syndrome (CS) is one the rare DNA‐repair deficiency disorders with autosomal recessive inheritance. Failure to thrive and microcephaly are the major criteria of diagnosis. Owing to genetic heterogeneity of CS, whole exome sequencing is promising way to determine the genetic basis of the disease. Here, we present c.1053delT in ERCC8 gene in an Iranian family with symptom of CS using whole exome sequencing. The deletion was novel and was not previously reported elsewhere.  相似文献   

5.
Jalili syndrome is a rare multisystem disorder with the most prominent features consisting of cone‐rod dystrophy and amelogenesis imperfecta. Few cases have been reported in the Americas. Here we describe a case series of patients with Jalili syndrome examined at the National Eye Institute's Ophthalmic Genetics clinic between 2016 and 2018. Three unrelated sporadic cases were systematically evaluated for ocular phenotype and determined to have cone‐rod dystrophy with bull's eye maculopathy, photophobia, and nystagmus. All patients had amelogenesis imperfecta. Two of these patients had Guatemalan ancestry and the same novel homozygous CNNM4 variant (p.Arg236Trp c.706C > T) without evidence of consanguinity. This variant met likely pathogenic criteria by the American College of Medical Genetics guidelines. An additional patient had a homozygous deleterious variant in CNNM4 (c.279delC p.Phe93Leufs*31), which resulted from paternal uniparental isodisomy for chromosome 2p22‐2q37. This individual had additional syndromic features including developmental delay and spastic diplegia, likely related to mutations at other loci. Our work highlights the genotypic variability of Jalili syndrome and expands the genotypic spectrum of this condition by describing the first series of patients seen in the United States.  相似文献   

6.
Gene discovery using massively parallel sequencing has focused on phenotypes diagnosed postnatally such as well‐characterized syndromes or intellectual disability, but is rarely reported for fetal disorders. We used family‐based whole‐exome sequencing in order to identify causal variants for a recurrent pattern of an undescribed lethal fetal congenital anomaly syndrome. The clinical signs included intrauterine growth restriction (IUGR), severe microcephaly, renal cystic dysplasia/agenesis and complex brain and genitourinary malformations. The phenotype was compatible with a ciliopathy, but not diagnostic of any known condition. We hypothesized biallelic disruption of a gene leading to a defect related to the primary cilium. We identified novel autosomal recessive truncating mutations in KIF14 that segregated with the phenotype. Mice with autosomal recessive mutations in the same gene have recently been shown to have a strikingly similar phenotype. Genotype–phenotype correlations indicate that the function of KIF14 in cell division and cytokinesis can be linked to a role in primary cilia, supported by previous cellular and model organism studies of proteins that interact with KIF14. We describe the first human phenotype, a novel lethal ciliary disorder, associated with biallelic inactivating mutations in KIF14. KIF14 may also be considered a candidate gene for allelic viable ciliary and/or microcephaly phenotypes.  相似文献   

7.
8.
Woodhouse Sakati syndrome (WSS, MIM 241080) is a rare autosomal recessive genetic condition characterized by alopecia, hypogonadism, hearing impairment, diabetes mellitus, learning disabilities and extrapydamidal manifestations. Sequence variants in the gene DCAF17, encoding nucleolar substrate receptor, were identified as the underlying cause of inherited WSS. Considerable phenotypic heterogeneity exists in WSS with regard to severity, organs involvement and age of onset, both in inter‐familial and intra‐familial cases. In this study, the genetic characterization of a consanguineous pedigree showing mild features of WSS was performed, followed by structural analysis of truncated protein. Exome sequencing identified a novel single base deletion variant (c.270delA; K90Nfs8*) in third exon of the gene DCAF17 (RefSeq; NM_025000), resulting in a truncated protein. Structural analysis of truncated DCAF17 revealed absence of amino acid residues crucial for interaction with DDB1. Taken together, the data confirmed the single base pair deletion as the underlying cause of this second report of WSS from Pakistan. This signifies the vital yet unexplored role of DCAF17 both in development and maintenance of adult tissues homeostasis.  相似文献   

9.
Hereditary retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different forms of RD can be caused by mutations in >100 genes, including >1600 exons. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. So far, NGS is not routinely used in gene diagnostics. We developed a diagnostic NGS pipeline to identify mutations in 170 genetically and clinically unselected RD patients. NGS was applied to 105 RD-associated genes. Underrepresented regions were examined by Sanger sequencing. The NGS approach was successfully established using cases with known sequence alterations. Depending on the initial clinical diagnosis, we identified likely causative mutations in 55% of retinitis pigmentosa and 80% of Bardet–Biedl or Usher syndrome cases. Seventy-one novel mutations in 40 genes were newly associated with RD. The genes USH2A, EYS, ABCA4, and RHO were more frequently affected than others. Occasionally, cases carried mutations in more than one RD-associated gene. In addition, we found possible dominant de-novo mutations in cases with sporadic RD, which implies consequences for counseling of patients and families. NGS-based mutation analyses are reliable and cost-efficient approaches in gene diagnostics of genetically heterogeneous diseases like RD.  相似文献   

10.
11.
The increased use of next-generation sequencing has expanded our understanding of the involvement and prevalence of mosaicism in genetic disorders. We describe a total of eleven cases: nine in which mosaic variants detected by genome sequencing (GS) and/or targeted gene panels (TGPs) were considered to be causative for the proband's phenotype, and two of apparent parental mosaicism. Variants were identified in the following genes: PHACTR1, SCN8A, KCNT1, CDKL5, NEXMIF, CUX1, TSC2, GABRB2, and SMARCB1. In addition, we identified one large duplication including three genes, UBE3A, GABRB3, and MAGEL2, and one large deletion including deletion of ARFGAP1, EEF1A2, CHRNA4, and KCNQ2. All patients were enrolled in the NYCKidSeq study, a research program studying the communication of genomic information in clinical care, as well as the clinical utility and diagnostic yield of GS for children with suspected genetic disorders in diverse populations in New York City. We observed variability in the correlation between reported variant allele fraction and the severity of the patient's phenotype, although we were not able to determine the mosaicism percentage in clinically relevant tissue(s). Although our study was not sufficiently powered to assess differences in mosaicism detection between the two testing modalities, we saw a trend toward better detection by GS as compared with TGP testing. This case series supports the importance of mosaicism in childhood-onset genetic conditions and informs guidelines for laboratory and clinical interpretation of mosaic variants detected by GS.  相似文献   

12.
Developmental eye diseases, including cataract/microcornea, Peters anomaly and coloboma/microphthalmia/anophthalmia, are caused by mutations encoding many different signalling and structural proteins in the developing eye. All modes of Mendelian inheritance occur and many are sporadic cases, so provision of accurate recurrence risk information for families and affected individuals is highly challenging. Extreme genetic heterogeneity renders testing for all known disease genes clinically unavailable with traditional methods. We used whole-exome sequencing in 11 unrelated developmental eye disease patients, as it provides a strategy for assessment of multiple disease genes simultaneously. We identified five causative variants in four patients in four different disease genes, GJA8, CRYGC, PAX6 and CYP1B1. This detection rate (36%) is high for a group of patients where clinical testing is frequently not undertaken due to lack of availability and cost. The results affected clinical management in all cases. These variants were detected in the cataract/microcornea and Peters anomaly patients. In two patients with coloboma/microphthalmia, variants in ABCB6 and GDF3 were identified with incomplete penetrance, highlighting the complex inheritance pattern associated with this phenotype. In the coloboma/microphthalmia patients, four other variants were identified in CYP1B1, and CYP1B1 emerged as a candidate gene to be considered as a modifier in coloboma/microphthalmia.  相似文献   

13.
14.
15.
16.
We report a 29 week fetus with arthrogryposis multiplex congenita, multiple joint dislocations, scoliosis and dysmorphism who was detected to be double heterozygote for putatively pathogenic FBN1 (NM_000138.4:c.6004C?>?T; p.Pro2002Ser) and FBN2 (NM_001999.3:c.2945G?>?T; p.Cys982Phe) variants on exome sequencing. The de-novo status of these variants is not confirmed as parental genotypes could not be ascertained. A comparison of the post-mortem findings of the fetus with reported phenotypes of Beals and Marfan syndromes indicated overlapping clinical features suggestive of a blended phenotype.  相似文献   

17.
18.
We examined 12 monogenic obesity genes in 72 Portuguese individuals with overweight and obesity (class 1 and class 2), some of which with suspected genetic obesity, to identify known or unknown potential obesity variants. Genomic DNA was analyzed for variants in genes LEP, LEPR, MC4R, POMC, PCSK1, BDNF, NTRK2, SIM1, SH2B1, UCP3, GCG and ADCY3 through next generation sequencing (NGS). The impact of the rare variants was investigated in the ClinVar database and using in silico tools for prediction of pathogenicity. Four potential pathogenic missense variants were detected at the heterozygous state in five individuals: two in the ADCY3 gene, NM_004036.5:c.1153G > A (p.Val385Ile) (rs756783003) and NM_004036.5:c.1222G > A (p.Gly408Arg) (rs201606553), one in gene SH2B1, NM_001145795.1:c.127C > A (p.Arg43Ser) (rs547678855), and the fourth in gene POMC NM_000939.4:c.706C > G (p.Arg236Gly) (rs28932472), which was found in two individuals. Moreover, six rare variants near splicing sites were also identified, as well as eight rare synonymous variants. In summary, some potential pathogenic rare missense variants were identified, two of them in ADCY3 gene, the most recently identified gene as having a role in monogenic obesity. Further analysis should be performed to confirm the clinical relevance of these variants.  相似文献   

19.
Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished postmortem. Mutations in 3 genes (APP, PSEN1, and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号