首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have conducted a longitudinal study to quantify biofilms in oral clinical isolates of Candida species (spp.) from adults with local and systemic predisposing factors for candidiasis. A total of 69 yeast isolates from 63 Mexican patients were evaluated. These isolates (39 C. albicans, 15 C. tropicalis, 7 C. glabrata, 4 C. krusei, 1 C. lusitaniae, 1 C. kefyr, 1 C. guilliermondii and 1 C. pulcherrima) were obtained from two clinical sites: 62.3% (n = 43) from the oral mucosa of totally and partially edentulous patients, and 37.7% (n = 26) from the oral mucosa of diabetics. In addition, Candida ATCC strains were used as controls for each experiment. The kinetics of biofilm formation were measured by 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide [XTT] reduction; each isolate was tested at 6, 12 and 24 h. Biofilm formation is dependent on the Candida spp. and its clinical origin. On average, the oral isolates of C. glabrata are strong biofilm producers, whereas C. albicans and C. tropicalis are moderate producers. The most common species in our population was C. albicans. While the kinetics of C. albicans biofilm formation varies between oral isolates, it generally maintains steady growth from 2 to 48 h, when it reaches its maximum growth.  相似文献   

2.
3.
ObjectivesThe aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis.Materials and methodsSuspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures.ResultsDifferent PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation.ConclusionPhotoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures.  相似文献   

4.
ObjectiveAntimicrobial peptides (AMPs) have shown the ability to inhibit planktonic bacteria and biofilms. The objectives of this study were to de novo design and synthesize a series of cationic, amphipathic α-helical AMPs that would be shorter, less cytotoxic, and more potent than existing AMPs against cariogenic bacteria.DesignThree short AMPs (GH8, GLLWHLLH-NH2; GH12, GLLWHLLHHLLH-NH2; and GH16, GLLWHLLHHLLHLLHH-NH2) were designed, synthesized and characterized structurally. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against eight major cariogenic bacteria were tested to select the most promising peptide. Scanning electron microscopy (SEM) was used to observe the bacterial membrane after treatment with selected peptides. The bactericidal kinetics, effects on biofilm and cytotoxity were further investigated.ResultsOf the three AMPs, GH12 had the most balanced structural parameters and a high content of α-helical structure. GH12 had a MIC of 4.0-8.0 μg/mL and MBC of 8.0-32.0 μg/mL. The corresponding values for the other two AMPs were 2- to 64- fold higher. In time-kill assays, GH12 killed all bacterial strains within 60 min at 4- fold MBC. SEM observed lysis and pore formation of the cytomembrane after treatment with GH12. 8.0 μg/mL GH12 inhibited Streptococcus mutans biofilm formation. Confocal laser scanning microscopy showed that GH12 effectively reduced the biomass of 1-day-old S. mutans biofilm. Cytotoxicity assays indicated that GH12 showed little toxic effect on the viability of human gingival fibroblasts.ConclusionThese results indicate that GH12 shows antimicrobial activity against cariogenic bacteria and biofilms in vitro.  相似文献   

5.

Objective

to study the antibacterial effect of polymeric PolymP-n Active nanoparticles using an in vitro subgingival biofilm model.

Methods

Hydroxyapatite discs coated with five modalities of nanoparticles (NPs): NPs, NPs doped with zinc, calcium, silver and doxycycline, PBS as control, and Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were studied in a static in vitro biofilm model (12, 24, 48, and 72 h). Nano-roughness of the different disc surfaces (SRa, in nm) and morphological characteristic of the biofilms (thickness (μm) and bacterial viability) were studied by different microscopy modalities. Quantitative Polymerase Chain Reaction was used to assess the effect of the nanoparticles on the bacterial load (colony forming unit per milliliter) (CFU mL?1). Analysis of variance and post-hoc testing with T3 Dunnett?s, and Student Newman Keuls correction was used. Results were considered statistically significant at p < 0.05.

Results

Surfaces containing the different nanoparticles showed significant increments in roughness when compared to controls (p < 0.05). A similar biofilm formation and dynamics was observed, although reductions in bacterial viability were detected in biofilms in contact with the different nanoparticles, more pronounced with silver and doxycycline NPs. Doxycycline-NPs biofilms resulted in unstructured biofilm formation and significantly lower number of the six species when compared with the other nanoparticles specimens and controls (p < 0.001 in all cases).

Significance

Polymeric PolymP-n Active nanoparticles when combined with silver and doxycycline showed a significant antibacterial effect when tested in an in vitro subgingival biofilm model.  相似文献   

6.
《Dental materials》2019,35(11):1614-1629
ObjectiveThe deleterious caustic effects of sodium hypochlorite (NaOCl) as a root canal irrigant makes it imperative that alternative methods are developed for root canal disinfection. The purpose of this study was to examine the antimicrobial efficacy of silver nanoparticles (AgNPs) synthesized on an aqueous graphene oxide (GO) matrix (Ag-GO), with different irrigant delivery methods to enhance the disinfection regimen, using a novel ex vivo infected tooth model.MethodsAgNPs were prepared by reducing AgNO3 with 0.01 M NaBH4 in presence of GO. Elemental analysis was performed with scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and scanning transmission electron microscopy (STEM) was used for size and morphology analysis of GO and Ag-GO. Nutrient stressed, multi-species biofilms were grown in prepared root canals of single-rooted teeth. The irrigants used were sterile saline, 1% and 2.5% NaOCl, 2% chlorhexidine gluconate (CHX), 17% EDTA and an aqueous suspension of 0.25% Ag-GO. The antimicrobial efficacy of the irrigants were performed with paper point sampling and measurement of microbial counts. The biofilm disruption in dentine tubule surfaces was analysed with confocal laser scanning microscopy (CLSM). The acquisition of total biovolume (μm3/μm2) and biofilm viability was performed using software BioImage_L. Two-way analysis of variance (ANOVA) with post hoc Tukey tests was used for data analysis with level of statistical significance set at P < 0.05.ResultsSEM/EDS analysis confirmed impregnation of Ag within the GO matrix. TEM images showed polygonal GO sheets and spherical AgNPs of diameter 20–50 nm, forming a network on the surface of GO sheets. The use of ultrasonic activation enhanced the efficacy of Ag-GO compared to 1% NaOCl, 2% CHX, 17% EDTA and sterile saline (P < 0.05). The microbial killing efficacy of 2.5% NaOCl was superior compared to the experimental groups. The maximum biofilm disruption, in dentine tubule surfaces, was achieved by 2.5% NaOCl, however Ag-GO caused a significant reduction of total biovolumes compared to the rest of the experimental groups (P < 0.05%).SignificanceThe successful documentation of the microbial killing and biofilm disruption capacity of Ag-GO is a promising step forward to explore its unique properties in clinical applications and biomaterials in dentistry.  相似文献   

7.
IntroductionNumerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management.AimsTo investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms.MethodsThe surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24 h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM).ResultsWhilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24 h and this was accompanied with higher expression of virulence genes at all periods.ConclusionInduction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections.  相似文献   

8.
ObjectiveThe antibacterial activity of Casbane Diterpene (CD) was evaluated in vitro against Streptococcus oralis, S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. The viability of planktonic cells was analysed by susceptibility tests (MIC and MBC) and antibiofilm action was assayed.MethodsThe minimal inhibitory and bactericidal concentrations (MIC and MBC) of oral Streptococcus were evaluated through microdilution tests. To assay antibiofilm activity, biofilms were generated on 96-wells polystyrene plates under the presence of CD and quantified by a crystal violet technique and colonies forming units counting.ResultsThe CD isolated from Croton nepetaefolius showed antimicrobial effect on planktonic forms and biofilms of oral pathogens, with MIC values of 62.5 μg/mL against Streptococcus oralis and values between 125 and 500 μg/mL against S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. CD showed an inhibitory effect on S. mutans biofilm formation at 250 μg/mL, and a decrease on viable cell of 94.28% compared to the normal biofilm growth.ConclusionsThe compound CD can be considered as a promising molecule for the treatment against oral pathogens responsible for dental biofilm.  相似文献   

9.
《Archives of oral biology》2014,59(8):808-814
ObjectivesTo evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7).DesignBy broth microdilution method, different concentrations of the extract (250–0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1β and TNF-α by ELISA.ResultsThe most effective concentration was 250 mg/mL and also promoted significant reduction (log10) in the biofilms of S. aureus (0.438 ± 0.269), S. epidermidis (0.377 ± 0.298), S. mutans (0.244 ± 0.161) and C. albicans (0.746 ± 0.209). Cell viability was similar to 100%. The production of IL-1β was similar to the control group (p > 0.05) and there was inhibition of TNF-α (p < 0.01).ConclusionsA. lappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages.  相似文献   

10.
BackgroundAlkali production via arginine deiminase system (ADS) of oral bacteria plays a significant role in oral ecology, pH homeostasis and inhibition of dental caries. ADS activity in dental plaque varies greatly between individuals, which may profoundly affect their susceptibility to caries.ObjectiveTo investigate the effect of arginine on the growth and biofilm formation of oral bacteria.Methods and resultsPolymicrobial dental biofilms derived from saliva were formed in a high-throughput active attachment biofilm model and l-arginine (Arg) was shown to reduce the colony forming units (CFU) counts of such biofilms grown for various periods or biofilms derived from saliva of subjects with different caries status. Arg hardly disturbed bacterial growth of Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus gordonii in BHI medium, but only inhibited biofilm formation of S. mutans. Scanning electron microscope (SEM) showed S. mutans biofilms harboured fewer cells grown with Arg than that without Arg, even in the initial 2 h and 8 h phase. Confocal laser scanning microscope (CLSM) images of poly-microbial dental and S. mutans biofilms revealed the biofilms grown with Arg had lower exopolysaccharide (EPS)/bacteria ratios than those without Arg (P = 0.004, 0.002, respectively). Arg could significantly reduce the production of water-insoluble EPS in S. mutans biofilms (P < 0.001); however, quantitative real-time PCR (qRT-PCR) did not show significantly influence in gene expression of gtfB, gtfC or gtfD (P = 0.32, 0.06, 0.44 respectively).ConclusionsArg could reduce the biomass of poly-microbial dental biofilms and S. mutans biofilms, which may be due to the impact of Arg on water-insoluble EPS. Considering the contribution to pH homeostasis in dental biofilms, Arg may serve as an important agent keeping oral biofilms healthy thus prevent dental caries.  相似文献   

11.
ObjectiveVarious nanoparticles are currently under investigation to impart biointeractivity for dental materials. This study aimed to: (1) formulate an experimental dental adhesive containing ZnO nanoparticles; (2) evaluate its chemical and mechanical properties; and (3) assess the antibacterial response against oral microcosm biofilm.MethodsNanosized ZnO was chemically and morphologically evaluated. ZnO was incorporated at 0 (GCTRL), 2.5 (G2.5%), 5 (G5%) and 7.5 (G5%) wt.% in an experimental dental adhesive. The adhesives were evaluated for the degree of conversion (DC), flexural strength (FS), and elastic modulus (E). The antibacterial activity was evaluated using a 48 h-microcosm biofilm model after the formation of acquired pellicle on samples’ surfaces. Colony-forming units (CFU), metabolic activity, and live/dead staining were assessed.ResultsNanosized ZnO presented characteristic peaks of Zn-O bonds, and the particles were arranged in agglomerates. The DC ranged from 62.21 (±1.05) % for GCtrl to 46.15 (±1.23) % for G7.5% (p < 0.05). G7.5% showed lower FS compared to all groups (p < 0.05). Despite achieving higher E (p < 0.05), G2.5% did not show differences for GCtrl regarding the FS (p > 0.05). G7.5% had lower CFU/mL compared to GCtrl for mutans streptococci (p < 0.05) and total microorganisms (p < 0.05), besides presenting lower metabolic activity (p < 0.05) and higher dead bacteria via biofilm staining.SignificanceThe dental adhesives' physicochemical properties were similar to commercial adhesives and in compliance with ISO recommendations. G7.5% restricted the growth of oral microcosm biofilm without impairing the physicochemical performance.  相似文献   

12.
ObjectivesThis paper aimed to compare the mode of action of a stannous fluoride-containing toothpaste with a conventional sodium fluoride-containing toothpaste on anti-biofilm properties.MethodsA three-species biofilm model that consists of Streptococcus mutans, Streptococcus sanguinis and Porphyromonas gingivalis was established to compare the anti-biofilm properties of a stannous fluoride-containing toothpaste (CPH), a conventional sodium fluoride-containing toothpaste (CCP) and a negative control (PBS). The 48 h biofilms were subjected to two-minute episodes of treatment with test agents twice a day for 5 consecutive days. Crystal violet staining and XTT assays were used to evaluate the biomass and viability of the treated biofilm. Live/dead staining and bacteria/extracellular polysaccharides (EPS) double-staining were used to visualize the biofilm structure and to quantify microbial/extracellular components of the treated biofilms. Species-specific fluorescent in situ hybridization and quantitative polymerase chain reaction (qPCR) were used to analyze microbial composition of the biofilms after treatment.ResultsThe biomass and viability of the biofilms were significantly reduced after CPH toothpaste treatment. The inhibitory effect was further confirmed by the live/dead staining. The EPS amounts of the three-species biofilm were significantly reduced by CCP and CPH treatments, and CPH toothpaste demonstrated significant inhibition on EPS production. More importantly, CPH toothpaste significantly suppressed S. mutans and P. gingvalis, and enriched S. sanguinis in the three-species biofilm. In all experiments CPH had a significantly greater effect than CCP (p < 0.05) and CCP had a greater effect than PBS (p < 0.05).ConclusionsStannous fluoride-containing toothpaste not only showed better inhibitory effect against oral microbial biofilm, but was also able to modulate microbial composition within multi-species biofilm compared with conventional sodium fluoride-containing toothpaste.  相似文献   

13.
ObjectiveCandida albicans is the most numerous commensal and potentially pathological yeast in the human oral cavity. The purpose herein is to investigate the ability of C. albicans to form a biofilm in the presence of periodontal ligament (PDL) fibroblasts.Material and methodsSilicone elastomer disks (SE) were transferred to wells containing PDL cells. C. albicans suspension was added to each well. The whole mixed culture was then allowed to form a biofilm for 48 h. Biofilms were quantified by tetrazolium-salt-based (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl amino) carbonyl]- 2H-tetrazolium hydroxide (XTT). Furthermore, biofilm was visualized by confocal scanning laser and scanning electron microscopy. Migration of C. albicans and its ability to form biofilms in presence of PDL cells was determined by using a transwell system. Last, elutes obtained from co-culturing C. albicans and PDL cells were added to SE disks and covered with C. albicans. The culture plate was then incubated to allow biofilm formation. Biofilms formed over SE disks were quantified using XTT.ResultsPDL cells significantly limited the biofilm formation at incubation interval of 48 h. PDL cells induced less biofilm compared to mature and thick hyphae in the absence of PDL cells as seen in confocal scanning laser and scanning electron microscopy. The presence of PDL cells limited the migration and formation of biofilm by C. albicans. Elutes obtained from co-culturing PDL cells with C. albicans for one hour induced significantly less biofilm.ConclusionsThis is the first study to report that PDL cells exhibit antifungal activity. While the exact mechanism of how PDL cells limited biofilm formation is yet unknown, it was clear that competent PDL cells promote resistance to C. albicans biofilm formation.  相似文献   

14.
《Dental materials》2020,36(2):296-309
ObjectivesAntibacterial quaternary ammonium monomers (QAMs) are used in resins. The rnc gene in Streptococcus mutans (S. mutans) plays a key role in resisting antibiotics. The objectives of this study were to investigate for the first time: (1) the effects of rnc deletion on S. mutans biofilms and acid production; (2) the combined effects of rnc deletion with dimethylaminohexadecyl methacrylate (DMAHDM) on biofilm-inhibition efficacy.MethodsParent S. mutans strain UA159 (ATCC 700610) and the rnc-deleted S. mutans were used. Bacterial growth, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) were measured to analyze the bacterial susceptibility of the parent and rnc-deleted S. mutans against DMAHDM, with the gold-standard chlorhexidine (CHX) as control. Biofilm biomass, polysaccharide and lactic acid production were measured.ResultsThe drug-susceptibility of the rnc-deleted S. mutans to DMAHDM or CHX was 2-fold higher than parent S. mutans. The drug-susceptibility did not increase after 10 passages (p < 0.05). Deleting the rnc gene increased the biofilm susceptibility to DMAHDM or CHX by 2-fold. The rnc-deletion in S. mutans reduced biofilm biomass, polysaccharide and lactic acid production, even at no drugs. DMAHDM was nearly 40 % more potent than the gold-standard CHX. The combination of rnc deletion + DMAHDM treatment achieved the greatest reduction in biofilm biomass, polysaccharide synthesis, and lactic acid production.SignificanceGene modification by deleting the rnc in S. mutans reduced the biofilm growth and acid production, and the rnc deletion + DMAHDM method showed the greatest biofilm-inhibition efficacy, for the first time. The dual strategy of antibacterial monomer + bacterial gene modification shows great potential to control biofilms and inhibit caries.  相似文献   

15.
ObjectiveOral ailments are often treated with antibiotics, which are rendered ineffective as bacteria continue to develop resistance against them. It has been suggested that the nanoparticles (NPs) approach may provide a safer and viable alternative to traditional antibacterial agents. Therefore, nickel (Ni)- and nickel oxide (NiO)-NPs were synthesized, characterized and assessed for their efficacy in reducing oral bacterial load in vitro. Also, the effects of bulk compound NiCl2 (Ni ions), along with the Ni- and NiO-NPs on bacterial exopolysaccharide (EPS) production and biofilm formation on the surface of artificial teeth, and acrylic dentures, were investigated.MethodsTotal bacteria from a healthy male were collected and adjusted to 4 × 109 cells/ml for all the tests. Effect of the NPs on growth, biofilm formation, EPS production and acid production from glucose was tested using standard protocols.ResultsData revealed that the Ni-NPs (average size 41.23 nm) exhibited an IC50 value of 73.37 μg/ml against total oral bacteria. While, NiO-NPs (average size 35.67 nm) were found less effective with much higher IC50 value of 197.18 μg/ml. Indeed, the Ni ions exhibited greater biocidal activity with an IC50 value of 70 μg/ml. Similar results were obtained with biofilm inhibition on the surfaces of dental prostheses. The results explicitly suggested the effectiveness of tested Ni compounds on the growth of oral bacteria and biofilm formation in the order as NiCl2 > Ni-NPs > NiO-NPs.ConclusionThe results elucidated that Ni-NPs could serve as effective nanoantibiotics against oral bacteria.  相似文献   

16.
ObjectiveEnterococcus faecalis is a Gram-positive, facultative anaerobic bacterium that is associated with failed endodontic cases and nosocomial infections. E. faecalis can form biofilms, penetrate dentinal tubules and survive in root canals with scarce nutritional supplies. These properties can make E. faecalis resistant to conventional endodontic disinfection therapy. Furthermore, treatment may be complicated by the fact that many E. faecalis strains are resistant to antibiotics. A potential alternative to antibiotic therapy is phage therapy. ϕEf11 is a temperate phage that infects strains of E. faecalis. It was previously sequenced and genetically engineered to modify its properties in order to render it useful as a therapeutic agent in phage therapy. In the current study, we have further genetically modified the phage to create phage ϕEf11/ϕFL1C(Δ36)PnisA. The aim of this study was to evaluate the efficacy of bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA, to disrupt biofilms of two Enterococcus faecalis strains: JH2-2 (vancomycin-sensitive) and V583 (vancomycin-resistant).Methods24 h static biofilms of E. faecalis strains JH2-2(pMSP3535 nisR/K) and V583 (pMSP3535nisR/K), formed on cover slips, were inoculated with bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA. After 24 and 48 h incubation, the bacterial biomass was imaged by confocal microscopy and viable cells were quantified by colony forming unit measurement.ResultsThe results showed a 10-100-fold decrease in viable cells (CFU/biofilm) after phage treatment, which was consistent with comparisons of treated and untreated biofilm images visualized as max projections of the Z-series.ConclusionThe biomass of both vancomycin-sensitive and vancomycin-resistant E. faecalis biofilms is markedly reduced following infection by bacteriophage ϕEf11/ϕFL1C(Δ36)PnisA.  相似文献   

17.
18.
Objective: The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors.MethodsThe actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR.ResultsWe found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25 mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed.ConclusionsWe found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans.  相似文献   

19.
ObjectiveThe adherence of Candida to mucosal surfaces is the initial step for successful invasive process of the oral cavity. The study aimed to investigate the effect of two plant extracts on the non-specific and specific bindings of oral candida.MethodsIn the former, adsorption to hexadecane was used to measure the hydrophobic interaction of the candida cells. In the later, glass beads coated with saliva represented the experimental pellicles in specific adhesion of oral candida to hard tissue surface.ResultsCandida krusei, Candida dubliniensis and Candida tropicalis showed the highest adsorption to hexadecane at 30.23%, 26.19% and 19.70%, respectively, while the others within the range of 7–10%. All candidal species were significantly affected by the extracts (P < 0.05) with Brucea javanica exhibited more than 60% reduction of CSH than Piper betle. Candida parapsilosis showed the highest affinity in specific-bindings to pellicle with 18.72 ± 0.71 × 105 CFU/ml. Exposing to P. betle-treated pellicle has drastically reduced the adherence of C. tropicalis, Candida albicans and C. krusei by 86.01%, 61.41% and 56.34%, respectively. B. javanica exhibited similar effect on C. tropicalis (89.86%), Candida lusitaniae (88.95%), C. albicans (79.74%), Candida glabrata (76.85%) and C. krusei (67.61%).ConclusionThe extracts demonstrated anti-adherence activities by modifying the CSH and the characteristics of the experimental pellicle.  相似文献   

20.
PurposeThe purpose of this study was to evaluate the effect of Morinda Citrifolia Juice (MCJ) on smear layer removal and microhardness value of root canal dentin in compared with various endodontic irrigants.Material and methodsEighty-four single-rooted human teeth were prepared to apical size of #35. Since decoronation, samples were divided into seven groups of 12 in each (n = 12). Specimens were finally irrigated by either 1: 2.5% NaOCl, 2: 6% MCJ, followed by a final flush of 17% ethylene diaminetetraacetic acid (EDTA), 3: 6% MCJ, 4: 2.5% NaOCl then17% EDTA, 5: MTAD, 6: 2% chlorhexidine (CHX), and 7: saline. After irrigation, all samples were subjected to Vickers microhardness test at 100 and 500-μm depths and then were examined under scanning electron microscopy (SEM) and ImageJ program was used to calculate open dentinal tubules. One way ANOVA and post hoc Tukey tests were used to reveal any significant differences among and between groups respectively.ResultsThe microhardness values at 100 μm and 500 μm for MTAD were significantly lower than for NaOCl + EDTA and MCJ + EDTA groups (p < 0.05). MCJ + EDTA, NaOCl + EDTA, and MTAD protocol significantly removed smear layer in compared with control group (p < 0.05), with no significant differences among these three groups.ConclusionsIt was concluded that 6% MCJ followed by a final flush of 17% EDTA can be regarded as an effective solution on smear layer removal without any adverse influence on microhardness property of root canal dentin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号