首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Recently, bi‐allelic mutations in cytosolic isoleucyl‐tRNA synthetase (IARS) have been described in three individuals with growth delay, hepatic dysfunction, and neurodevelopmental disabilities. Here we report an additional subject with this condition identified by whole‐exome sequencing. Our findings support the association between this disorder and neonatal cholestasis with distinct liver pathology. Furthermore, we provide functional data on two novel missense substitutions and expand the phenotype to include mild developmental delay, skin hyper‐elasticity, and hypervitaminosis D.  相似文献   

2.
The bromodomain adjacent to zinc finger 2B gene (BAZ2B) encodes a protein involved in chromatin remodeling. Loss of BAZ2B function has been postulated to cause neurodevelopmental disorders. To determine whether BAZ2B deficiency is likely to contribute to the pathogenesis of these disorders, we performed bioinformatics analyses that demonstrated a high level of functional convergence during fetal cortical development between BAZ2B and genes known to cause autism spectrum disorder (ASD) and neurodevelopmental disorder. We also found an excess of de novo BAZ2B loss‐of‐function variants in exome sequencing data from previously published cohorts of individuals with neurodevelopmental disorders. We subsequently identified seven additional individuals with heterozygous deletions, stop‐gain, or de novo missense variants affecting BAZ2B. All of these individuals have developmental delay (DD), intellectual disability (ID), and/or ASD. Taken together, our findings suggest that haploinsufficiency of BAZ2B causes a neurodevelopmental disorder, whose cardinal features include DD, ID, and ASD.  相似文献   

3.
Alessandra Rossi  Lot Snijders Blok  Sonja Neuser  Chiara Klöckner  Konrad Platzer  Laurence Olivier Faivre  Heike Weigand  Maria L. Dentici  Marco Tartaglia  Marcello Niceta  Paolo Alfieri  Siddharth Srivastava  David Coulter  Lacey Smith  Kristin Vinorum  Gerarda Cappuccio  Nicola Brunetti-Pierri  Deniz Torun  Mutluay Arslan  Mathilde F. Lauridsen  Oliver Murch  Rachel Irving  Sally A. Lynch  Sarju G. Mehta  Jenny Carmichael  Evelien Zonneveld-Huijssoon  Bert de Vries  Tjitske Kleefstra  Katrine M. Johannesen  Ian T. Westphall  Susan S. Hughes  Sarah Smithson  Julie Evans  Tracy Dudding-Byth  Marleen Simon  Ellen van Binsbergen  Johanna C. Herkert  Gea Beunders  Henry Oppermann  Mert Bakal  Rikke S. Møller  Guido Rubboli  Allan Bayat 《Clinical genetics》2023,104(2):186-197
POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype–phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype–phenotype correlations.  相似文献   

4.
《Genetics in medicine》2021,23(5):888-899
PurposePostsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.MethodsThe clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.ResultsThe clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.ConclusionThe present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.  相似文献   

5.
《Genetics in medicine》2021,23(5):881-887
PurposeNeurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene.MethodsThrough large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual.ResultsWe identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy.ConclusionThis collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.  相似文献   

6.
Monoallelic variants of CTCF cause an autosomal dominant neurodevelopmental disorder with a wide range of features, including impacts on the brain, growth, and craniofacial development. A growing number of subjects with CTCF-related disorder (CRD) have been identified due to the increased application of exome sequencing, and further delineation of the clinical spectrum of CRD is needed. Here, we examined the clinical features, including facial profiles, and genotypic spectrum of 107 subjects with identified CTCF variants, including 43 new and 64 previously described subjects. Among the 43 new subjects, 23 novel variants were reported. The cardinal clinical features in subjects with CRD included intellectual disability/developmental delay (91%) with speech delay (65%), motor delay (53%), feeding difficulties/failure to thrive (66%), ocular abnormalities (56%), musculoskeletal anomalies (53%), and behavioral problems (52%). Other congenital anomalies were also reported, but none of them were common. Our findings expanded the genotypic and phenotypic spectrum of CRD that will guide genetic counseling, management, and surveillance care for patients with CRD. Additionally, a newly built facial gestalt on the Face2Gene tool will facilitate prompt recognition of CRD by physicians and shorten a patient's diagnostic odyssey.  相似文献   

7.
8.
Floating-Harbor syndrome (FLHS) is a neurodevelopmental disorder (NDD) caused by truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein gene (SRCAP). Truncating variants proximal to this location in SRCAP result in a non-FLHS SRCAP-associated NDD; an overlapping but distinct NDD characterized by developmental delay with or without intellectual disability (ID), hypotonia, normal stature, and behavioral and psychiatric issues. Here, we report a young woman who initially presented in childhood with significant delays in speech and mild ID. In young adulthood, she developed schizophrenia. On physical examination, she had facial features suggestive of 22q11 deletion syndrome. After non-diagnostic chromosomal microarray and trio exome sequencing (ES), a re-analysis of trio ES data identified a de novo missense variant in SRCAP that was proximal to the FLHS critical region. Subsequent DNA methylation studies showed the unique methylation signature associated with pathogenic sequence variants in non-FLHS SRCAP-related NDD. This clinical report describes an individual with non-FLHS SRCAP-related NDD caused by an SRCAP missense variant, and it also demonstrates the clinical utility of ES re-analysis and DNA methylation analysis for undiagnosed patients, in particular, those with variants of uncertain significance.  相似文献   

9.
10.
《Genetics in medicine》2019,21(3):601-607
PurposeTANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants.MethodsWe present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2.ResultsThe initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder.ConclusionTANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.  相似文献   

11.
12.
《Genetics in medicine》2020,22(2):389-397
PurposeSifrim–Hitz–Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype–phenotype correlations, and the effect of different missense variants on CHD4 function.MethodsWe collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains.ResultsThe majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype–phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains.ConclusionThe CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.  相似文献   

13.
《Genetics in medicine》2023,25(9):100900
Purpose5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive.MethodsWe combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene.ResultsWe identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment.ConclusionOur data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.  相似文献   

14.
Biallelic loss-of-function (LoF) variants in CENPF gene are responsible for Strømme syndrome, a condition presenting with intestinal atresia, anterior ocular chamber anomalies, and microcephaly. Through an international collaboration, four individuals (three males and one female) carrying CENPF biallelic variants, including two missense variants in homozygous state and four LoF variants, were identified by exome sequencing. All individuals had variable degree of developmental delay/intellectual disability and microcephaly (ranging from −2.9 SDS to −5.6 SDS) and a recognizable pattern of dysmorphic facial features including inverted-V shaped interrupted eyebrows, epicanthal fold, depressed nasal bridge, and pointed chin. Although one of the cases had duodenal atresia, all four individuals did not have the combination of internal organ malformations of Strømme syndrome (intestinal atresia and anterior eye segment abnormalities). Immunofluorescence analysis on skin fibroblasts on one of the four cases with the antibody for ARL13B that decorates primary cilia revealed shorter primary cilia that are consistent with a ciliary defect. This case-series of individuals with biallelic CENPF variants suggests the spectrum of clinical manifestations of the disorder that may be related to CENPF variants is broad and can include phenotypes lacking the cardinal features of Strømme syndrome.  相似文献   

15.
Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy–Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy–Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy–Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.  相似文献   

16.
《Genetics in medicine》2023,25(2):100332
PurposeThis study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities.MethodsWe performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells.ResultsIn the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells.ConclusionWe established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.  相似文献   

17.
Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.  相似文献   

18.
Kaya-Barakat-Masson syndrome (KABAMAS) is a recently identified severe neurodevelopmental disorder characterized by severe global developmental delay, epilepsy, movement disorder, epilepsy, and microcephaly. KABAMAS is caused by bi-allelic variants in the YIF1B gene which encodes a trafficking protein involved in the anterograde traffic from the endoplasmic reticulum to the cell membrane including neural cells in association with other trafficking proteins and also Golgi apparatus morphology. That's why clinical overlapping between KABAMAS and golgipathies isn't surprising. It is a rare condition with only 24 patients reported to date. Here we described a 5.5-year-old boy presenting with severe global developmental delay, epileptic encephalopathy, microcephaly, dystonia, spasticity, blindness, feeding difficulties, respiratory failure, and dysmorphic features. Whole exome sequencing identified homozygous splice site variation (NM_001039672.3: c.297+1G > A) in the YIF1B gene. This splice site variant is rare in the general population (gnomAD Variant allele fraction (VAF): 0.0007%, 2 heterozygotes, 0 homozygotes) and has not previously been associated with the disease. Multiple in silico tools predict a deleterious effect of this splice site change. Considering the points mentioned above, we have considered the detected variant as pathogenic according to guidelines in light of current knowledge. By reporting a new case with the homozygous YIF1B splice site variant we provide further evidence to clinical and molecular data of this recently recognized severe neurodevelopmental disorder. We further emphasize that trafficking errors should be considered as an underlying mechanism in undiagnosed severe neurodevelopmental disorders.  相似文献   

19.
WWOX biallelic loss-of-function pathogenic single nucleotide variants (SNVs) and copy number variants (CNVs) including exonic deletions and duplications cause WWOX-related epileptic encephalopathy (WOREE) syndrome. This disorder is characterized by refractory epilepsy, axial hypotonia, peripheral hypertonia, progressive microcephaly, and premature death. Here we report five patients with WWOX biallelic predicted null variants identified by exome sequencing (ES), genome sequencing (GS), and/or chromosomal microarray analysis (CMA). SNVs and intragenic deletions of one or more exons were commonly reported in WOREE syndrome patients which made the genetic diagnosis challenging and required a combination of different diagnostic technologies. These patients presented with severe, developmental and epileptic encephalopathy (DEE), and other cardinal features consistent with WOREE syndrome. This report expands the clinical phenotype associated with this condition, including failure to thrive in most patients and epilepsy that responded to a ketogenic diet in three patients. Dysmorphic features and abnormal prenatal findings were not commonly observed. Additionally, recurrent pancreatitis and sensorineural hearing loss each were observed in single patients. In summary, these phenotypic features broaden the clinical spectrum of WOREE syndrome.  相似文献   

20.
We report compound heterozygous variants in HTT, the gene encoding huntingtin, in association with an autosomal recessive neurodevelopmental disorder. Three siblings presented with severe global developmental delay since birth, central hypotonia progressing to spastic quadraparesis, feeding difficulties, dystonia (2/3 sibs), prominent midline stereotypies (2/3), bruxism (1/3), high myopia (2/3), and epilepsy (1/3). Whole exome sequencing identified compound heterozygous variants in HTT that co-segregated in the three affected sibs and were absent in an unaffected sib. There were no additional variants in other genes that could account for the reported phenotype. Molecular analysis of HTT should be considered, not just for Huntington''s disease, but also in children with a Rett-like syndrome who test negative for known Rett and Rett-like syndrome genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号