首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dental materials》2023,39(2):204-216
ObjectivePeri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants – caused by inadequate surface properties – leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing.MethodsWe synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like “pro-inflammatory” vs. M2-like “pro-regenerative”).ResultsIL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls.SignificanceOur results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.  相似文献   

2.
ObjectiveOral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms.DesignThe levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits.ResultsWe found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24 h treatment.ConclusionsMangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis.  相似文献   

3.
ObjectiveEpithelial cells participate in wound healing by covering wounds, but also as important mediators of wound healing processes. Topical application of the phospholipid growth factor lysophosphatidic acid (LPA) accelerates dermal wound healing and we hypothesized that LPA can play a role in human oral wound healing through its effects on human oral keratinocytes (HOK).DesignHOK were isolated from gingival biopsies and exposed to LPA. The LPA receptor profile, signal transduction pathways, gene expression and secretion of selected cytokines were analyzed.ResultsHOK expressed the receptors LPA1, LPA5 and LPA6 and LPA activated the ERK1/2, JNK and p38 intracellular pathways, substantiated by secretion of IL-6 and IL-8. The early (2 h) and intermediate (6 h) gene expression profiles of HOK after LPA treatment showed a wide array of regulated genes. The majority of the strongest upregulated genes were related to chemotaxis and inflammation, and became downregulated after 6 h. At 6 h, genes coding for factors involved in extracellular matrix remodeling and re-epithelialization became highly expressed. IL-36γ, not earlier known to be regulated by LPA, was strongly transcribed and translated but not secreted.ConclusionsAfter stimulation with LPA, HOK responded by regulating factors and genes that are essential in wound healing processes. As LPA is found in saliva and is released by activated cells after wounding, our results indicate that LPA has a favorable physiological role in oral wound healing. This may further point towards a beneficial role for application of LPA on oral surgical or chronic wounds.  相似文献   

4.
ObjectiveWounds are common in the oral cavity. During wound healing, several cytokines are released, which are probably helpful in providing wound debridement, removal of damaged tissues and microbes. Most of the target cells of IL-22 are epithelial cells, which play an important role in mucosa immunity.DesignThe function of IL-22 in oral diseases is not well understood. We investigated the expression level of IL-22, collagen I and p-stat3 (Tyr705) via a mice tongue wound model in vivo and detected the effect of IL-22 on the expression of MMP-1, type I collagen and p-stat3 in keratinocytes.ResultsIL-22 and p-stat3 were associated with wound healing, and STAT3 was activated when the keratinocytes or the tongue tissue were stimulated by IL-22. In addition, IL-22 could mediate gene expression involved in wounds involving keratinocytes, such as type I collagen and MMP-1, which may contribute to scarless healing.ConclusionOur study suggests that IL-22 mediates wound healing via STAT3 in keratinocytes. This study reveals a new role for IL-22 in mediating wound healing.  相似文献   

5.
《Dental materials》2023,39(4):418-429
ObjectiveDelayed regeneration of alveolar bone defects because of prolonged inflammation under diabetic conditions remains a challenge for dental rehabilitation in clinic, and effective therapies are required. Cytokines-based immuotherapies might be a potential strategy to regulate inflammation and bone regeneration. Here, we report that local delivery of interleukin-10 (IL-10) by injectable self-assembling peptide (SAP) hydrogel is efficient to promote proinflammatory (M1)-to-anti-inflammatory (M2) phenotype conversion, thereby enhancing bone regeneration in diabetic alveolar bone defects.MethodsCharacteristics of SAP hydrogel were evaluated by morphology, injectable and rheological properties. The loading and release of IL-10 from the SAP hydrogel were evaluated over time in culture. The local inflammatory response and bone repair efficacy of the SAP/IL-10 hydrogel was evaluated in vivo using an alveolar bone defect model of diabetic mice. Finally, the direct effects of M2 macrophage on M1 phenotype and mineralization of MSCs were investigated.ResultsIn vitro, encapsulated IL-10 could be sustainedly released by SAP hydrogel with preserved bioactivities. In vivo, SAP/IL-10 hydrogel showed significantly higher efficacy to attenuate M1 polarization and proinflammatory factors levels, and enhance expressions of osteogenic factors. As a result, diabetic bone regeneration induced by SAP/IL-10 hydrogel was significantly faster. Mechanistically, M2 macrophages induced by sustained IL-10 delivery might promote diabetic bone regeneration by reprogramming M1 phenotype, suppressing local inflammation and enhancing the osteogenic differentiation of mesenchymal stem cells (MSCs).SignificanceThis study highlights that the SAP hydrogel is a promising drug delivery platform for treatment of alveolar bone defects, which might have translational potential in future clinical applications.  相似文献   

6.
BackgroundPeriodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) is the principal factor involved in osteoclast differentiation, activation, and survival. However, under pathological conditions, a variety of pro-inflammatory cytokines secreted by activated immune cells also contribute to osteoclast differentiation and activity. Lipopolysaccharide (LPS) is a vital component of the outer membrane of the Gram-negative bacteria. It binds to the Toll-like receptors (TLRs) expressed in many cells and elicits an immune response.HighlightsThe presence of bacterial LPS in the periodontal area stimulates the secretion of RANKL as well as other inflammatory mediators, activating the process of osteoclastogenesis. RANKL, either independently or synergistically with LPS, can regulate osteoclastogenesis, while LPS alone cannot. MicroRNA, IL-22, M1/M2 macrophages, and memory B cells have recently been shown to modulate osteoclastogenesis in periodontal diseases.ConclusionIn this review, we summarize the mechanism of osteoclastogenesis accompanying periodontal diseases at the cellular level. We discuss a) the effects of LPS/TLR signaling and other cytokines on RANKL-dependent and -independent mechanisms involved in osteoclastogenesis; b) the recently identified role of several endogenous factors such as miRNA, IL-22, M1/M2 macrophages, and memory B cells in regulating osteoclastogenesis during periodontal pathogenesis.  相似文献   

7.
ObjectiveThis study was performed to investigate the effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages.MethodsThe effect of iRoot SP and MTA on the viability of RAW 264.7 macrophages was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 1 and 2 days of culture. The gene expression levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), interleukin 12p40 (IL-12p40) were measured by quantitative real time polymerase chain reaction (qRT-PCR) after stimulation of the RAW 264.7 macrophages with iRoot SP and MTA. The expression levels of CD11c and CD206 in RAW 264.7 macrophages were examined by immunofluorescence and flow cytometry after stimulation with iRoot SP and MTA. The data were analyzed by one-way analysis of variance and the Tukey test.ResultsBoth iRoot SP and MTA were non-toxic to the RAW 264.7 macrophages. The use of iRoot SP and MTA increased the expression of IL-1β, TNF-α, IL-10, IL-12p40 on the first day of culture and could promote macrophage M1 and M2 polarization.ConclusionsMTA and iRoot SP have good biocompatibility with macrophages, and they induced both M1 and M2 polarization of the RAW 264.7 macrophages.  相似文献   

8.
ObjectiveThe objective of this study was to investigate effects of insulin-like growth factor 1 (IGF1) on proliferation, wound healing and differentiation processes of human periodontal ligament (PDL) cells under inflammatory conditions and whether the protective, anabolic effects of IGF1 can attenuate unfavorable effects of interleukin-1β (IL-1β).DesignInflammation was mimicked through cell stimulation with IL-1β. PDL cells were characterized in respect to the presence of components of the IGF system and the responsive potential on IL-1β incubation. Gene expression levels were analyzed by quantitative real-time PCR. Cellular localization of target proteins was visualized using fluorescent-based immunohistochemistry. Effects on cell division were investigated by proliferation assays. Wound healing was analyzed using light microscopic techniques. Differentiation was quantified by measuring biomineralization and osteoblast-specific alkaline phosphatase enzyme activity.ResultsPDL cell proliferation and wound healing were positively affected by IGF1 and the combination of IGF1 with IL-1β, while only IL-1β showed negative effects. Biomineralization was enhanced by IGF1, IL-1β, and the combination of both stimulants. Osteoblast differentiation was increased by IL-1β and the combination of IL-1β with IGF1, whereas only IGF1 negatively affected ALP activity. Phosphorylation of p38 was regulated by IL-1β and IGF1.ConclusionsThe data presented in this work showed a potential of IGF1 to improve wound healing and proliferation processes and to sustain cell differentiation under inflammatory stimuli in PDL cells.  相似文献   

9.
《Journal of endodontics》2021,47(9):1427-1434
IntroductionDuring pulp inflammation, recruited macrophages can differentiate into 2 phenotypes: proinflammatory M1 and anti-inflammatory M2. Pulp fibroblasts have previously been shown to regulate pulp inflammation via cytokine and growth factor secretion. We hypothesized that upon carious injury, pulp fibroblasts interact with macrophages and modulate their differentiation.MethodsCultures of pulp fibroblasts were physically injured and incubated with lipoteichoic acid (LTA) to mimic the pulp environment underlying a carious lesion. Physical injuries without LTA were performed on cultured fibroblasts to simulate the surrounding pulp tissue. Fibroblast supernatants were collected and added to undifferentiated macrophages to study their differentiation into M1 or M2 phenotypes by investigating cytokine secretion profiles and phagocytosis capacity. Histologic staining and immunofluorescence were performed on healthy and carious human tooth sections to localize the 2 macrophage phenotypes.ResultsLTA-stimulated fibroblasts induced macrophage differentiation into the M1 phenotype with a significant increase both in tumor necrosis factor alpha secretion and phagocytosis capacity. By contrast, injured fibroblasts without LTA led to M2 differentiation with a significant increase in interleukin 10 secretion and low phagocytosis capacity. In carious teeth, M1 macrophages were detected mainly in the pulp zone underlying caries, whereas M2 macrophages were detected in the peripheral inflammatory zone.ConclusionsFibroblasts induced macrophage differentiation to proinflammatory M1 with high bacteria phagocytosis capacity to control infection at the carious front. Fibroblasts located at the periphery of the inflammatory zone induced macrophage differentiation to anti-inflammatory M2. The fine balance between the 2 phenotypes may represent a prerequisite for initiating the healing process.  相似文献   

10.
ObjectiveThis study investigated the effects of bisphosphonates and denosumab on human gingival fibroblasts (HGFs) that could influence inflammation, wound healing, and angiogenesis in medication-related osteonecrosis of the jaw (MRONJ).MethodsA real-time in vitro assay was performed on HGFs with and without the addition of bacterial lipopolysaccharide and a mononuclear cell co-culture to observe the effects of zoledronate, ibandronate, alendronate, clodronate, denosumab, and combinations of zoledronate and denosumab at varied concentrations. A wound healing assay was performed, and gene and protein expression was analyzed for inflammatory, angiogenic, and osteoclastogenic cytokines and mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNFα), IL-8, vascular endothelial growth factor (VEGF), RANKL, and osteoprotegerin.ResultsHigher concentrations of antiresorptives resulted in impaired wound healing and HGF death, which also occurred without mechanical damage. These effects were increased with bacterial lipopolysaccharide and mononuclear cells. Increased levels of IL-1β, TNFα, IL-8, VEGF, osteoprotegerin, and decreased levels of IL-6 were observed.ConclusionsAntiresorptive exposure was associated with HGF death and delayed wound healing, which could be attributed to an elevated inflammatory response and immune dysfunction contributing to MRONJ development. There was no evidence of anti-angiogenic effects. Our experiments present the first results of denosumab with HGFs.  相似文献   

11.
Objectives

Periodontitis is a global health burden that underlines the demand for anti-inflammatory treatment. Dalbergia melanoxylon being a rich source of flavonoids has been widely used in traditional medicine but the potential anti-inflammatory activity of its dalbergiones remains to be shown.

Material and methods

We have isolated 3′-hydroxy-4,4′-dimethoxydalbergione, 4-methoxydalbergione, and 4′-hydroxy-4-methoxydalbergione from Dalbergia melanoxylon and tested their potential anti-inflammatory activity.

Results

All dalbergiones are potent inhibitors of an LPS-induced inflammatory response of RAW 264.7 macrophages. This is specified by IL1β and IL6 production, and the p65 nuclear translocation. Consistently, in primary macrophages, the dalbergiones caused an M1-to-M2 polarization switch indicated by the decreased ration of IL1β and IL6 versus arginase 1 and YM1 expression. To implement oral cells, we have used gingival fibroblasts exposed to IL1β and TNFα. Consistently, all dalbergiones reduced the expression of IL6 and IL8 as well as the nuclear translocation of p65.

Conclusion

These findings increase the accumulating knowledge on dalbergiones and extend it towards its capacity to lower the inflammatory response of oral cells.

Clinical relevance

These findings are another piece of evidence that supports the use of herbal medicine to potentially lower inflammatory events related to dentistry.

  相似文献   

12.
ObjectiveTo investigate the contribution of bone marrow-derived cells to oral mucosa wounds and skin wounds.BackgroundBone marrow-derived cells are known to contribute to wound healing, and are able to differentiate in many different tissue-specific cell types. As wound healing in oral mucosa generally proceeds faster and with less scarring than in skin, we compared the bone marrow contribution in these two tissues.DesignBone marrow cells from GFP-transgenic rats were transplanted to irradiated wild-type rats. After recovery, 4-mm wounds were made in the mucoperiosteum or the skin. Two weeks later, wound tissue with adjacent normal tissue was stained for GFP-positive cells, myofibroblasts (a-smooth muscle actin), activated fibroblasts (HSP47), and myeloid cells (CD68).ResultsThe fraction of GFP-positive cells in unwounded skin (19%) was larger than in unwounded mucoperiosteum (0.7%). Upon wounding, the fraction of GFP-positive cells in mucoperiosteum increased (8.1%), whilst it was unchanged in skin. About 7% of the myofibroblasts in both wounds were GFP-positive, 10% of the activated fibroblasts, and 25% of the myeloid cells.ConclusionsThe results indicate that bone marrow-derived cells are preferentially recruited to wounded oral mucosa but not to wounded skin. This might be related to the larger healing potential of oral mucosa.  相似文献   

13.

Introduction

In general, mice develop chronic and nonhealing periapical lesions after endodontic infection. Surprisingly, we recently found that toll-like receptor 2 (TLR2)/interleukin 10 (IL-10) double-knockout (dKO) mice exhibited acute but resolving osteomyelitislike inflammation. In this study, we examined the kinetics of endodontic infection–induced inflammation in TLR2/IL-10 dKO mice and explored a potential mechanism of periapical wound healing mediated by the hypoxia-inducible factor 1 alpha (HIF-1α) subunit and arginase 1.

Methods

TLR2/IL-10 dKO and wild-type C57BL/6J mice were subjected to endodontic infection in the mandibular first molars. Mice were sacrificed on days 0 (noninfected), 10, and 21 postinfection. The extent of bone destruction, inflammation, bone deposition, and gene expression were determined by micro–computed tomographic imaging, histology, bone polychrome labeling, and microarray analysis. In addition, the effect of blocking endogenous HIF-1α was tested in infected TLR2/IL-10 dKO mice using the specific inhibitor YC-1.

Results

Infected TLR2/IL-10 dKO mice exhibited extensive bone destruction and inflammation on day 10 followed by spontaneous periapical wound healing including bone formation and resolution of inflammation by day 21 postinfection. In contrast, WT mice developed increasing chronic periapical inflammation over the 21-day observation period. Gene expression analyses and immunohistochemistry revealed that HIF-1α and arginase 1 were up-regulated in spontaneous wound healing in TLR2/IL-10 dKO mice. Blocking of HIF-1α in TLR2/IL-10 dKO mice using YC-1 resulted in significant inhibition of regenerative bone formation.

Conclusions

The TLR2/IL-10 dKO mouse is a novel model resembling osteomyelitis of the jaws in which HIF-1α and arginase 1 appear to be crucial factors in spontaneous wound healing and bone repair.  相似文献   

14.
15.
ObjectivesAmelogenin, the major component of the enamel matrix derivative (EMD), has been suggested as a bioactive candidate for periodontal regeneration. Apart from producing a regenerative effect on periodontal tissues, amelogenin has also been reported to have an anti-inflammatory effect. However, the precise molecular mechanisms underlying these effects remain unclear. In the present study, we examined the immunomodulatory effects of amelogenin on macrophages.DesignHuman phorbol 12-myristate 13-acetate (PMA)-differentiated U937 macrophages and CD14+ peripheral blood-derived monocytes (PBMC)-derived macrophages were stimulated with recombinant amelogenin (rM180). After performing a detailed microarray analysis, the effects of rM180 on macrophage phenotype and signal transduction pathways were evaluated by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, confocal microscopy and flow cytometry.ResultsThe microarray analysis demonstrated that rM180 increased the expression of anti-inflammatory genes in lipopolysaccharide (LPS)-challenged macrophages after 24 h, while it temporarily up-regulated inflammatory responses at 4 h. rM180 significantly enhanced the expression of M2 macrophage markers (CD163 and CD206). rM180-induced M2 macrophage polarisation was associated with morphological changes as well as vascular endothelial growth factor (VEGF) production. rM180 enhanced prostaglandin E2 (PGE2) expression, and the activation of the cAMP/cAMP-responsive element binding (CREB) signaling pathway was involved in amelogenin-induced M2 macrophage polarisation. Blocking of PGE2 signaling by indomethacin specifically abrogated rM180 with or without LPS-induced M2 shift in PBMC-derived macrophages.ConclusionAmelogenin could reprogram macrophages into the anti-inflammatory M2 phenotype. It could therefore contribute to the early resolution of inflammation in periodontal lesions and provide a suitable environment for remodeling-periodontal tissues.  相似文献   

16.
BackgroundIn solid malignancies the influence of immunological parameters – especially of macrophages – on invasiveness, metastatic potential and prognosis has been shown. There are no studies quantitatively analysing the macrophage polarization in oral squamous cell carcinoma (oscc). The aim of this study was to correlate macrophage polarization in the epithelial and stromal compartment of oscc with histopathologic parameters.MethodsT1 and T2 oscc samples (n = 34) were used. Automated immunohistochemical staining detected CD68, CD11c, CD163 and MRC1 positive cells. All samples were completely digitalized using whole slide imaging and the number of stained cells per area was assessed quantitatively.ResultsPrimary tumours with lymphogenic metastasis (N+) showed a significantly (p < 0.05) increased count of CD68, CD11c, CD163 and MRC1 positive cells in the epithelial fraction compared to N0 tumours. The ratio of CD163 positive cells (M2 macrophages) to CD68 positive cells (M1 and M2 macrophages) was significantly (p < 0.05) increased in N+ tumours.ConclusionAn increased macrophage infiltration and an increased M2 polarization in primary oral squamous cell carcinomas with lymphogenic metastasis was shown. Macrophages that migrated into the epithelial tumour fraction seem to be of special biological importance.The results indicate a central role of macrophages in the progression of oscc.  相似文献   

17.

Introduction

This study examined the protein and messenger RNA (mRNA) expression of molecules associated with M2 (wound healing) macrophages in mineral trioxide aggregate (MTA)-implanted rat subcutaneous tissue to elucidate the involvement of M2 macrophages in the connective tissue response to MTA.

Methods

Silicone tubes containing freshly mixed MTA or a calcium hydroxide cement (Life; Kerr, Romulus, MI) were subcutaneously implanted into the backs of Wistar rats. Solid silicone rods implanted in different animals served as controls. The specimens were then double immunostained for ED1 (CD68, a general macrophage marker) and ED2 (CD163, an M2 macrophage marker). Immunostaining for CD34 (a marker for vascularization and wound healing) was also performed. Expression levels of CD34, CD163, and mannose receptor c type 1 (an M2 macrophage marker) mRNAs were determined with real-time polymerase chain reaction.

Results

MTA-implanted subcutaneous tissues showed significant increases in the density of ED1+ED2+ macrophages beneath the implantation site and expression levels of CD163 and MMR mRNAs compared with Life-implanted and control tissues. MTA-implanted subcutaneous tissues also showed a significant increase of CD34-immunostained areas and up-regulation of CD34 mRNAs compared with Life-implanted and control tissues.

Conclusions

MTA implantation induced the accumulation of M2 macrophage marker (ED2)-expressing macrophages and enhanced the expression of M2 macrophage marker genes. MTA implantation also enhanced the expression of CD34, suggesting acceleration of the healing/tissue repair process. Taken together, biological connective tissue response to MTA may involve wound healing/tissue repair processes involving M2 macrophages.  相似文献   

18.
《Journal of endodontics》2020,46(11):1648-1654
IntroductionThe purpose of the present study was to compare the immunomodulatory effect of azithromycin (AZM), ampicillin (AMP), amoxicillin (AMX), and clindamycin (CLI) in vitro and AZM on preexisting periapical lesions compared with AMP.MethodsThe susceptibility of 4 common human endodontic pathogens (Parvimonas micra, Streptococcus intermedius, Prevotella intermedia, and Fusobacterium nucleatum) to AZM, AMP, AMX, and CLI was confirmed by agar disk diffusion assay. Preexisting periapical lesions in C57BL/6J mice were treated with AZM, AMP, or phosphate-buffered saline (PBS). Periapical bone healing and the pattern of inflammatory cell infiltration were evaluated after a 10-day treatment by micro–computed tomographic and histology, respectively. Besides, the effect of antibiotics in pathogen-stimulated nuclear factor kappa B activation and the production of interleukin 1 alpha and tumor necrosis factor alpha was assessed in vitro by luciferase assay and enzyme-linked immunosorbent assay.ResultsAll examined endodontic pathogens were susceptible to AZM, AMP, AMX, and CLI. AZM significantly attenuated periapical bone loss versus PBS. PBS resulted in widely diffused infiltration of mixed inflammatory cells. By contrast, AZM brought about localized infiltration of neutrophils and M2 macrophages and advanced fibrosis. Although the effect of AMP on bone was uncertain, inflammatory cell infiltration was considerably milder than PBS. However, most macrophages observed seemed to be M1 macrophages. AZM suppressed pathogen-stimulated nuclear factor kappa B activation and cytokine production, whereas AMP, AMX, and CLI reduced only cytokine production moderately.ConclusionsThis study showed that AZM led to the resolution of preexisting experimental periapical inflammation. Our data provide a perspective on host response in antibiotic selection for endodontic treatment. However, well-designed clinical trials are necessary to better elucidate the benefits of AZM as an adjunctive therapy for endodontic treatment when antibiotic therapy is recommended. Although both AZM and AMP were effective on preexisting periapical lesions, AZM led to advanced wound healing, probably depending on its immunomodulatory effect.  相似文献   

19.
ObjectiveThe oral environment is anatomically positioned as a significant gateway for exposure to environmental toxicants. Cigarette smoke exposure compromises oral health by orchestrating inflammation. The receptor for advanced glycation end-products (RAGE) has been implicated in smoke-induced inflammatory effects; however, its role in the oral cavity is unknown. The purpose of this study was to determine RAGE expression by immortalized gingival carcinoma cells and the degree to which RAGE-mediated signaling influences inflammation.DesignGingival epithelia cells (Ca9-22) were exposed to 10% cigarette smoke extract (CSE) for six hours and screened for RAGE expression and inflammatory mediators.ResultsQuantitative PCR and immunoblotting revealed increased RAGE expression following exposure. Furthermore, exposure activated RAGE signaling intermediates including Ras and NF-κB. IL-6 and IL-1β were also elevated in cell culture medium from CSE-exposed cells when compared to controls. A family of anionic, partially lipophilic sulfated polysaccharide derivatives known as semi-synthetic glycosaminoglycan ethers (SAGEs) were used in an effort to block RAGE signaling. Co-treatment of CSE and SAGEs ameliorated inflammatory responses.ConclusionsThese results provide a new perspective on a mechanism of cigarette smoke induced oral inflammation. Further work may show RAGE signaling as a potential target in the treatment of diseases of the oral cavity exacerbated by tobacco smoke exposure.  相似文献   

20.
Reprograming of metabolic pathways is critical in governing the polarization of macrophages into classical proinflammatory M1 or alternative anti‐inflammatory M2 phenotypes in metabolic diseases, such as diabetes. Porphyromonas gingivalis, a keystone pathogen of periodontitis, causes an imbalance in M1/M2 activation, resulting in a hyperinflammatory environment that promotes the pathogenesis of periodontitis. However, whether P. gingivalis infection modulates metabolic pathways to alter macrophage polarization remains unclear. Bone‐marrow‐derived macrophages (BMDMs) were collected from 6‐week‐old female C57BL/6 mice and stimulated with P. gingivalis, P. gingivalis‐derived LPS or IL‐4. Relative gene expression and protein production were measured by quantitative real‐time PCR, RNA sequencing and western blotting. Colorimetric assays were also performed to assess the amounts of α‐ketoglutarate (α‐KG) and succinate. P. gingivalis or P. gingivalis‐derived LPS‐induced inflammatory responses enhanced M1 macrophages and suppressed M2 macrophages, even in the presence of IL‐4. P. gingivalis inhibited Idh1/2 and Gpt1/2 mRNA expression, and increased Akgdh mRNA expression, thus decreasing the ratio of α‐KG/succinate. Supplementation of cell‐permeable dimethyl‐α‐KG dramatically restored M2 activation during P. gingivalis infection. Our study suggests that P. gingivalis maintains a hyperinflammatory state by suppressing the production of α‐KG by M2 macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号