首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frontonasal dysplasia (FND) is a heterogeneous group of disorders characterized by hypertelorism, telecanthus, broad nasal root, wide prominent nasal bridge, short and wide nasal ridge, broad columella and smooth philtrum. To date one X‐linked and three autosomal recessive forms of FND have been reported in different ethnic groups. We sought to identify the gene responsible for FND in a consanguineous Pakistani family segregating the disorder in autosomal recessive pattern. Genome‐wide homozygosity mapping using 250KNsp array revealed five homozygous regions in the selected affected individuals. Exome sequencing found a novel splice acceptor site variant (c.661‐1G>C: NM_006982.2) in ALX1. Sanger sequencing confirmed the correct segregation of the pathogenic variant in the whole family. Our study concludes that the splice site variant identified in the ALX1 gene causes mild form of FND.  相似文献   

2.
3.
The clinical diagnosis criteria for CHARGE syndrome have been revised several times in the last 25 years. Variable expressivity and reduced penetrance are known, particularly in mild and familial cases. Therefore, it has been proposed to include the detection of a pathogenic CHD7 variant as a major diagnostic criterion. However, intronic variants not located at the canonical splice site are still underrepresented in mutation databases, often because functional analysis is not performed in the diagnostic setting. Here, we report a two-generation family that did not meet the criteria for CHARGE syndrome, until the molecular findings were taken into account. By exome sequencing, we detected an intronic variant in a male individual, who presented with unilateral external ear malformation, bilateral semicircular canal aplasia, polydactyly, vertebral body fusion and a heart defect. The variant was inherited by his mother, who also had bilateral semicircular canal aplasia additionally to unilateral sensorineural hearing impairment, unilateral mandibular palpebral synkinesia, orofacial cleft, and dysphagia. Using RNA studies, we were able to demonstrate that aberrant splicing occurs at an upstream cryptic splice acceptor site, resulting in a frameshift and premature stop of translation. Our data show causality of the noncanonical intronic CHD7 variant and end the diagnostic odyssey of this unsolved phenotype of the family.  相似文献   

4.
5.
Kaya-Barakat-Masson syndrome (KABAMAS) is a recently identified severe neurodevelopmental disorder characterized by severe global developmental delay, epilepsy, movement disorder, epilepsy, and microcephaly. KABAMAS is caused by bi-allelic variants in the YIF1B gene which encodes a trafficking protein involved in the anterograde traffic from the endoplasmic reticulum to the cell membrane including neural cells in association with other trafficking proteins and also Golgi apparatus morphology. That's why clinical overlapping between KABAMAS and golgipathies isn't surprising. It is a rare condition with only 24 patients reported to date. Here we described a 5.5-year-old boy presenting with severe global developmental delay, epileptic encephalopathy, microcephaly, dystonia, spasticity, blindness, feeding difficulties, respiratory failure, and dysmorphic features. Whole exome sequencing identified homozygous splice site variation (NM_001039672.3: c.297+1G > A) in the YIF1B gene. This splice site variant is rare in the general population (gnomAD Variant allele fraction (VAF): 0.0007%, 2 heterozygotes, 0 homozygotes) and has not previously been associated with the disease. Multiple in silico tools predict a deleterious effect of this splice site change. Considering the points mentioned above, we have considered the detected variant as pathogenic according to guidelines in light of current knowledge. By reporting a new case with the homozygous YIF1B splice site variant we provide further evidence to clinical and molecular data of this recently recognized severe neurodevelopmental disorder. We further emphasize that trafficking errors should be considered as an underlying mechanism in undiagnosed severe neurodevelopmental disorders.  相似文献   

6.
7.
Mendelian cardiomyopathies and arrhythmias are characterized by an important genetic heterogeneity, rendering Sanger sequencing very laborious and expensive. As a proof of concept, we explored multiplex targeted high‐throughput sequencing (HTS) as a fast and cost‐efficient diagnostic method for individuals suffering from Mendelian cardiac disorders. We designed a DNA capture assay including all exons from 130 genes involved in cardiovascular Mendelian disorders and analysed simultaneously four samples by multiplexing. Two patients had familial hypertrophic cardiomyopathy (HCM) and two patients suffered from long QT syndrome (LQTS). In patient 1 with HCM, we identified two known pathogenic missense variants in the two most frequently mutated sarcomeric genes MYH7 and MYBPC. In patient 2 with HCM, a known acceptor splice site variant in MYBPC3 was found. In patient 3 with LQTS, two missense variants in the genes SCN5A and KCNQ were identified. Finally, in patient 4 with LQTS a known missense variant was found in MYBPC3, which is usually mutated in patients with cardiomyopathy. Our results showed that multiplex targeted HTS works as an efficient and cost‐effective tool for molecular diagnosis of heterogeneous disorders in clinical practice and offers new insights in the pathogenesis of these complex diseases.  相似文献   

8.
Background : Gabriele-de Vries syndrome is a rare autosomal dominant genetic disease caused by de novo pathogenic variants in YY1. In this study, we report a 10-year-old boy with a de novo novel pathogenic variant in YY1, the first Iranian patient with Gabriele-de Vries Syndrome. Methods : The novel de novo pathogenic variant detected in this study (NM_003403:c.690delA, p.Glu231Ilefs*25) was identified by whole-exome sequencing and confirmed by Sanger sequencing. Results : The proband presented with delayed motor and speech development, ataxia, abnormal gait, autistic behavior, brain atrophy, and severe learning disability. Finally, we provide a case-based review of the clinical features associated with Gabriele-de Vries Syndrome. Thus far, merely 13 Gabriele-de Vries Syndrome patients have been reported in the literature. Conclusion : The investigations for a suspected case of Gabriele-de Vries Syndrome must involve molecular diagnosis of the disease and its underlying genetic defect because the clinical investigations are generally variable and nonspecific.  相似文献   

9.
Majewski Osteodysplastic Primordial Dwarfism type II (MOPDII) is a form of dwarfism associated with severe microcephaly, characteristic skeletal findings, distinct dysmorphic features and increased risk for cerebral infarctions. The condition is caused by bi-allelic loss-of-function variants in the gene PCNT. Here we describe the identification of a novel founder pathogenic variant c.3465-1G > A observed in carriers from multiple Druze villages in Northern Israel. RNA studies show that the variant results in activation of a cryptic splice site causing a coding frameshift. The study was triggered by the diagnosis of a single child with MOPDII and emphasizes the advantages of applying next generation sequencing technologies in community genetics and the importance of establishing population-specific sequencing databases.  相似文献   

10.
Purpose: Martsolf (MS) and Warburg micro syndromes (WARBM) are rare autosomal recessive inherited allelic disorders, which share similar clinical features including microcephaly, intellectual disability, brain malformations, ocular abnormalities, and spasticity. Here, we revealed the functions of novel mutations in RAB3GAP1 in a Turkish female patient with MS and two siblings with WARBM. We also present a review of MS patients as well as all reported RAB3GAP1 pathogenic mutations in the literature. Methods: We present a female with MS phenotype and two siblings with WARBM having more severe phenotypes. We utilized whole‐exome sequencing to identify the molecular basis of these syndromes and confirmed suspected variants by Sanger sequencing. Quantitative (q) RT‐PCR analysis was carried out to reveal the functions of novel splice site mutation detected in MS patient. Results: We found a novel homozygous c.2607‐1G>C splice site mutation in intron 22 of RAB3GAP1 in MS patient and a novel homozygous c.2187_2188delinsCT, p.(Met729_Lys730delinsIleTer) mutation in exon 19 of RAB3GAP1 in the WARBM patients. We showed exon skipping in MS patient by Sanger sequencing and gel electrophoresis. qRT‐PCR analysis demonstrated the reduced expression of RAB3GAP1 in the patient with the c.2607‐1G>C splice site mutation compared to a healthy control individual. Conclusion: Here, we have studied two novel RAB3GAP1 mutations in two different phenotypes; a MS associated novel splice site mutation, and a WARBM1 associated novel deletion–insertion mutation. Our findings suggest that this splice site mutation is responsible for milder phenotype and the deletion–insertion mutation presented here is associated with severe phenotype.  相似文献   

11.
目的对1例疑诊德朗热综合征(Cornelia de Lange syndrome,CdLS)的患儿进行致病基因变异检测,明确其发病原因。方法应用高通量捕获测序对CdLS相关致病基因(NIPBL、SMC1A、SMC3、RAD21和HDAC8)进行测序,用Sanger测序验证测序结果以及致病基因的家系分析。结果患儿NIPBL基因存在c.6109-1G>A杂合剪接变异,Sanger测序验证结果表明患儿父母均未携带此变异,提示为新发变异,该变异未在HGMD及ExAC数据库收录。根据Human Splicing Finder预测剪接软件,预测该剪接变异将改变NIPBL基因剪接位点,为致病性变异。未发现SMC1A、SMC3、RAD21和HDAC8基因致病性变异。结论NIPBL基因c.6109-1G>A剪接变异可能是该例患儿的发病原因,新变异的检出丰富了NIPBL基因变异谱。  相似文献   

12.
13.
Increasing attention has been directed toward assessing mutational fallout of stereocilin (STRC), the gene underlying DFNB16. A major challenge is due to a closely linked pseudogene with 99.6% coding sequence identity. In 94 GJB2/GJB6‐mutation negative individuals with non‐syndromic sensorineural hearing loss (NSHL), we identified two homozygous and six heterozygous deletions, encompassing the STRC region by microarray and/or quantitative polymerase chain reaction (qPCR) analysis. To detect smaller mutations, we developed a Sanger sequencing method for pseudogene exclusion. Three heterozygous deletion carriers exhibited hemizygous mutations predicted as negatively impacting the protein. In 30 NSHL individuals without deletion, we detected one with compound heterozygous and two with heterozygous pathogenic mutations. Of 36 total patients undergoing STRC sequencing, two showed the c.3893A>G variant in conjunction with a heterozygous deletion or mutation and three exhibited the variant in a heterozygous state. Although this variant affects a highly conserved amino acid and is predicted as deleterious, comparable minor allele frequencies (MAFs) (around 10%) in NSHL individuals and controls and homozygous variant carriers without NSHL argue against its pathogenicity. Collectively, six (6%) of 94 NSHL individuals were diagnosed with homozygous or compound heterozygous mutations causing DFNB16 and five (5%) as heterozygous mutation carriers. Besides GJB2/GJB6 (DFNB1), STRC is a major contributor to congenital hearing impairment.  相似文献   

14.
15.
Inherited muscular disorders (IMDs) are clinically and genetically heterogeneous genetic disorders. We investigated the mutational spectrum and genotype–phenotype correlations in Korean patients with IMD. We developed a targeted panel of 69 known IMD genes and recruited a total of 209 Korean patients with IMD. Targeted capture sequencing identified 994 different variants. Among them, 98 variants were classified as pathogenic/likely pathogenic variants; 38 were novel variations. A total of 39 patients had the pathogenic/likely pathogenic variants. Among them, 75 (36%) patients were genetically confirmed, and 18 (9%) patients had one heterozygous variant of recessive myopathy. However, two genetically confirmed patients had an additional heterozygous variant of another recessive myopathy. Four patients with one heterozygous variant of a recessive myopathy showed different phenotypes, compared with the known phenotype of the identified gene. The major causative genes of Korean patients with IMDs were DMD (19 patients), COL6A1 (9), DYSF (9), GNE (7), LMNA (7), CAPN3 (6), and RYR1 (5). This study showed the mutational and clinical spectra in Korean patients with IMD and confirmed the usefulness of strategies utilizing targeted sequencing.  相似文献   

16.
The diagnostic deployment of massively parallel short‐read next‐generation sequencing (NGS) has greatly improved genetic test availability, speed, and diagnostic yield, particularly for rare inherited disorders. Nonetheless, diagnostic approaches based on short‐read sequencing have a poor ability to accurately detect gene conversion events. We report on the genetic analysis of a family in which 3 fetuses had clinical features consistent with the autosomal recessive disorder Meckel–Gruber syndrome (MKS). Targeted NGS of 29 known MKS‐associated genes revealed a heterozygous TMEM231 splice donor variant c.929+1A>G. Comparative read‐depth analysis, performed to identify a second pathogenic allele, revealed an apparent heterozygous deletion of TMEM231 exon 4. To verify this result we performed single‐molecule long‐read sequencing of a long‐range polymerase chain reaction product spanning this locus. We identified four missense variants that were absent from the short‐read dataset due to the preferential mapping of variant‐containing reads to a downstream TMEM231 pseudogene. Consistent with the parental segregation analysis, we demonstrate that the single‐molecule long reads could be used to show that the variants are arranged in trans. Our experience shows that robust validation of apparent dosage variants remains essential to avoid the pitfalls of short‐read sequencing and that new third‐generation long‐read sequencing technologies can already aid routine clinical care.  相似文献   

17.
We report two unrelated patients with Pierre Robin sequence (PRS) and a strikingly similar combination of associated features. Whole exome sequencing was performed for both patients. No single gene containing likely pathogenic point mutations in both patients could be identified, but the finding of an essential splice site mutation in mediator complex subunit 13 like (MED13L) in one patient prompted the investigation of copy number variants in MED13L in the other, leading to the identification of an intragenic deletion. Disruption of MED13L, encoding a component of the Mediator complex, is increasingly recognized as the cause of an intellectual disability syndrome with associated facial dysmorphism. Our findings suggest that MED13L–related disorders are a possible differential diagnosis for syndromic PRS.  相似文献   

18.
19.
20.
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl–tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In‐gel activity staining after blue native‐polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole‐exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3′ splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV‐transformed lymphoblasts, a specific decrease in the amount of charged mt‐tRNAAsn was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease‐associated aaRS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号