首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundSortase A is an enzyme responsible for the covalent attachment of Pac proteins to the cell wall in Streptococcus mutans. It has been shown to play a role in modulating the surface properties and the biofilm formation and influence the cariogenicity of S. mutans. Curcumin, an active ingredient of turmeric, was reported to be an inhibitor for Staphylococcus aureus sortase A. The aim of this study was to investigate the inhibitory ability of curcumin against S. mutans sortase A and the effect of curcumin for biofilm formation.MethodsThe antimicrobial activity of the curcumin to the S. mutans and inhibitory ability of the curcumin against the purified sortase A in vitro were detected. Western-blot and real-time PCR were used to analysis the sortase A mediated Pac protein changes when the S. mutans was cultured with curcumin. The curcumin on the S. mutans biofilm formation was determined by biofilm formation analysis.ResultsCurcumin can inhibit purified S. mutans sortase A with a half-maximal inhibitory concentration (IC50) of (10.2 ± 0.7) μmol/l, which is lower than minimum inhibitory concentration (MIC) of 175 μmol/l. Curcumin (15 μmol/l) was found to release the Pac protein to the supernatant and reduce S. mutans biofilm formation.ConclusionsThese results indicated that curcumin is an S. mutans sortase A inhibitor and has promising anti-caries characteristics through an anti-adhesion-mediated mechanism.  相似文献   

2.
ObjectiveThe antibacterial activity of Casbane Diterpene (CD) was evaluated in vitro against Streptococcus oralis, S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. The viability of planktonic cells was analysed by susceptibility tests (MIC and MBC) and antibiofilm action was assayed.MethodsThe minimal inhibitory and bactericidal concentrations (MIC and MBC) of oral Streptococcus were evaluated through microdilution tests. To assay antibiofilm activity, biofilms were generated on 96-wells polystyrene plates under the presence of CD and quantified by a crystal violet technique and colonies forming units counting.ResultsThe CD isolated from Croton nepetaefolius showed antimicrobial effect on planktonic forms and biofilms of oral pathogens, with MIC values of 62.5 μg/mL against Streptococcus oralis and values between 125 and 500 μg/mL against S. mutans, S. salivarius, S. sobrinus, S. mitis and S. sanguinis. CD showed an inhibitory effect on S. mutans biofilm formation at 250 μg/mL, and a decrease on viable cell of 94.28% compared to the normal biofilm growth.ConclusionsThe compound CD can be considered as a promising molecule for the treatment against oral pathogens responsible for dental biofilm.  相似文献   

3.
《Dental materials》2020,36(2):296-309
ObjectivesAntibacterial quaternary ammonium monomers (QAMs) are used in resins. The rnc gene in Streptococcus mutans (S. mutans) plays a key role in resisting antibiotics. The objectives of this study were to investigate for the first time: (1) the effects of rnc deletion on S. mutans biofilms and acid production; (2) the combined effects of rnc deletion with dimethylaminohexadecyl methacrylate (DMAHDM) on biofilm-inhibition efficacy.MethodsParent S. mutans strain UA159 (ATCC 700610) and the rnc-deleted S. mutans were used. Bacterial growth, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) were measured to analyze the bacterial susceptibility of the parent and rnc-deleted S. mutans against DMAHDM, with the gold-standard chlorhexidine (CHX) as control. Biofilm biomass, polysaccharide and lactic acid production were measured.ResultsThe drug-susceptibility of the rnc-deleted S. mutans to DMAHDM or CHX was 2-fold higher than parent S. mutans. The drug-susceptibility did not increase after 10 passages (p < 0.05). Deleting the rnc gene increased the biofilm susceptibility to DMAHDM or CHX by 2-fold. The rnc-deletion in S. mutans reduced biofilm biomass, polysaccharide and lactic acid production, even at no drugs. DMAHDM was nearly 40 % more potent than the gold-standard CHX. The combination of rnc deletion + DMAHDM treatment achieved the greatest reduction in biofilm biomass, polysaccharide synthesis, and lactic acid production.SignificanceGene modification by deleting the rnc in S. mutans reduced the biofilm growth and acid production, and the rnc deletion + DMAHDM method showed the greatest biofilm-inhibition efficacy, for the first time. The dual strategy of antibacterial monomer + bacterial gene modification shows great potential to control biofilms and inhibit caries.  相似文献   

4.
BackgroundAlkali production via arginine deiminase system (ADS) of oral bacteria plays a significant role in oral ecology, pH homeostasis and inhibition of dental caries. ADS activity in dental plaque varies greatly between individuals, which may profoundly affect their susceptibility to caries.ObjectiveTo investigate the effect of arginine on the growth and biofilm formation of oral bacteria.Methods and resultsPolymicrobial dental biofilms derived from saliva were formed in a high-throughput active attachment biofilm model and l-arginine (Arg) was shown to reduce the colony forming units (CFU) counts of such biofilms grown for various periods or biofilms derived from saliva of subjects with different caries status. Arg hardly disturbed bacterial growth of Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus gordonii in BHI medium, but only inhibited biofilm formation of S. mutans. Scanning electron microscope (SEM) showed S. mutans biofilms harboured fewer cells grown with Arg than that without Arg, even in the initial 2 h and 8 h phase. Confocal laser scanning microscope (CLSM) images of poly-microbial dental and S. mutans biofilms revealed the biofilms grown with Arg had lower exopolysaccharide (EPS)/bacteria ratios than those without Arg (P = 0.004, 0.002, respectively). Arg could significantly reduce the production of water-insoluble EPS in S. mutans biofilms (P < 0.001); however, quantitative real-time PCR (qRT-PCR) did not show significantly influence in gene expression of gtfB, gtfC or gtfD (P = 0.32, 0.06, 0.44 respectively).ConclusionsArg could reduce the biomass of poly-microbial dental biofilms and S. mutans biofilms, which may be due to the impact of Arg on water-insoluble EPS. Considering the contribution to pH homeostasis in dental biofilms, Arg may serve as an important agent keeping oral biofilms healthy thus prevent dental caries.  相似文献   

5.
IntroductionNanoemulsions (NE) are a unique class of disinfectants produced by mixing a water immiscible liquid phase into an aqueous phase under high shear forces. NE have antimicrobial properties and are also effective anti-biofilm agents.Materials and methodsThe effectiveness of nanoemulsion and its components was determined against Streptococcus mutans and Lactobacillus casei by live/dead staining. In vitro antimicrobial effectiveness of nanoemulsion against planktonic S. mutans, L. casei, Actinomyces viscosus, Candida albicans and mixed culture was determined by a serial dilution technique to obtain minimum inhibitory concentration and minimum bactericidal concentration (MIC/MBC). In addition, efficacy was investigated by kinetics of killing, adherence and biofilm assays.ResultsCompared to its components, nanoemulsion showed notable antimicrobial activity against biofilm organisms, up to 83.0% kill within 1 min. NE dilutions ranging from 243 to 19683 were effective against planktonic S. mutans, L. casei, A. viscosus, C. albicans and mixed culture of these four strains as shown through MIC/MBC assays. NE showed antimicrobial activity against planktonic cells at high dilutions, confirmed by time kill studies. The level of adhesion on glass surface was reduced by 94.2–99.5% in nanoemulsion treated groups (p < 0.001). 4-Day-old S. mutans, L. casei, A. viscosus, C. albicans and mixed cultures biofilms treated with NE showed reductions of bacterial counts with decreasing dilutions (p < 0.001).ConclusionThese results suggest that nanoemulsion has effective anti-cariogenic activity against cariogenic microorganisms and may be a useful medication in the prevention of caries.  相似文献   

6.
《Archives of oral biology》2014,59(12):1384-1390
ObjectiveSince some probiotic bacteria are cariogenic themselves, their suitability for caries management is questionable. Inactivated bacteria or their supernatants have been found to exert probiotic effects, whilst having several advantages compared with living bacteria. We hypothesized that viable and heat-inactivated Bifidobacterium animalis BB12 reduces the cariogenicity of Streptococcus mutans (SM) in vitro.DesignWe assessed mono- and mixed species biofilms of SM and viable or heat-inactivated BB12. Biofilms were grown in a continuous-culture-system under cariogenic conditions on smooth proximal enamel or cavitated dentine. For each of eight experimental subsets (4 biofilms × 2 hard-tissue conditions), a total of 32 specimens was used. After 10 days, bacterial numbers of 12 biofilms per group were analysed, and all specimens submitted to transversal microradiography.ResultsMineral loss was higher in cavitated dentine than smooth enamel for all biofilms (p < 0.001, t-test). BB12-monospecies biofilms induced significantly less mineral loss than SM in both enamel (p < 0.05) and dentine (p < 0.001). Viable BB12 did not significantly reduce cariogenicity of SM (p > 0.05), whilst heat-inactivated BB12 decreased cariogenicity of SM in dentinal cavities (p < 0.01). Bacterial numbers were higher on dentine than enamel (p < 0.05), but not significantly influenced by biofilm species (p > 0.05).ConclusionsHeat-inactivated BB12 reduced the cariogenicity of SM in dentinal cavities in vitro. Inactivated probiotics might be suitable for caries control.  相似文献   

7.
《Dental materials》2019,35(8):e175-e183
ObjectiveThis study evaluated the influence of experimental composites containing quaternary ammonium monomers (QAM) at different concentrations and alkyl chains on demineralization at enamel-composite margins after cariogenic challenge.MethodsStandardized 4 × 4 mm cavities were cut into 35 bovine enamel blocks, which were randomly divided into seven groups (n = 5) and restored with the following experimental composites and commercial materials: (G12.5) – 5% dimethylaminododecyl methacrylate (DMADDM) with a 12-carbon alkyl chain (G12.10) – 10% DMADDM, (G16.5) – 5% dimethylaminohexadecyl methacrylate (DMAHDM) with a 16-carbon alkyl chain (G16.10) – 10% DMAHDM, (CG) – control group (without QAM), (GZ250) – commercial composite (Filtek Z250®), and (GIC) – glass ionomer cement (Maxxion R®). After restorative procedures, initial microhardness was measured and experimental composites were subjected to Streptococcus mutans biofilm formation for 48 h. After cariogenic challenge, the samples were washed and microhardness was reassessed. A 3D non-contact profilometer was used to determine surface roughness and enamel demineralization was assessed by micro-CT. Microhardness results were analyzed by the Kruskal–Wallis and Mann-Whitney tests and micro-CT results were analyzed by Tukey’s HSD test (95% confidence interval).ResultsNone of the materials could prevent mineral loss at the enamel-restoration margins. The addition of 10% DMAHDM yielded the lowest, albeit statistically significant, mineral loss (p < 0.05). 3D non-contact profilometry showed enamel surface roughness modification after biofilm exposure. The CG had the highest roughness values. Micro-CT analysis revealed mineral loss, except for GIC.SignificanceThe addition of 10% QAM with a 16-carbon chain in experimental composites reduced mineral loss at the enamel-restoration margins after cariogenic challenge.  相似文献   

8.
9.
ObjectiveThis study investigated the anti-demineralizing and antibacterial effects of a propolis ethanolic extract (EEP) against Streptococcus mutans dental biofilm.DesignBlocks of sound bovine enamel (n = 24) were fixed on polystyrene plates. S. mutans inoculum (ATCC 25175) and culture media were added (48 h–37 °C) to form biofilm. Blocks with biofilm received daily treatment (30 μL/1 min), for 5 days, as following: G1 (EEP 33.3%); G2 (chlorhexidine digluconate 0.12%); G3 (ethanol 80%); and G4 (Milli-Q water). G5 and G6 were blocks without biofilm that received only EEP and Milli-Q water, respectively. Final surface hardness was evaluated and the percentage of hardness loss (%HL) was calculated. The EEP extract pH and total solids were determined. S. mutans count was expressed by log10 scale of Colony-Forming Units (CFU/mL). One way ANOVA was used to compare results which differed at a 95% significance level.ResultsG2 presented the lowest average %HL value (68.44% ± 12.98) (p = 0.010), while G4 presented the highest (90.49% ± 5.38%HL) (p = 0.007). G1 showed %HL (84.41% ± 2.77) similar to G3 (87.80% ± 6.89) (p = 0.477). Groups G5 and G6 presented %HL = 16.11% ± 7.92 and 20.55% ± 10.65; respectively (p = 0.952). G1 and G4 differed as regards to S. mutans count: 7.26 ± 0.08 and 8.29 ± 0.17 CFU/mL, respectively (p = 0.001). The lowest bacterial count was observed in chlorhexidine group (G2 = 6.79 ± 0.10 CFU/mL) (p = 0.043). There was no difference between S. mutans count of G3 and G4 (p = 0.435). The EEP showed pH 4.8 and total soluble solids content = 25.9 Brix.ConclusionThe EEP seems to be a potent antibacterial substance against S. mutans dental biofilm, but presented no inhibitory action on the de-remineralization of caries process.  相似文献   

10.
ObjectivesIn vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator.MethodsA simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR.ResultsCompared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p < 0.0001) whereas 2% xylitol decreased it (p < 0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p < 0.05). Increasing the concentration (2%–5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose.ConclusionsThe continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations.  相似文献   

11.
ObjectiveOral ailments are often treated with antibiotics, which are rendered ineffective as bacteria continue to develop resistance against them. It has been suggested that the nanoparticles (NPs) approach may provide a safer and viable alternative to traditional antibacterial agents. Therefore, nickel (Ni)- and nickel oxide (NiO)-NPs were synthesized, characterized and assessed for their efficacy in reducing oral bacterial load in vitro. Also, the effects of bulk compound NiCl2 (Ni ions), along with the Ni- and NiO-NPs on bacterial exopolysaccharide (EPS) production and biofilm formation on the surface of artificial teeth, and acrylic dentures, were investigated.MethodsTotal bacteria from a healthy male were collected and adjusted to 4 × 109 cells/ml for all the tests. Effect of the NPs on growth, biofilm formation, EPS production and acid production from glucose was tested using standard protocols.ResultsData revealed that the Ni-NPs (average size 41.23 nm) exhibited an IC50 value of 73.37 μg/ml against total oral bacteria. While, NiO-NPs (average size 35.67 nm) were found less effective with much higher IC50 value of 197.18 μg/ml. Indeed, the Ni ions exhibited greater biocidal activity with an IC50 value of 70 μg/ml. Similar results were obtained with biofilm inhibition on the surfaces of dental prostheses. The results explicitly suggested the effectiveness of tested Ni compounds on the growth of oral bacteria and biofilm formation in the order as NiCl2 > Ni-NPs > NiO-NPs.ConclusionThe results elucidated that Ni-NPs could serve as effective nanoantibiotics against oral bacteria.  相似文献   

12.
《Dental materials》2020,36(5):603-616
ObjectivesModern dentistry is increasingly focusing on digital procedures, including CAD/CAM technologies. New materials have to resist in a demanding environment that includes secondary caries occurrence. The current study hypothesized that the microbiological behavior of different RBCs for CAD/CAM applications is better than that of their counterparts for direct restorations due to differences in the surface characteristics.MethodsBoth direct and CAD/CAM RBCs were tested. Specimens were obtained from each group, polished, cleaned, stored in artificial saliva (1 w), then sterilized under UV (24 h). Specimens’ surface was assessed using profilometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction; resin/filler content was assessed using thermogravimetry. After pre-incubation with sterile human saliva (24 h), the microbiological behavior of the materials was assessed using four models: Streptococcus mutans adherence (2 h), S. mutans biofilm formation in an orbital shaking bioreactor (24 h), S. mutans biofilm formation in a continuous-flow bioreactor simulating shear forces (24 h), and mixed-plaque formation in the bioreactor (24 h). The viable biomass adhering to the specimens’ surfaces was measured using a tetrazolium dye-based test. Statistical analysis included verification of normality of distribution and homoscedasticity, then Oneway ANOVA and Tukey's test (α = 5%).ResultsWhen using the bioreactor setup, CAD/CAM RBCs generally yielded lower S. mutans and mixed-plaque biofilm formation compared to direct RBCs. This difference was not evidenced in the first two microbiological models. Differences in manufacturing and curing processes rather than in materials’ surface roughness and composition could explain these results.SignificanceCAD/CAM RBCs are promising materials from a microbiological point of view, featuring reduced biofilm formation on their surfaces when shear conditions similar to in vivo ones are present.  相似文献   

13.
ObjectivesThis paper aimed to compare the mode of action of a stannous fluoride-containing toothpaste with a conventional sodium fluoride-containing toothpaste on anti-biofilm properties.MethodsA three-species biofilm model that consists of Streptococcus mutans, Streptococcus sanguinis and Porphyromonas gingivalis was established to compare the anti-biofilm properties of a stannous fluoride-containing toothpaste (CPH), a conventional sodium fluoride-containing toothpaste (CCP) and a negative control (PBS). The 48 h biofilms were subjected to two-minute episodes of treatment with test agents twice a day for 5 consecutive days. Crystal violet staining and XTT assays were used to evaluate the biomass and viability of the treated biofilm. Live/dead staining and bacteria/extracellular polysaccharides (EPS) double-staining were used to visualize the biofilm structure and to quantify microbial/extracellular components of the treated biofilms. Species-specific fluorescent in situ hybridization and quantitative polymerase chain reaction (qPCR) were used to analyze microbial composition of the biofilms after treatment.ResultsThe biomass and viability of the biofilms were significantly reduced after CPH toothpaste treatment. The inhibitory effect was further confirmed by the live/dead staining. The EPS amounts of the three-species biofilm were significantly reduced by CCP and CPH treatments, and CPH toothpaste demonstrated significant inhibition on EPS production. More importantly, CPH toothpaste significantly suppressed S. mutans and P. gingvalis, and enriched S. sanguinis in the three-species biofilm. In all experiments CPH had a significantly greater effect than CCP (p < 0.05) and CCP had a greater effect than PBS (p < 0.05).ConclusionsStannous fluoride-containing toothpaste not only showed better inhibitory effect against oral microbial biofilm, but was also able to modulate microbial composition within multi-species biofilm compared with conventional sodium fluoride-containing toothpaste.  相似文献   

14.

Objective

Resin-based composites are known to elute leachables that include unincorporated starting materials. The objective of this work was to determine the effect of common dental monomers and initiators on Streptococcus mutans biofilm metabolic activity and biomass.

Methods

S. mutans biofilms were inoculated in the presence of bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), and ethyl 4-(dimethylamino)benzoate (4E) at 0.01 μg/mL up to 500 μg/mL, depending on the aqueous solubility of each chemical. Biofilms were evaluated at 4 h and 24 h for pH (n = 3–8), biomass via crystal violet (n = 12), metabolic activity via tetrazolium salt (n = 12), and membrane permeability for selected concentrations via confocal microscopy (n = 6). Parametric and non-parametric statistics were applied.

Results

500 μg/mL TEGDMA reduced 24 h metabolic activity but not biomass, similar to prior results with leachables from undercured BisGMA-TEGDMA polymers. 50 μg/mL BisGMA reduced biofilm biomass and activity, slightly delayed the pH drop, and decreased the number of cells with intact membranes. 100 μg/mL CQ delayed the pH drop and metabolic activity at 4 h but then significantly increased the 24 h metabolic activity. 4E had no effect up to 10 μg/mL.

Significance

Monomers and initiators that leach from resin composites affect oral bacterial biofilm growth in opposite ways. Leachables, which can be released for extended periods of time, have the potential to alter oral biofilm biomass and activity and should be considered in developing and evaluating new dental materials.  相似文献   

15.
《Dental materials》2019,35(9):1331-1341
ObjectiveThis study evaluated the synergetic effect between surface pre-reacted glass-ionomer (SPRG) filler and 2-methacryloyloxyethyl phosphorylcholine (MPC), for inhibiting multi-species biofilm formation, while maintaining or even improving the original beneficial features of SPRG-filled resin-based composite (RBC).MethodsMPC (1.5–10 wt%) was incorporated into commercial SPRG-filled RBC. Then, the inherent properties of RBC, and ion release and acid-neutralising properties associated with SPRG were investigated. Further, protein adsorptions and bacterial adhesion and viability on the SPRG-filled RBC surfaces were studied using four kinds of oral bacteria; Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, and Porphyromonas gingivalis. Finally, the thickness and biomass of the human saliva-derived biofilm model cultured on test and control samples were analysed.ResultsAddition of MPC content resulted in decreased flexural strength and wettability of SPRG-filled RBC. SPRG-filled RBC released significantly higher amounts of multiple ions as contents of MPC increased. Meanwhile, SPRG-filled RBC with 5-wt% MPC significantly improved acid-neutralising properties than those of other test and control samples (P < 0.001). SPRG-filled RBC with 3 wt% MPC significantly reduced the amount of adsorbed bovine serum albumin and proteins from the brain heart infusion medium as compared to the control (P < 0.01). A similar trend was observed in the attachment of four types of bacteria and multi-species biofilm (P < 0.01).SignificanceDespite limitation in terms of deteriorations of some physical properties, addition of 3% MPC to SPRG-filled RBC leads to inhibition of the attachment of multi-species bacteria on its surface, as well as inhibition of biofilm growth. Moreover, the original important bioactive features of SPRG-filled RBC such as ion release and acid neutralisations are either maintained or improved upon adding MPC.  相似文献   

16.
ObjectivesThe present study aimed to investigate the effect of HNP-1 on the matrix metalloproteinase (MMP)-2, -8 and -9 secretions of two oral squamous cell carcinoma (OSCC) cell lines (UT-SCC-43A and UT-SCC-43B).DesignIn all experiments, the two OSCC cell lines were incubated with graded concentrations (0, 1, 5, and 10 μg/ml) of HNP-1 for 24 and 48 h. Cell viability was measured using a colorimetric proliferation test and cell death was analyzed with a colorimetric cytotoxicity detection kit. Enzyme activity of MMP-2 and MMP-9 was detected by using gelatin zymography, and molecular weight forms of MMP-8 were determined by Western-blot and a densitometric quantitation method.ResultsBoth cell lines showed a significant increase in LDH toxicity at 24 h (UT-SCC-43A: p = 0.005 & UT-SCC-43B: p = 0.014). Reduced gelatinolytic activities of proMMP-2 were detected in UT-SCC-43B cell line after 24 and 48 h of incubation with HNP-1 (1 μg/ml: p < 0.001, 5 μg/ml: p < 0.001, and 10 μg/ml: p = 0.0225). MMP-8 levels of both cell lines decreased at 200–250 kDa after 24 h of incubation, while after 48 h only UT-SCC-43B decreased at 45–50 kDa.ConclusionsOur results indicate that HNP-1 suppresses the secretion of MMP-2, -8, and -9 in OSCC cell lines.  相似文献   

17.
ObjectiveVarious nanoparticles are currently under investigation to impart biointeractivity for dental materials. This study aimed to: (1) formulate an experimental dental adhesive containing ZnO nanoparticles; (2) evaluate its chemical and mechanical properties; and (3) assess the antibacterial response against oral microcosm biofilm.MethodsNanosized ZnO was chemically and morphologically evaluated. ZnO was incorporated at 0 (GCTRL), 2.5 (G2.5%), 5 (G5%) and 7.5 (G5%) wt.% in an experimental dental adhesive. The adhesives were evaluated for the degree of conversion (DC), flexural strength (FS), and elastic modulus (E). The antibacterial activity was evaluated using a 48 h-microcosm biofilm model after the formation of acquired pellicle on samples’ surfaces. Colony-forming units (CFU), metabolic activity, and live/dead staining were assessed.ResultsNanosized ZnO presented characteristic peaks of Zn-O bonds, and the particles were arranged in agglomerates. The DC ranged from 62.21 (±1.05) % for GCtrl to 46.15 (±1.23) % for G7.5% (p < 0.05). G7.5% showed lower FS compared to all groups (p < 0.05). Despite achieving higher E (p < 0.05), G2.5% did not show differences for GCtrl regarding the FS (p > 0.05). G7.5% had lower CFU/mL compared to GCtrl for mutans streptococci (p < 0.05) and total microorganisms (p < 0.05), besides presenting lower metabolic activity (p < 0.05) and higher dead bacteria via biofilm staining.SignificanceThe dental adhesives' physicochemical properties were similar to commercial adhesives and in compliance with ISO recommendations. G7.5% restricted the growth of oral microcosm biofilm without impairing the physicochemical performance.  相似文献   

18.
ObjectivesFish epidermal antimicrobial peptides, such as pleurocidin, are cathelicidins with broad-spectrum antimicrobial activity against gram negative and gram-positive bacteria, as well as fungi. In the current study, we attempted to optimize peptide bioactivity by sequence modification and assess the antimicrobial activities.MethodsFifteen pleurocidin analogues were designed, and the efficacy of pleurocidin congeners against common cariogenic microorganisms was tested; furthermore, we performed a preliminary study of the antimicrobial mechanism. We assayed the minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics to determine the cell killing activity. Scanning electron microscopy (SEM) was used to observe the bacterial membrane after treatment with congeners’ peptides. Human gingival fibroblasts (HGFs) were also used in toxicity studies.ResultsThe MIC and MBC results indicated that peptide congeners had different antimicrobial activities against the tested oral strains. Toxicity studies indicated that several congener peptides had little effect on human gingival fibroblasts (HGFs) with 5 min of in vitro treatment.ConclusionOur findings suggested that several pleurocidin congeners had the antimicrobial effect against Streptococcus mutans, Streptococcus sanguinis and Streptococcus sobrinus.  相似文献   

19.
ObjectivesThis study aimed to establish a method for measuring the cariogenic potential of foods with high reproducibility in vitro.MethodsStreptococcus mutans (S. mutans) was incubated in test foods with radioisotope polyacrylamide hydroxyapatite (PAHA) for 150 min at 37 °C. Then, the amount of radioisotope 32P released from PAHA was measured using a liquid scintillation counter and scanning electron microscopy (SEM).ResultsThe radioisotope PAHA discs that were soaked in 10% sucrose solutions had a high cariogenic potential and showed a remarkably demineralized surface (p < 0.05). The radioisotope PAHA disc that was incubated with snacks that had a high cariogenic potential showed a remarkably demineralized surface via SEM. Candy had a relatively high cariogenic potential, whereas xylitol gum had a relatively low potential.ConclusionsThe cariogenicity of snacks can easily be evaluated by measuring the amount of 32P released from radioisotope PAHA discs.  相似文献   

20.
《Dental materials》2019,35(9):1264-1278
ObjectiveTo analyze effect of NaOCl + 2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.MethodsRoot canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl + 2% CHX, 6% NaOCl + 2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.ResultsControl biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl + 2% QAS group. There was reduction of 484 cm−1 Raman band and its intensity reached lowest with NaOCl + 2% QAS. There was an increase in 1350–1420 cm−1 intensity in the NaOCl + 2% CHX groups. Gradual decrease in 1639 cm−1 and 1609 cm−1 Raman signal ratios were seen in the resin-depth region of 17 μm>, 14.1 μm> and 13.2 μm for NaOCl + 2% QAS, NaOCl + 2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl + 2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl + 2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl + 2% QAS.SignificanceFavorable antimicrobial and endodontic profile of the NaOCl + 2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号