首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soon after about 40% hepatectomy in dogs, the peripheral blood showed hyperglycemia, similar to that in diabetes, and impaired insulin response in the intravenous glucose tolerance test (IVGTT). Histologically, at this stage, the number of islet D-cells was increased, but there was no rise in portal somatostatin. Thus, in this glucose intolerance after hepatectomy, somatostatin seems to play an important role as a paracrine hormone by inhibiting the secretion of insulin by islet B-cells in the pancreas itself.  相似文献   

2.
M Diltoer  F Camu 《Anesthesiology》1988,68(6):880-886
The effect of isoflurane-air anesthesia on glucose tolerance in humans was investigated using two successive intravenous glucose tolerance tests (IVGTT). After a first IVGTT while awake, patients received a second IVGTT either while awake (group I), during anesthesia with isoflurane-air and pancuronium without surgical stimulation (group II), or during the same anesthetic technique but combined with surgery (group III). Isoflurane seemed to induce glucose intolerance (glucose disappearance rate K10-60 min = 1.628 +/- 0.462% min-1 [control] versus 1.086 +/- 0.920% min-1 [anesthesia], P less than 0.05) partly due to a decreased glucose induced insulin response. Growth hormone and norepinephrine levels were also increased during anesthesia. Epinephrine levels were lowered by isoflurane anesthesia. Although glucose intolerance was marked during surgery (K10-60 min = 0.892 +/- 0.286% min-1), the glucose-induced insulin response remained similar to that observed in patients in group II, while growth hormone, cortisol, epinephrine, and norepinephrine concentrations increased significantly. These known stress factors thus seemed to enhance glucose intolerance through a diminished response to insulin action and/or an enhanced hepatic glucose output, rather than by further impairing pancreatic insulin secretion.  相似文献   

3.
Islet cell surface antibodies (ICSAs) in sera of New Zealand Black (NZB) and New Zealand White (NZW) mice were detected by the indirect immunofluorescence method with cultured Balb/c mouse islet cells as antigens. Circulating ICSAs appeared in NZB mice from age 20 wk; at 30 wk, 73% of male mice and 88% of female mice had detectable ICSAs. The ICSAs were significantly absorbed with mouse islet cells but hardly absorbed with spleen cells or liver powder. The ICSAs also bound with islet cells of ICR mice, Sprague-Dawley rats, and NZB mice. NZB mice showed glucose intolerance especially at ages 10 and 30 wk. Although plasma glucose levels tended to be higher in NZB mice with strongly positive ICSAs, pancreatic insulin content was not reduced, and insulitis was rarely observed in the pancreases. On the other hand, 30-wk-old NZW mice had normal or mildly impaired glucose tolerance and only weak, if any, ICSAs. The ICSA-positive serum of NZB mice significantly suppressed glucose-induced insulin release by cultured islet cells. The ICSAs may be responsible, at least in part, for glucose intolerance in NZB mice after age 20 wk through the inhibitory effect on insulin secretion.  相似文献   

4.
1-Cells from rodents and humans express different receptors recognizing hormones of the secretin-glucagon family, which--when activated--synergize with glucose in the control of insulin release. We have recently reported that isolated islets from mice homozygous for a GLP-1 receptor null mutation (GLP-1R(-/-)) exhibit a well-preserved insulin-secretory response to glucose. This observation can be interpreted in two different ways: 1) the presence of GLP-1R is not essential for the secretory response of isolated islets to glucose alone; 2) beta-cells in GLP-1R(-/-) pancreases underwent compensatory changes in response to the null mutation. To explore these possibilities, we studied islets from control GLP-IR(+/+) mice in the absence or presence of 1 pmol/l exendin (9-39)amide, a specific and potent GLP-1R antagonist. Exendin (9-39)amide (15-min exposure) reduced glucose-induced insulin secretion from both perifused and statically incubated GLP-1R(+/+) islets by 50% (P < 0.05), and reduced islet cAMP production in parallel (P < 0.001). Furthermore, GLP-1R(-/-) islets exhibited: 1) reduced cAMP accumulation in the presence of 20 mmol/l glucose (knockout islets versus control islets, 12 +/- 1 vs. 27 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001) and exaggerated acceleration of cAMP production by 10 nmol/l glucose-dependent insulinotropic peptide (GIP) (increase over 20 mmol/l glucose by GIP in knockout islets versus control islets: 66 +/- 5 vs. 14 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001); 2) increased mean cytosolic [Ca2+] ([Ca2+]c) at 7, 10, and 15 mmol/l glucose in knockout islets versus control islets; and 3) signs of asynchrony of [Ca2+]c oscillations between different islet subregions. In conclusion, disruption of GLP-1R signaling is associated with reduced basal but enhanced GIP-stimulated cAMP production and abnormalities in basal and glucose-stimulated [Ca2+]c. These abnormalities suggest that GLP-1R signaling is an essential upstream component of multiple beta-cell signaling pathways.  相似文献   

5.
To examine the effect of increased hexosamine flux in liver, the rate-limiting enzyme in hexosamine biosynthesis (glutamine:fructose-6-phosphate amidotransferase [GFA]) was overexpressed in transgenic mice using the PEPCK promoter. Liver from random-fed transgenic mice had 1.6-fold higher GFA activity compared with nontransgenic control littermates (276 +/- 24 pmol x mg(-1) x min(-1) in transgenic mice vs. 176 +/- 18 pmol x mg(-1) x min(-1) in controls, P < 0.05) and higher levels of the hexosamine end product UDP-N-acetyl glucosamine (288 +/- 11 pmol/g in transgenic mice vs. 233 +/- 10 pmol/g in controls, P < 0.001). Younger transgenic mice compared with control mice had lower fasting serum glucose (4.8 +/- 0.5 mmol/l in transgenic mice vs. 6.5 +/- 0.8 mmol/l in controls, P < 0.05) without higher insulin levels (48.0 +/- 7.8 pmol/l in transgenic mice vs. 56.4 +/- 5.4 pmol/l in controls, P = NS); insulin levels were significantly lower in transgenic males (P < 0.05). At 6 months of age, transgenic animals had normal insulin sensitivity by the hyperinsulinemic clamp technique. Hepatic glycogen content was higher in the transgenic mice (108.6 +/- 5.2 pmol/g in transgenic mice vs. 32.8 +/- 1.3 micromol/g in controls, P < 0.01), associated with an inappropriate activation of glycogen synthase. Serum levels of free fatty acids (FFAs) and triglycerides were also elevated (FFAs, 0.67 +/- 0.03 mmol/l in transgenic mice vs. 0.14 +/- 0.01 in controls; triglycerides, 1.34 +/- 0.15 mmol/l in transgenic mice vs. 0.38 +/- 0.01 in controls, P < 0.01). Older transgenic mice became heavier than control mice and exhibited relative glucose intolerance and insulin resistance. The glucose disposal rate at 8 months of age was 154 +/- 5 mg x kg(-1) x min(-1) in transgenic mice vs. 191 +/- 6 mg x kg(-1) x min(-1) in controls (P < 0.05). We conclude that hexosamines are mediators of glucose sensing for the regulation of hepatic glycogen and lipid metabolism. Increased hexosamine flux in the liver signals a shift toward fuel storage, resulting ultimately in obesity and insulin resistance.  相似文献   

6.
7.
M C Sugden  K Bulmer  D Augustine  M J Holness 《Diabetes》2001,50(12):2729-2736
The pyruvate dehydrogenase complex (PDC) has a pivotal role in islet metabolism. The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of PDC. Starvation increases islet PDK activity (Am J Physiol Endocrinol Metab 270:E988-E994, 1996). In this study, using antibodies against PDK1, PDK2, and PDK4 (no sufficiently specific antibodies are as yet available for PDK3), we identified the PDK isoform profile of the pancreatic islet and delineated the effects of starvation (48 h) on protein expression of individual PDK isoforms. Rat islets were demonstrated to contain all three PDK isoforms, PDK1, PDK2, and PDK4. Using immunoblot analysis with antibodies raised against the individual recombinant PDK isoforms, we demonstrated increased islet protein expression of PDK4 in response to starvation (2.3-fold; P < 0.01). Protein expression of PDK1 and PDK2 was suppressed in response to starvation (by 27% [P < 0.01] and 10% [NS], respectively). We demonstrated that activation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) by the selective agonist WY14,643 for 24 h in vivo leads to specific upregulation of islet PDK4 protein expression by 1.8-fold (P < 0.01), in the absence of change in islet PDK1 and PDK2 protein expression but in conjunction with a 2.2-fold increase (P < 0.01) in islet PPAR-alpha protein expression. Thus, although no changes in islet PPAR-alpha expression were observed after the starvation protocol, activation of PPAR-alpha in vivo may be a potential mechanism underlying upregulation of islet PDK4 protein expression in starvation. We evaluated the effects of antecedent changes in PDK profile and/or PPAR-alpha activation induced by starvation or PPAR-alpha activation in vivo on glucose-stimulated insulin secretion (GSIS) in isolated islets. GSIS at 20 mmol/l glucose was modestly impaired on incubation with exogenous triglyceride (1 mmol/l triolein) ( approximately 20% inhibition; P < 0.05) in islets from fed rats. Starvation (48 h) impaired GSIS in the absence of triolein (by 57%; P < 0.001), but GSIS after the further addition of triolein did not differ significantly between islets from fed or starved rats. GSIS by islets prepared from WY14,643-treated fed rats did not differ significantly from that seen with islets from control fed rats, and the response to triolein addition resembled that of islets prepared from fed rather than starved rats. PPAR-alpha activation in vivo led to increased insulin secretion at low glucose concentrations. Our results are discussed in relation to the potential impact of changes in islet PDK profile on the insulin secretory response to lipid and of PPAR-alpha activation in the cause of fasting hyperinsulinemia.  相似文献   

8.
Ahrén B  Holst JJ 《Diabetes》2001,50(5):1030-1038
We studied the mechanisms and physiological relevance of the cephalic insulin response to meal ingestion in 12 healthy women (age 63 +/- 0.4 years; BMI 27.7 +/- 1.7 kg/m2). The ganglionic antagonist, trimethaphan, which impairs neurotransmission across parasympathetic and sympathetic autonomic ganglia, or atropine or saline was given intravenously during the first 15 min after ingestion of a standard meal (350 kcal). During saline infusion, insulin levels increased during the first 10 min after meal ingestion, whereas the first increase in glucose was evident at 15 min. The preabsorptive 10-min insulin response was reduced by 73 +/- 11% by trimethaphan (P = 0.009), accompanied by impaired reduction of glucose levels from 25 to 60 min after meal ingestion (deltaglucose = -1.27 +/- 0.5 [with saline] vs. 0.1 +/- 0.4 mmol/l [with trimethaphan]; P = 0.008). This reduction at 25-60 min in glucose levels correlated significantly to the 10-min insulin response (r = 0.65, P = 0.024). The 10-min insulin response to meal ingestion was also reduced by atropine, but only by 20 +/- 9% (P = 0.045), which was lower than the reduction with trimethaphan (P = 0.004). The preabsorptive insulin response was not accompanied by any increase in circulating levels of gastric inhibitory polypeptide (GIP) or glucagon-like peptide 1 (GLP-1). In conclusion, 1) the early preabsorptive insulin response to meal ingestion in humans can be largely attributed to autonomic activation mediated by noncholinergic and cholinergic mechanisms, 2) this cephalic insulin response is required for a normal postprandial glucose tolerance, and 3) GIP and GLP-1 do not contribute to the preabsorptive cephalic phase insulin response to meal ingestion.  相似文献   

9.
Recently, a new stage in glucose tolerance, impaired fasting glucose (IFG) (fasting plasma glucose level of 6.1-6.9 mmol/l), was introduced in addition to impaired glucose tolerance (IGT) (2-h glucose level of 7.8-11.0 mmol/l). It is not clear whether IFG and IGT differ with respect to insulin secretion or sensitivity. To address this question, we estimated insulin secretion (by measuring both insulin levels and the ratio of insulin-to-glucose levels in 30-min intervals) and insulin sensitivity (by using the homeostasis model assessment [HOMA] index) from an oral glucose tolerance test (OGTT) in 5,396 individuals from the Botnia Study who had varying degrees of glucose tolerance. There was poor concordance between IFG and IGT: only 36% (303 of 840) of the subjects with IFG had IGT, whereas 62% (493 of 796) of the subjects with IGT did not have IFG. Compared with subjects with normal glucose tolerance (NGT), subjects with IFG were more insulin resistant (HOMA-insulin resistance [IR] values 2.64 +/- 0.08 vs. 1.73 +/- 0.03, P < 0.0005), had greater insulin responses during an OGTT (P = 0.0001), had higher waist-to-hip ratios (P < 0.005), had higher triglyceride and total cholesterol concentrations (P < 0.0005), and had lower HDL cholesterol concentrations (P = 0.0001). Compared with subjects with IFG, subjects with IGT had a lower incremental 30-min insulin-to-glucose area during an OGTT (13.8 +/- 1.7 vs. 21.7 +/- 1.7, P = 0.0008). Compared with subjects with IGT, subjects with mild diabetes (fasting plasma glucose levels <7.8 mmol/l) showed markedly impaired insulin secretion that could no longer compensate for IR and elevated glucose levels. A progressive decline in insulin sensitivity was observed when moving from NGT to IGT and to subjects with diabetes (P < 0.05 for trend), whereas insulin secretion followed an inverted U-shaped form. We conclude that IFG is characterized by basal IR and other features of the metabolic syndrome, whereas subjects with IGT have impaired insulin secretion in relation to glucose concentrations. An absolute decompensation of beta-cell function characterizes the transition from IGT to mild diabetes.  相似文献   

10.
Henquin JC  Dufrane D  Nenquin M 《Diabetes》2006,55(12):3470-3477
Pancreatic islets were isolated from 16 nondiabetic organ donors and, after culture for approximately 2 days in 5 mmol/l glucose, were perifused to characterize nutrient-induced insulin secretion in human islets. Stepwise increases from 0 to 30 mmol/l glucose (eight 30-min steps) evoked concentration-dependent insulin secretion with a threshold at 3-4 mmol/l glucose, K(m) at 6.5 mmol/l glucose, and V(max) at 15 mmol/l glucose. An increase from 1 to 15 mmol/l glucose induced biphasic insulin secretion with a prominent first phase (peak increase of approximately 18-fold) and a sustained, flat second phase ( approximately 10-fold increase), which were both potentiated by forskolin. The central role of ATP-sensitive K(+) channels in the response to glucose was established by abrogation of insulin secretion by diazoxide and reversible restoration by tolbutamide. Depolarization with tolbutamide or KCl (plus diazoxide) triggered rapid insulin secretion in 1 mmol/l glucose. Subsequent application of 15 mmol/l glucose further increased insulin secretion, showing that the amplifying pathway is operative. In control medium, glutamine alone was ineffective, but its combination with leucine or nonmetabolized 2-amino-bicyclo [2,2,1]-heptane-2-carboxylic acid (BCH) evoked rapid insulin secretion. The effect of BCH was larger in low glucose than in high glucose. In contrast, the insulin secretion response to arginine or a mixture of four amino acids was potentiated by glucose or tolbutamide. Palmitate slightly augmented insulin secretion only at the supraphysiological palmitate-to-albumin ratio of 5. Inosine and membrane-permeant analogs of pyruvate, glutamate, or succinate increased insulin secretion in 3 and 10 mmol/l glucose, whereas lactate and pyruvate had no effect. In conclusion, nutrient-induced insulin secretion in normal human islets is larger than often reported. Its characteristics are globally similar to those of insulin secretion by rodent islets, with both triggering and amplifying pathways. The pattern of the biphasic response to glucose is superimposable on that in mouse islets, but the concentration-response curve is shifted to the left, and various nutrients, in particular amino acids, influence insulin secretion within the physiological range of glucose concentrations.  相似文献   

11.
Lin JM  Fabregat ME  Gomis R  Bergsten P 《Diabetes》2002,51(4):988-993
Plasma insulin in healthy subjects shows regular oscillations, which are important for the hypoglycemic action of the hormone. In individuals with type 2 diabetes, these regular variations are altered, which has been implicated in the development of insulin resistance and hyperglycemia. The origin of the change is unknown, but derangement of the islet secretory pattern has been suggested as a contributing cause. In the present study, we show the dynamics of insulin release from individually perifused islets isolated from three subjects with type 2 diabetes. Insulin release at 3 mmol/l glucose was 10.5 +/- 4.5 pmol.g(-1).s(-1) and pulsatile (0.26 +/- 0.05 min(-1)). In islets from one subject, 11 mmol/l glucose transiently increased insulin release by augmentation of the insulin pulses without affecting the frequency. Addition of 1 mmol/l tolbutamide did not increase insulin release. In islets from the remaining subjects, insulin release was not affected by 11 mmol/l glucose. Tolbutamide transiently increased insulin release in islets from one subject. Insulin release from four normal subjects at 3 mmol/l glucose was 4.3 +/- 0.8 pmol.g(-1).s(-1) and pulsatile (0.23 +/- 0.03 min(-1)). At 11 mmol/l glucose, insulin release increased in islets from all subjects. Tolbutamide further increased insulin release in islets from two subjects. It is concluded that islets from the three individuals with type 2 diabetes release insulin in pulses. The impaired secretory response to glucose may be related to impaired metabolism before mitochondrial degradation of the sugar.  相似文献   

12.
Type 2 diabetes is characterized by impaired beta-cell function, hyperglycemia, and islet amyloid deposition. The primary constituent of islet amyloid is the 37-amino acid beta-cell product called islet amyloid polypeptide (IAPP) or amylin. To study mechanisms of islet amyloid formation, we developed a transgenic mouse model that produces and secretes the amyloidogenic human IAPP (hIAPP) molecule and have shown that 81% of male transgenic mice develop islet amyloid after 14 months on a high-fat diet. To test whether impaired beta-cell function and hyperglycemia could enhance islet amyloid formation, we cross-bred our hIAPP transgenic mice with beta-cell glucokinase-knockout mice (GKKO) that have impaired glucose-mediated insulin secretion and fasting hyperglycemia. The resulting new (hIAPPxGKKO) line of mice had higher basal plasma glucose concentrations than the hIAPP transgenic mice at 3, 6, and 12 months of age (P < 0.05), as did GKKO mice compared with hIAPP transgenic mice at 6 and 12 months of age (P < 0.05). Basal plasma immunoreactive insulin (IRI) levels were lower in hIAPP x GKKO mice than in hIAPP transgenic mice at 6 months of age (P < 0.05). The area under the glucose curve in response to an intraperitoneal glucose challenge (1 g/kg body weight) was larger in hIAPPxGKKO mice than in hIAPP transgenic mice at 3, 6, and 12 months of age (P < 0.005) and in GKKO mice compared with hIAPP transgenic mice at 6 and 12 months of age (P < 0.005). The area under the IRI curve was lower in hIAPPxGKKO mice at 6 and 12 months of age (P < 0.05) than in hIAPP transgenic mice and in GKKO mice compared with hIAPP transgenic mice at 12 months of age (P < 0.05). Despite the presence of hyperglycemia, hIAPPxGKKO mice had a lower incidence (4 of 17 vs. 12 of 19, P < 0.05) and amount (0.40 +/- 0.24 vs. 1.2 +/- 0.3 arbitrary units, P < 0.05) of islet amyloid than hIAPP transgenic mice had. As expected, no islet amyloid was observed in GKKO mice lacking the hIAPP transgene (0 of 13). There was no difference in pancreatic content of IRI and hIAPP among the three groups of mice. Thus, despite the presence of impaired islet function and hyperglycemia, hIAPPxGKKO mice had a decreased incidence and quantity of islet amyloid. Therefore, our data suggest that impaired beta-cell glucose metabolism or hyperglycemia are not likely to contribute to islet amyloid formation in diabetes. Furthermore, this finding may explain the lack of progression of glycemia in patients with maturity-onset diabetes of the young.  相似文献   

13.
Islet transplantation offers the prospect of good glycemic control without major surgical risks. After our initial report of successful islet transplantation, we now provide further data on 12 type 1 diabetic patients with brittle diabetes or problems with hypoglycemia previous to 1 November 2000. Details of metabolic control, acute complications associated with islet transplantation, and long-term complications related to immunosuppression therapy and diabetes were noted. Insulin secretion, both acute and over 30 min, was determined after intravenous glucose tolerance tests (IVGTTs). The median follow-up was 10.2 months (CI 6.5-17.4), and the longest was 20 months. Glucose control was stable, with pretransplant fasting and meal tolerance-stimulated glucose levels of 12.5+/-1.9 and 20.0+/-2.7 mmol/l, respectively, but decreased significantly, with posttransplant levels of 6.3+/-0.3 and 7.5+/-0.6 mmol/l, respectively (P < 0.006). All patients have sustained insulin production, as evidenced by the most current baseline C-peptide levels 0.66+/-0.06 nmol/l, increasing to 1.29+/-0.25 nmol/l 90 min after the meal-tolerance test. The mean HbA1c level decreased from 8.3+/-0.5% to the current level of 5.8+/-0.1% (P < 0.001). Presently, four patients have normal glucose tolerance, five have impaired glucose tolerance, and three have post-islet transplant diabetes (two of whom need oral hypoglycemic agents and low-dose insulin (<10 U/day). Three patients had a temporary increase in their liver-function tests. One patient had a thrombosis of a peripheral branch of the right portal vein, and two of the early patients had bleeding from the hepatic needle puncture site; but these technical problems were resolved. Two patients had transient vitreous hemorrhages. The two patients with elevated creatinine levels pretransplant had a significant increase in serum creatinine in the long term, although the mean serum creatinine of the group was unchanged. The cholesterol increased in five patients, and lipid-lowering therapy was required for three patients. No patient has developed cytomegalovirus infection or disease, posttransplant lymphoproliferative disorder, malignancies, or serious infection to date. None of the patients have been sensitized to donor antigen. In 11 of the 12 patients, insulin independence was achieved after 9,000 islet equivalents (IEs) per kilogram were transplanted. The acute insulin response and the insulin area under the curve (AUC) after IVGTT were consistently maintained over time. The insulin AUC from the IVGTT correlated to the number of islets transplanted, but more closely correlated when the cold ischemia time was taken into consideration (r = 0.83, P < 0.001). Islet transplantation has successfully corrected labile type 1 diabetes and problems with hypoglycemia, and our results show persistent insulin secretion. After a minimum of 9,000 IEs per kilogram are provided, insulin independence is usually attained. An elevation of creatinine appears to be a contraindication to this immunosuppressive regimen. For the subjects who had labile type 1 diabetes that was difficult to control, the risk-to-benefit ratio is in favor of islet transplantation.  相似文献   

14.
Recent advances in human islet transplantation have highlighted the need for expanding the pool of beta-cells available for transplantation. We have developed three transgenic models in which growth factors (hepatocyte growth factor [HGF], placental lactogen, or parathyroid hormone-related protein) have been targeted to the beta-cell using rat insulin promoter (RIP). Each displays an increase in islet size and islet number, and each displays insulin-mediated hypoglycemia. Of these three models, the RIP-HGF mouse displays the least impressive phenotype under basal conditions. In this study, we show that this mild basal phenotype is misleading and that RIP-HGF mice have a unique and salutary phenotype. Compared with normal islets, RIP-HGF islets contain more insulin per beta-cell (50 +/- 5 vs. 78 +/- 9 ng/islet equivalent [IE] in normal vs. RIP-HGF islets, P < 0.025), secrete more insulin in response to glucose in vivo (0.66 +/- 0.06 vs. 0.91 +/- 0.10 ng/ml in normal vs. RIP-HGF mice, P < 0.05) and in vitro (at 22.2 mmol/l glucose: 640 +/- 120.1 vs. 1,615 +/- 196.9 pg. microg protein(-1). 30 min(-1) in normal vs. RIP-HGF islets, P < 0.01), have two- to threefold higher GLUT2 and glucokinase steady-state mRNA levels, take up and metabolize glucose more effectively, and most importantly, function at least twice as effectively after transplantation. These findings indicate that HGF has surprisingly positive effects on beta-cell mitogenesis, glucose sensing, beta-cell markers of differentiation, and transplant survival. It appears to have a unique and unanticipated effective profile as an islet mass- and function-enhancing agent in vivo.  相似文献   

15.
SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell–specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.  相似文献   

16.
Jonkers FC  Henquin JC 《Diabetes》2001,50(3):540-550
The proportion of isolated single beta-cells developing a metabolic, biosynthetic, or secretory response increases with glucose concentration (recruitment). It is unclear whether recruitment persists in situ when beta-cells are coupled. We therefore measured the cytoplasmic free Ca2+ correction ([Ca2+]i) (the triggering signal of glucose-induced insulin secretion) in mouse islet single cells or clusters cultured for 1-2 days. In single cells, the threshold glucose concentration ranged between 6 and 10 mmol/l, at which concentration a maximum of approximately 65% responsive cells was reached. Only 13% of the cells did not respond to glucose plus tolbutamide. The proportion of clusters showing a [Ca2+]i rise increased from approximately 20 to 95% between 6 and 10 mmol/l glucose, indicating that the threshold sensitivity to glucose differs between clusters. Within responsive clusters, 75% of the cells were active at 6 mmol/l glucose and 95-100% at 8-10 mmol/l glucose, indicating that individual cell recruitment is not prominent within clusters; in clusters responding to glucose, all or almost all cells participated in the response. Independently of cell recruitment, glucose gradually augmented the magnitude of the average [Ca2+]i rise in individual cells, whether isolated or associated in clusters. When insulin secretion was measured simultaneously with [Ca2+]i, a good temporal and quantitative correlation was found between both events. However, beta-cell recruitment was maximal at 10 mmol/l glucose, whereas insulin secretion increased up to 15-20 mmol/l glucose. In conclusion, beta-cell recruitment by glucose can occur at the stage of the [Ca2+]i response. However, this type of recruitment is restricted to a narrow range of glucose concentrations, particularly when beta-cell association decreases the heterogeneity of the responses. Glucose-induced insulin secretion by islets, therefore, cannot entirely be ascribed to recruitment of beta-cells to generate a [Ca2+]i response. Modulation of the amplitude of the [Ca2+]i response and of the action of Ca2+ on exocytosis (amplifying actions of glucose) may be more important.  相似文献   

17.
A Bj?rklund  V Grill 《Diabetes》1999,48(7):1409-1414
Relative hypersecretion of proinsulin is a feature of type 2 diabetes. We investigated to what extent this feature can be induced in human pancreatic islets by elevated glucose or fatty acids, two major abnormalities of the diabetic state. A 48-h culture period with 27 mmol/l glucose increased the intraislet proinsulin-to-insulin (PI/I) ratio 5.0-fold, owing to preferential decrease of insulin. The PI/I ratio in culture medium was enhanced 1.9-fold versus islets cultured with 5.5 mmol/l glucose. This effect of elevated glucose persisted after normalization of glucose levels: during 60-min postculture incubations at a basal glucose concentration (3.3 mmol/l), the PI/I ratio of secretion increased 4.9-fold. The ratio was also increased (14-fold) after renewed postculture stimulation with 16.7 mmol/l glucose. Diazoxide was added to culture medium to block glucose-induced insulin secretion and thus investigate the importance of overstimulation. In cultures at 27 mmol/l glucose, the presence of diazoxide decreased the PI/I ratio of islet contents by 76%, the accumulated secretion to culture medium by 70%, and the release at 3.3 or 16.7 mmol/l glucose during postculture incubations by 85 and 86%, respectively. None of these PI/I-decreasing effects of diazoxide were reproduced during or after coculture with 5.5 mmol/l glucose. Culture with 0.2 mmol/l palmitate and 5.5 mmol/l glucose decreased islet contents of proinsulin and insulin and increased the secreted products in culture media without affecting PI/I ratios. During postculture conditions, however, prior palmitate culture enhanced the PI/I ratio of release at 3.3 mmol/l glucose (from 2.2 +/- 0.4 to 5.4 +/- 0.9%, P < 0.05). Culture with palmitate together with 27 mmol/l glucose decreased islet contents of proinsulin and insulin and further enhanced intraislet PI/I ratios (from 9.3 +/- 1.1 to 13.4 +/- 2.5%, P < 0.05). However, palmitate failed to affect PI/I ratios in culture medium. In contrast, in postculture incubations at 3.3 mmol/l glucose, prior palmitate culture further elevated the PI/I ratio of secretion (from 10.8 +/- 1.2 after previous 27 mmol/l glucose alone to 13.9 +/- 2.8% after palmitate and glucose, P < 0.05). We conclude that 1) long-term exposure of human islets to elevated glucose leads to preferential secretion of proinsulin, and this effect persists also after glucose normalization; 2) the glucose effect appears secondary to depletion of mature insulin granules; and 3) elevated fatty acids influence PI/I ratios of secretion by mechanisms that are, in part, incongruous with an over-stimulation effect.  相似文献   

18.
In a cross-sectional study, we assessed beta-cell function and insulin sensitivity index (ISI) with hyperglycemic clamps (10 mmol/l) in 24 subjects with impaired fasting glycemia (IFG, fasting plasma glucose [FPG] between 6.1 and 7.0 mmol/l), 15 type 2 diabetic subjects (FPG >7.0 mmol/l), and 280 subjects with normal fasting glycemia (NFG, FPG <6.1 mmol/l). First-phase insulin release (0-10 min) was lower in IFG (geometric mean 541 pmol/l.10 min; 95% confidence interval [CI] 416-702 pmol/l.10 min) and in type 2 diabetes (geometric mean 376 pmol/l.10 min; 95% CI 247-572 pmol/l.10 min) than NFG (geometric mean 814 pmol/l.10 min; 95% CI 759-873 pmol/l.10 min) (P < 0.001). Second-phase insulin secretion (140-180 min) was also lower in IFG (geometric mean 251 pmol/l; 95% CI 198-318 pmol/l; P = 0.026) and type 2 diabetes (geometric mean 157 pmol/l; 95% CI 105-235 pmol/l; P < 0.001) than NFG (geometric mean 295 pmol/l; 95% CI 276-315 pmol/l). IFG and type 2 diabetic subjects had a lower ISI (0.15 plus minus 0.02 and 0.16 plus minus 0.02 micromol/kg fat-free mass [FFM]/min/pmol/l, respectively) than NFG (0.24 plus minus 0.01 micromol/kg FFM/min/pmol/l, P < 0.05). We found a stepwise decline in first-phase (and second-phase) secretion in NFG subjects with progressive decline in oral glucose tolerance (P < 0.05). IFG subjects with impaired glucose tolerance (IGT) had lower first-phase secretion than NFG subjects with IGT (P < 0.02), with comparable second-phase secretion and ISI. NFG and IFG subjects with a diabetic glucose tolerance (2-h glucose >11.1 mmol/l) had a lower ISI than their respective IGT counterparts (P < 0.05). We conclude that the early stages of glucose intolerance are associated with disturbances in beta-cell function, while insulin resistance is seen more markedly in later stages.  相似文献   

19.
Glucose toxicity (i.e., glucose-induced reduction in insulin secretion and action) may be mediated by an increased flux through the hexosamine-phosphate pathway. Glucosamine (GlcN) is widely used to accelerate the hexosamine pathway flux, independently of glucose. We tested the hypothesis that GlcN can affect insulin secretion and/or action in humans. In 10 healthy subjects, we sequentially performed an intravenous glucose (plus [2-3H]glucose) tolerance test (IVGTT) and a euglycemic insulin clamp during either a saline infusion or a low (1.6 micromol x min(-1) x kg(-1)) or high (5 micromol x min(-1) x kg(-1) [n = 5]) GlcN infusion. Beta-cell secretion, insulin (SI*-IVGTT), and glucose (SG*) action on glucose utilization during the IVGTT were measured according to minimal models of insulin secretion and action. Infusion of GlcN did not affect readily releasable insulin levels, glucose-stimulated insulin secretion (GSIS), or the time constant of secretion, but it increased both the glucose threshold of GSIS (delta approximately 0.5-0.8 mmol/l, P < 0.03-0.01) and plasma fasting glucose levels (delta approximately 0.3-0.5 mmol/l, P < 0.05-0.02). GlcN did not change glucose utilization or intracellular metabolism (glucose oxidation and glucose storage were measured by indirect calorimetry) during the clamp. However, high levels of GlcN caused a decrease in SI*-IVGTT (delta approximately 30%, P < 0.02) and in SG* (delta approximately 40%, P < 0.05). Thus, in humans, acute GlcN infusion recapitulates some metabolic features of human diabetes. It remains to be determined whether acceleration of the hexosamine pathway can cause insulin resistance at euglycemia in humans.  相似文献   

20.
Hyperinsulinemia is frequently associated with a variety of insulin-resistant states and has been implicated causally in the development of insulin resistance. This study examines the metabolic consequences of prolonged hyperinsulinemia in humans. Basally and 1 h after cessation of a 20-h infusion of insulin (0.5 mU X kg-1 X min-1, aimed at elevating plasma insulin levels to approximately 30 mU/L) or normal saline, subjects were assessed for glucose turnover with 3-[3H]glucose; insulin sensitivity, as measured by either the euglycemic glucose-clamp technique or the intravenous glucose tolerance test (IVGTT) minimal model method of Bergman; and monocyte insulin-receptor binding. Hepatic glucose production (Ra) was suppressed by greater than 95% during each euglycemic clamp and during the 20-h insulin infusion. After the insulin infusion, Ra and glucose utilization rate returned to the initial basal level within 1 h, as did insulin levels. At that time, insulin sensitivity was significantly decreased, as measured by the "insulin action" parameter during the 40- to 80-min phase of the clamp (0.049 +/- 0.003 vs. 0.035 +/- 0.007 min-1, P less than .05) and during the 80- to 120-min phase (0.047 +/- 0.005 vs. 0.039 +/- 0.007 min-1, .05 less than P less than .1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号